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In this study, BaZr0.87Y0.1M0.03O3−δ perovskite electrolytes with sintering aids (M =Mn,
Co, and Fe) were synthesized by a sustainable approach using spinach powder as a
chelating agent and then compared with chemically synthesized
BaZr0.87Y0.1M0.03O3−δ (M = Mn, Co, and Fe) electrolytes for intermediate
temperature SOFCs. This is the first example of such a sustainable synthesis of
perovskite materials with sintering aids. Structural analysis revealed the presence
of a cubic perovskite structure in BaZr0.87Y0.1M0.03O3−δ (M = Mn, Co, and Fe) samples
synthesized by both green and conventional chemical methods. No significant
secondary phases were observed in the samples synthesized by a sustainable
approach. The observed phenomena of plane shift were because of the disparities
between ionic radii of the dopants, impurities, and host materials. The surface
morphology analysis revealed a denser microstructure for the electrolytes
synthesized via green routes due to metallic impurities in the organic chelating
agent. The absence of significant impurities was also observed by compositional
analysis, while functional groups were identified through Fourier-transform infrared
spectroscopy. Conductivity measurements showed that BaZr0.87Y0.1M0.03O3−δ (M =
Mn, Co, and Fe) electrolytes synthesized by oxalic acid have higher conductivities
compared to BaZr0.87Y0.1M0.03O3−δ (M = Mn, Co, and Fe) electrolytes synthesized by
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the green approach. The button cells employing BaZr0.87Y0.1Co0.03O3−δ electrolytes
synthesized by the chemical and green routes achieved peak power densities 344 and
271mW·cm−2 respectively, suggesting that the novel green route can be applied to
synthesize SOFC perovskite materials with minimal environmental impact and without
significantly compromising cell performance.

KEYWORDS

perovskite, green synthesis, SOFC, proton conductor, barium zirconate, electrochemical
performance

1 Introduction

Energy is a crucial element in the long-term development and
wellbeing of all nations. As the world’s population has grown and
technological industrialization has progressed, energy has become
an indispensable requirement for daily life. Energy consumption is
also essential for economic development and prosperity, especially
for electricity generation and industrial use (Babar et al., 2022; Hanif
et al., 2023a; Antonova, 2023; Gordeev and Porotnikova, 2023;
Shaheen et al., 2023). Fossil fuels are still the primary sources of
energy but concerns about greenhouse gas emissions and climate
change have increased, forcing the world to explore renewable and
sustainable energy sources (Hanif et al., 2022; Irshad et al., 2022;
Demin and Bronin, 2023; Pikalova et al., 2023). Fuel cells,
particularly solid oxide fuel cells (SOFCs), have become
prominent contenders amongst alternative energy sources
because of their efficiency, ability to use multiple fuels, and little
or no greenhouse gas emissions (Rafique et al., 2022; Hanif et al.,
2023b; Khan et al., 2023; Rauf et al., 2023; Tarasova et al., 2023;
Babar et al., 2024). In the last decade, special attention has been
focused on proton-conducting SOFCs owing to their high protonic
conductivity compared to oxygen conduction because of the small
size of protons with their low activation energy (Irshad et al., 2023;
Mehran et al., 2023).

The electrolyte is an essential component of SOFCs, and its
improvements are critical in reducing operating temperatures and
achieving good chemical stability and ionic conductivity at the same
time. Many ionic conductors, including YSZ, doped gallates and
doped CeO2, etc., are investigated as SOFC electrolytes.
Nevertheless, these electrolytes need a substantial amount of
activation energy and elevated temperature in order to achieve
good conductivity. Proton conductors have the potential to be
suitable for use as electrolytes due to their favorable proton
conductivity at low temperatures (Irshad et al., 2016; Mosiałek
et al., 2023). Perovskite materials (ABO3) have attracted
considerable attention as electrolyte materials because they can
surpass the constraints of traditional electrolytes. The highly
conducting perovskite electrolytes can transport ions more
efficiently across the material. The aforementioned attribute can
enhance the SOFC performance device by facilitating swift ions
transport and minimizing resistances. In addition, these electrolytes
are also more stable than conventional electrolytes in reductive/
oxidative atmospheres at high operating temperatures (Irshad et al.,
2023).

Doped barium zirconate (BaZrO3) and barium cerate (BaCeO3)
are commonly used proton conducting electrolytes based on the
perovskite structure (ABO3). Doped BaCeO3exhibits high

conductivity, however it lacks chemical stability in CO2 and
humid atmospheres, whereas doped BaZrO3 exhibits high
stability in these atmospheres, but have lower ionic conductivity
(Goulart et al., 2021; Rasaki et al., 2021; Zhang and Hu, 2021).
Various sintering aids, synthesis routes and doping approaches are
used to increase the density and conductivity of barium zirconate-
based materials (Jiao et al., 2019). Introducing rare earth elements to
the B-site creates oxygen vacancies, which in turn enhances ionic
conductivity. Consequently, perovskites doped with rare earth (RE)
elements have garnered interest because of their elevated levels of
ionic, proton, or mixed conductivities (Irshad et al., 2021; Rasaki
et al., 2021). The addition of dopants in perovskites and especially in
BaZrO3 enhances the proton mobility and therefore boosts proton
conductivity at intermediate temperatures (Nayak and Sasmal,
2023). The meticulous choice of dopants along with fabrication
techniques could ascertain the effective formation of conductive and
stable BaZrO3-based electrolytes (Hossain et al., 2021a). RE-doped
BaZrO3 exhibit significant protonic conductivity at low
temperatures making them a suitable choice. However, there are
still existing problems, such as the limited ability of protons to be
absorbed and the insufficient number of catalytic sites which needs
to be addressed. Furthermore, achieving dense BaZrO3-based
electrolytes necessitates elevated sintering temperature and
prolonged sintering duration. High sintering temperatures results
in evaporation of BaO, causing a decrease in grain and grain
boundary conductivity due to ternary phase formation (Ueno
et al., 2019). Also, BaZrO3 has a grain boundary blocking
property caused by a space charge effect which segregates the
charged defects near structurally distorted region of the grain
boundary (Uthayakumar et al., 2020). Despite substantial
research on the proton conduction of doped BaZrO3, the exact
processes underlying the conduction of doped BaZrO3 is remain
poorly understood (Vera et al., 2021). It is however an established
fact that synthesis approaches, selection of dopants and sintering
aids are crucial role for promoting the desired properties of RE-
BaZrO3 materials (Hossain et al., 2021b).

Researchers have reported the use of sintering aids to decrease
the sintering temperature while upholding the attributes of the
SOFC materials. Soares et al. (2021) investigated ZnO as a
sintering aid with different stoichiometric ratios in Ba(Zr,Y)O3−δ
to improve the densification, bulk proton conductivity, and high
hydration enthalpy. Ho-Il Ji et al. investigated 1 and 4 mol% of CuO
and ZnO as sintering aids to reduce the sintering temperature from
1,700°C to 1,500°C and 1,300°C, respectively and achieved relative
densities above 97% (Ji et al., 2021). The use of transition metals (Sc,
Zn, Co, Cu, and Fe, etc.) as co-dopants can improve the sinterability
and thus increase the densification (Xie et al., 2018; Ueno et al., 2019;
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Aarthi and Babu, 2020). Xie et al. (2018) observed the co-doing effect
of Gd-Zn on barium zirconate sintered at 1,300°C–1,500°C, which
improved the mechanical performance, sinterability, hardness, and
conductivity, achieving a conductivity of 2.54 × 10−3 S ·cm−1 and
power density of 282 mW·cm−2.

Diverse synthetic pathways, encompassing both physical and
chemical methodologies, have been utilized to synthesize of SOFC
materials. However, these procedures have a substantial ecological
impact (Zheng et al., 2009; Zhang and Hu, 2021; Tong et al., 2022).
Little or no effort has been made to synthesize perovskite SOFC
materials by green synthesis due to the presence of organic and
inorganic impurities that significantly hinder or degrade the
performance of SOFCs. Spinach was used as a chelating agent to
leverage the synergistic role of both its biomolecules and natural
oxalic acid (present in high content) as a reducing and capping
agent. Furthermore, the metallic impurities it contains might act as a
sintering aid, resulting in the better densification at a lower sintering
temperature. Spinach is frequently associated with a high oxalic acid
concentration, with a quantity of around 3.45 ± 0.22 mg·g−1 (Uwah
et al., 2011). The metal content in spinach is Zn, 6.10 ± 0.12; Mn,
10.50 ± 0.90; As, 0.90 ± 0.26; Pb, 2.40 ± 0.16; Cu, 0.88 ± 0.07 and Cd,
0.26 ± 0.02 μg·g−1 (Osinkin, 2023). Furthermore, there is no
literature to date where perovskite materials with sintering aids
have been developed by green synthesis. In the current project, a
novel sustainable approach will be developed to synthesize the
perovskite materials with sintering aids using biomolecules and
natural chelating agents as reducing and capping agents with
minimal impurities. BaZr0.87Y0.1M0.03O3−δ perovskite electrolytes
co-doped with sintering aids (M = Co, Fe, Mn) have been
successfully synthesized via green and chemical routes using bio-
and chemical chelating agents respectively. The
BaZr0.87Y0.1M0.03O3−δ (M = Co, Fe, Mn) samples synthesized
with oxalic acid is denoted as BZYCo (OA), BZYFe (OA), and
BZYMn (OA), respectively. Similarly, the BaZr0.87Y0.1M0.03O3−δ
(M = Co, Fe, Mn) samples synthesized with spinach is labeled as
BZYCo (SP), BZYFe (SP), and BZYMn (SP), respectively.

2 Experimentation

BaZr0.87Y0.1M0.03O3−δ (BZYM) with transition metal as B-site
co-dopants (M = Co, Fe, Mn) were synthesized by auto-combustion
method using different chelating agents, i.e., oxalic acid and spinach
dried leaves powder. The stoichiometric amount of [Ba(NO3)2],
[Zr(NO3)4·5H2O], [Y(NO3)3·6H2O], [Mn(NO3)2·2H2O],
[Fe(NO3)3·9H2O] and [Co(NO3)2·6H2O] were dissolved in
distilled water on a hot plate with a magnetic stirrer at 80°C for
30 min and then stirred at 120°C for 60 min to obtain a
homogeneous solution. 20 wt.% of oxalic acid was dissolved in
the homogeneous solution as a chelating agent. The solution was
stirred continuously at 90°C to form a gel which was auto combusted
to powder form. The powder obtained was sintered at 1,180°C for
6 h. The same stoichiometric amount of nitrate was used to prepare
another homogeneous solution in the same way, with another
chelating agent, i.e., 20 wt.% of spinach dry leaves powder.
Again, the homogeneous solution was stirred at 80°C for 30 min
and then stirred at 120°C for 60 min to produce a gel that auto
combusted into powder. These powder samples were also sintered at

1,180°C for 6 h. The pellets were formed using a hydraulic press at
100 MPa for 5 min (Figure 1).

2.1 Material characterizations

The analysis of the BaZr0.87Y0.1M0.03O3−δ (M = Co, Fe, Mn) was
conducted through X-Ray diffractometer (XRD; Bruker D8,
Netherlands), Thermogravimetric analysis (TGA; STA
449 F5 Jupiter, Netzsch, Selb, Germany), Scanning electron
microscopy (FESEM JEOL, Japan), Energy dispersive analysis
(EDX), Fourier Transform Infrared spectroscopy (FTIR; JASCO
4600). The ionic conductivity was obtained through four probe DC
method at 200°C–600°C. Ionic conductivity was calculated using
equation.

σ � L/RA (1)

The Arrhenius equation was used to determine the relation
between temperature and conductivity.

σ � σ° exp −Ea/KT( ) (2)

2.2 Cell fabrication

The electrochemical performances of BZYM (M = Co, Fe, Mn)
electrolytes, utilizing oxalic acid and spinach powder as chelating
agents, were assessed. Pellets with a diameter of 13 mm and a
thickness of 0.6 mm were prepared using a hydraulic press under
a pressure of 200 MPa. BSCF and Ni-BZY were used as cathode and
anode with BaZr0.87Y0.1M0.03O3−δ (M = Co, Fe, Mn) as electrolyte
for the electrochemical measurements of the button cell. Humidified
(~3% H2O) hydrogen is supplied as fuel at the anode at 50 mL·min−1

while oxygen is supplied as an oxidant at the cathode.

3 Results and discussion

3.1 Crystal structure analysis

Figures 2A, B shows the XRD spectra of BZYM (M = Co, Fe,
Mn) perovskite electrolyte, synthesized through chemical and green
routes. The presence of diffraction peaks at (110), (111), (200), (211),
(220), and (310) provides confirmation that all BZYM electrolytes
exhibit a cubic perovskite structure and belongs to the primitive
space group Pm3m (ICDD# 98 010 7880) (Jiao et al., 2019). The
absence of significant secondary phases of zirconium, yttrium, or
transition metals confirms single cubic perovskite structure. The
lack of subsequent phases also confirms the solubility of transition
metals (Mn, Fe, Co) in the host lattice synthesized by both chemical
and green synthesis methods.

The orientation of the plane (110) corresponds to the alteration
in lattice parameter, resulting in either an increase (cell volume
expansion) or reduction (cell volume contraction) depending on the
ionic radii and dopant concentration (Irshad et al., 2021). BZY
shows a peak shift to a lower angle compared to the pure barium
zirconate, which has an intense diffraction peak at 2Ө = 30⁰, because
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of disparity between ionic radii of host (r = 0.72 Å for Zr+4VI) and
dopant (for Y+3

VI r = 0.9 Å) (Ueno et al., 2019; Vera et al., 2021;
Irshad et al., 2022). In our case, this peak shift occurs at 2Ө = 30.15⁰
for (110) plane of BZYCo (OA), BZYFe (OA), BZYMn (OA),
BZYCo (SP), BZYFe (SP) and BZYMn (SP). This shift of the
peak to a higher angle compared to BZY, indicating lattice
contraction due to the incorporation of small ionic radii of
secondary dopants, i.e., Co+3VI(HS) (0.61 Å), Fe+3VI(HS)

(0.65 Å), and Mn+3
VI(HS) (0.66 Å) into BZY compared to the

host element Zr (0.72 Å) and dopant Y (0.9 Å). The crystallite
sizes of BZYCo (OA), BZYFe (OA), BZYMn (OA), BZYCo (SP),
BZYFe (SP) and BZYMn (SP) were calculated using the Scherer
formula as follows:

D � Kλ

β cosӨ
(3)

The crystallite sizes of the synthesized materials BZYM (M = Co,
Fe, Mn) with chemical and green routes are given in Table 1.

FIGURE 1
Schematic representation for the synthesis of BaZr0.87Y0.1M0.03O3−δ (BZYM) electrolyte.

FIGURE 2
XRD spectra of BZYM (M = Co, Fe, Mn) electrolytes synthesized by chemical (oxalic acid) and green (spinach) routes (A) and enlarged (110) plane (B).
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3.2 Surface morphological analysis

Figures 3A–F show the SEM micrographs of the synthesized
BZYM (M = Co, Fe, Mn) using spinach and oxalic acid as

chelating agents respectively. It is clear that all the synthesized
materials have a dense microstructure. However, BZYM (M = Co,
Fe) synthesized by the green route are slightly denser compared
to BZYM (M = Co, Fe) synthesized by the chemical approach
which is attributable to low concentration of metallic impurities
present in the spinach powder, which acts as a sintering aid and
leads to increased densification. The BZYMn electrolyte on the
other hand shows an opposite trend, with BZYMn synthesized by
the green route, resulting in slightly lower densification than the
material synthesized by the chemical route due to high
concentration of Mn that already exist in spinach resulting in
the slightly lower densification (Irshad et al., 2022). The overall
densification order for BZYM (M = Co, Fe, Mn) electrolytes
synthesized by both green and chemical routes can be
represented as BZYMn < BZYFe < BZYCo indicating that Co
doping acted as a slightly better sintering aid compared to Fe and
Mn because Co doping can help to control the grain growth
resulting in a fine-grained microstructure, as can also be seen
from the micrographs too (Rehman et al., 2021).

TABLE 1 Average crystallite size of BZYM (M = Co, Fe, Mn) electrolytes
synthesized with oxalic acid (OA) and spinach dry leaves powder (SP) as
chelating agents.

Material Dopant Average crystallite size (nm)

BZYCo (OA) Co 25

BZYFe (OA) Fe 28

BZYMn (OA) Mn 29

BZYCo (SP) Co 23

BZYFe (SP) Fe 26

BZYMn (SP) Mn 30

FIGURE 3
Surface morphology of BZYM (M = Co, Fe, Mn) electrolytes synthesized by green (A–C) and chemical routes (D–F).
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3.3 Elemental composition analysis

Figures 4A–F show the EDS spectra of sintered BZYM (M = Co,
Fe, Mn) perovskite electrolytes synthesized using spinach and oxalic

acid. The compositional analysis of BZYM (M = Co, Fe, Mn)
confirms the presence of Ba, Zr, Y, and transition metal dopants
(Co, Fe, Mn). The insets in Figures 4A–F show the quantitative
analysis of BZYM (M = Co, Fe, Mn) for oxalic acid and spinach
powder. It can be observed that no significant impurities were
present in BZYM (M = Co, Fe, Mn) synthesized by the green
route implying that spinach can be successfully used as chelating
agent for the synthesis of BaZr0.87Y0.1M0.03O3−δ electrolyte without
any significant impurities.

3.4 Spectroscopic analysis

Figure 5 presents the FTIR spectra of BZYM (M = Mn, Co, and
Fe) perovskite electrolytes synthesized through chemical and green
routes. The absorption bands at 3,800–3,200 cm−1 and
1700–1,400 cm−1 correspond to OH stretching and bending,
respectively. These bands indicate the incorporation of water into
the lattice which may be due to the atmospheric humidity
(moisture). The peaks at 1,500–1,100 cm−1 indicate the formation
of metal-oxygen-metal bonds such as Ba−O−Ba, Mn−O−Mn,
Fe−O−Fe, etc. For Fe-doped BZY, broad and high intensity peaks
in the 1,500–1,400 cm−1 region are characteristic of Fe−O bond
formation (Jincy and Meena, 2022). The intensity of BZYFe
electrolyte synthesized with oxalic acid is greater compared to
BZYFe electrolyte synthesized with spinach powder, indicating
the increased structural disorder (Irshad et al., 2022). The Mn-

FIGURE 4
EDS qualitative with quantitative inset analysis of BZYM (M = Co, Fe, Mn) electrolytes using green (A–C) and chemical (E–F) route.

FIGURE 5
FTIR spectra of BZYM (M = Co, Fe, Mn) electrolytes synthesized
by green and chemical route.
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doped BZY for both chelating agents shows an intense absorption
peak at about 1,100 cm−1 which is characteristic of Mn−O bond
formation. The absorption peak at about 1,200 cm−1 indicates C−O
stretching. The absorption bands at 400–800 cm−1 indicate
stretching vibrations of metal-oxygen bonds such as Mn−O,
Fe−O, etc. The presence of metal-oxide bond peaks confirms the
formation of transition metal doped BZY for both chemical and
green synthesis routes.

3.5 Thermal analysis

Figure 6 shows the thermal analysis of sintered BZYM (M = Co,
Fe, Mn) perovskite electrolyte. The TGA graph shows the weight loss
in % over the temperature range 30°C–900°C. A minimal amount of
weight loss is observed as the TGA was performed after sintering.
The process of sintering has already removed the residual water and
decomposed the nitrates and other organic impurities. Small weight
losses of about 1%–3% may occur due to the incorporation of
moisture or impurities into the synthesized materials after
sintering. It can be inferred from no prominent weight loss that
the BZYM (M = Co, Fe, Mn) electrolytes synthesized through
chemical and green routes are thermally stable in the solid oxide
fuel cell operating temperature range.

3.6 Conductivity

Figure 7 shows the Arrhenius plot for the BZYM (M = Co, Fe, Mn)
perovskite electrolytes synthesized with chemical and organic chelating
agents. It can be seen from the plot that regardless of the synthesis
approach and dopants, all electrolytes exhibited significant conductivities
which can be attributed to the fact that the addition of Co, Fe andMn as
the sintering aids lowers the sintering temperature and enhances the
p-type conductivity as previously reported (Park et al., 2015).

It is clear from the plot that BZYCo (OA), BZYFe (OA) and
BZYMn (OA) electrolytes showed better conductivity compared
to electrolytes synthesized with spinach as a chelating agent. The
lower conductivity of the BZYCo (SP), BZYFe (SP) and BZYMn
(SP) electrolytes can be attributed to metallic impurities present
in the spinach and the synergistic effect of both these impurities
and dopants (M = Co, Fe, Mn) may have resulted in the lower
ionic conductivity of the electrolytes, as these metals reduce the
effective concentration of protons, acting as a proton trap,
residing on the tetravalent Zr sites. It is well known that the
conductivity of the electrolytes in air is attributed to electron-
hole conduction and therefore the presence of these metals will
result in a lower ionic conductivity (Tao and Irvine, 2007; Park
et al., 2015). Nevertheless, the inclusion of sintering aids in the
BZY solid solutions elevates the vacancy concentration of oxygen
and barium sites, as previously stated (Huang et al., 2010;
Benamira et al., 2011). It can also be observed from the plot
that BZYCo (OA) and BZYCo (SP) exhibit high conductivity,
because Co doping develops oxygen vacancies by replacing Zr at
the B-site and these vacancies allow for faster oxygen ion
transport, therefore resulting in higher ionic conductivity
(Balaguer et al., 2022). The activation energies of the BZYCO
(OA), BZYFe (OA) and BZYMn (OA) are 0.49, 0.55, and 0.58 eV
respectively, while those of BZYCO (SP), BZYFe (SP) and
BZYMn (SP) are 0.67, 0.69, and 0.73 eV respectively. The
oxalic acid was used in the pure chemical form without any
impurities as a reducing agent, however, spinach uses both oxalic
acid (present in higher content) and biomolecules as a reducing
and capping agent. Furthermore, spinach also carries metallic
impurities that may act as a sintering aid along with a change in
electrical properties causing a change in the activation energies
compared to chemically synthesized BZYM electrolytes. It
indicates that BZYM can be successfully used as an electrolyte
despite the presence of impurities in the organic chelate.

FIGURE 6
Thermogravimetric curves for BZYM (M = Co, Fe, Mn)
electrolytes synthesized by chemical and green route.

FIGURE 7
Arrhenius plot of BZYM (M = Co, Fe, Mn) electrolytes synthesized
by chemical and green route.
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3.7 Electrochemical performance

The electrochemical performance at 650°C for button cells
with BZYM (M = Co, Fe, Mn) electrolytes synthesized through
chemical and green routes is shown in Figure 8A. The maximum
power densities of 344, 293, and 282 mW·cm−2 were achieved for
the cells with the BZYCO (OA), BZYFe (OA) and BZYMn (OA)
respectively. While cells with the BZYCO (SP), BZYFe (SP) and
BZYMn (SP) electrolytes, exhibited power densities of 271, 265,
and 218 mW·cm−2, respectively, indicating that BZYM (M = Co,
Fe, Mn) synthesized by both routes can be used as IT-SOFC
electrolytes. It can be observed that the obtained power densities
are lower than some of the reported values and can be ascribed to
the low sintering temperature than the reported sintering
temperatures. It is also clear that cells having BZYCo
electrolytes synthesized with both routes shows higher power
density compared to BZYFe and BZYMn synthesized with
corresponding synthesis routes which can be attributed to its
dense structure as seen from the surface morphology and the
development of oxygen vacancies by replacing the Zr at the
B-site, thus resulting in better performance (Gao et al., 2023).

It can be further observed from Figure 8A that the BZYCO
(SP), BZYFe (SP) and BZYMn (SP) electrolytes exhibited low
power densities compared to the BZYCO (OA), BZYFe (OA) and
BZYMn (OA) electrolytes which can be linked to metallic
impurities present in spinach causing the formation of
structural defects that alter the electrical properties and hence
the performance. However, extensive investigation and
optimization is still required to fully understand the
mechanism that affects the properties of the electrolytes due
to metallic impurities present in the organic. Figure 8B shows the
cross-sectional SEM images of the anode-supported half-button
cell, utilizing BSCF and Ni-BZY as the cathode and anode,
respectively. The cross-section reveals a densely structured
electrolyte with a well-established connection between the
anode and the electrolyte. Overall, it can be concluded that

BZYM (M = Co, Fe, Mn) synthesized via sintering aids using
this sustainable approach can be successfully used as IT-SOFC
electrolytes.

4 Conclusion

In summary, for the first time a sustainable approach is
successfully employed to synthesize BZYM perovskite
electrolytes with sintering aids (Co, Fe, Mn) using spinach
without significantly compromising its properties as an
electrolyte for SOFC applications. The cubic perovskite
structure was confirmed by the XRD with no prominent
secondary phases, while the plane shift was due to
mismatched ionic radii of dopants, host and impurities. The
compositional study confirmed the existence of Ba, Zr and Y
together with their respective sintering aids in each sample.
Surface micrographs revealed a dense microstructure for all
synthesized materials with slight differences in morphology,
while the formation of a perovskite structure was also
confirmed by the FTIR. The chemically synthesized BZYM
(M = Co, Fe, Mn) electrolytes exhibited higher conductivities
compared to the green synthesized BZYM (M = Co, Fe, Mn)
electrolytes with BaZr0.87Y0.1M0.03O3−δ (M = Co) electrolytes
exhibiting the highest conductivity in both cases. The
maximum power density of 271 mW·cm−2 is attained for the
cell having BZYCo electrolyte synthesized by the sustainable
approach, suggesting the effective application of this
innovative approach in synthesizing perovskite SOFC
electrolytes.
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FIGURE 8
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