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The presence of NHAc groups in the substrates (both glycosyl donors and
acceptors) significantly reduced the reactivity of glycosylation. This decrease
was attributed to the NHAc groups forming intermolecular hydrogen bonds by
the NHAc groups, thereby reducing molecular mobility. Hence, a diacetyl strategy
involving the temporary conversion of NHAc to diacetyl imide (NAc2) was
developed for the synthesis of NHAc-containing glycans. This strategy has two
significant advantages for oligosaccharide synthesis. The NAc2 protection of
NHAc substantially enhances the rate of glycosylation reactions, resulting in
improved yields. Moreover, NAc2 can be readily reverted to NHAc by the
simple removal of one acetyl group under mild basic conditions, obviating the
necessity for treating the polar amino group. We have achieved the efficient
synthesis of oligosaccharides containing GlcNHAc andN-glycans containing sialic
acid using the diacetyl strategy.
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1 Introduction

Natural glycans play diverse roles in biological events such as self and non-self-
recognition, viral and bacterial infection, immunoregulation, cancer invasion, and cell
development (Zhao et al., 2008; Macauley et al., 2014; Raman et al., 2016; Ballal and
Inamdar, 2018; Shirakawa et al., 2021; Manabe and Fukase, 2023). Bacterial glycoconjugates,
including lipopolysaccharide and peptidoglycan, have been known to activate innate
immunity (Kusumoto et al., 2010; Shimoyama and Fukase, 2023). Owing to the high
diversity and heterogeneity of natural glycans, the production of pure glycans through
chemical synthesis has proven to be a potent method for understanding the biological
functions of glycans.

Amino sugars are essential components of various glycans includingN-glycans,O-glycans,
glycolipids, glycosaminoglycans, and bacterial cell walls. Glucosamine, galactosamine, and
sialic acids are common amino sugars that usually exist inN-acylated orN-sulfated forms. The
choice of protecting groups for amines is crucial in synthesizing glycans containing amino
sugars because it affects glycosylation reactivity. Various protecting groups, such as 2,2,2-
trichloroethoxycarbonyl (Kusumoto et al., 1985; Imoto et al., 1987), allyloxycarbonyl
(Boullanger et al., 1987; Boullanger et al., 1990), trichloroacetyl (Wolfrom and Bhat, 1967;
Blatter et al., 1994), trifluoroacetyl (Meyer zu Reckendorf andWassiliadou-Micheli, 1970), and
phthaloyl (Lemieux et al., 1977) have been reported to protect amino sugars. The azide group is
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also a useful precursor of the amino group (Lemieux and Ratcliffe,
1979). Since most amino groups are acetylated in natural glycans,
protected amino groups must be converted to acetamide (NHAc)
through acetylation. These steps can be avoided when glycans with
NHAc are used directly to construct glycan chains. However,
fragments containing NHAc exhibit low reactivity in glycosylation
although Tamura et al. showed that the formation of interglycosidic
O-imidates with NHAc in GalNAc increases glycosylation yields
(Tamura et al., 2008). Boons et al. demonstrated that NAc2 sialyl
donors exhibit significantly higher reactivity than NHAc donors
(Demchenko and Boons, 1998). Kononov et al. observed hydrogen
bonding of NHAc in Neu5Ac donors, and reactivity improvement
was achieved by protecting NHAc asNAc2 or adding external amides/
imides to disrupt the hydrogen bond (Kononov et al., 2008; Kononov
et al., 2009; Kononov et al., 2012). Crich et al. reported that
intermolecular hydrogen bonding formed by NHAc in GlcNAc
acceptors reduces reactivity (Crich and Dudkin, 2001). Auzanneau
observed the aggregation of a tetrasaccharide through hydrogen
bonding of NHAc in GlcNAc using NMR (Kuir et al., 2015).

We also observed that sialic acid and GlcNAc derivatives
containing NHAc or fragments that include them displayed low
reactivity (Nagasaki et al., 2016; Zhou et al., 2016; Tsutsui et al.,
2020). This could be attributed to the formation of intermolecular
hydrogen bonds between N-acetylneuraminic acid and GlcNAc
derivatives, which restrict the molecular movement and hinder the
access of acceptors to donors, as noted by Kononov and Crich. We
therefore developed a “diacetyl strategy” by temporarily converting
NHAc to diacetyl imide (NAc2). The diacetyl strategy offers two
advantages for oligosaccharide synthesis. NAc2 protection of NHAc
significantly enhanced the glycosylation reactions, leading to
improved yields. Additionally, NAc2 can be easily converted back
to NHAc by removing one acetyl group under mild basic conditions,
eliminating the need to treat the polar amino group (Nagasaki et al.,
2016; Zhou et al., 2016; Tsutsui et al., 2020; Shirakawa et al., 2021).

2 Comparison of reactivity of C5-
acetamide sialic acid donor with other
sialic acid donors

Much effort has been devoted to the development of efficient
and stereoselective α-sialylation. This reaction was one of the most
challenging in the field of oligosaccharide synthesis because α-
sialylation poses steric and electronic difficulties. Recent advances
in glycosylation chemistry such as the development of new leaving
and protecting groups have enabled efficient construction of α-
sialoside linkages.

As mentioned above, the reactivity of sialic acid derivatives
possessing a C5-acetamide group is low. Thus, new sialyl donors
with various C5 substituents, including protecting groups and
functional groups such as carbamates, have been developed to
improve the reactivity and stereoselectivity in α-sialylation. The
kinetic solvent effect of nitriles has been used for α-sialylation,
except in the case of cyclic carbamates and macrocyclic donors
described below. Conducting reactions at lower temperatures
generally enhances selectivity in kinetically controlled reactions;
thus, the improvement in reactivity contributes to the
enhancement of stereoselectivity. These substituents include

N-Ac2 (Demchenko and Boons, 1998), N-TFA (Meo et al., 2001;
Ando et al., 2005), N-Troc (Ando et al., 2005; 2003; Adachi et al.,
2004), N-phthaloyl (Tanaka K. et al., 2005), azide (Yu et al., 2001),
isothiocyanato (Mandhapati et al., 2015), and ureido groups (Tanase
et al., 2016). 5,4-N,O-cyclic carbamates have been utilized for highly
selective α-sialylation, especially in the α (2–8)- and α (2–9)-
sialylation cases (Tanaka H. et al., 2006; 2008; 2009; De Meo
et al., 2008; Hanashima et al., 2009; Chu et al., 2011). A highly
selective sialylation method was developed using a macrocyclic α-
sialyl donor bridged by alkyl chains at the C1 and C5 positions of
sialic acids (Komura et al., 2019; Vibhute et al., 2021). In this
method, nucleophilic attack is possible only from the α-face
because of the blocking of the β-face by the tethered moiety.

3 Glycosylation under microflow
conditions: enhanced yield and
selectivity through improved mixing
efficiency and precise temperature
control

Microflow synthesis is characterized by its ability to remove heat
rapidly and efficiently, maintain precise temperature control, and
facilitate effective mixing. Consequently, microflow synthesis has
been employed to enhance the reaction rate and improve yields in a
biphasic system involving water and organic solvents, primarily due
to its efficient mixing capabilities (Liu et al., 2004; Tanaka K. et al.,
2008; Otake et al., 2018; Aimi, 2021).

On the other hand, glycosylation reactions are conducted in a
homogeneous reaction system in organic solvents under dry
conditions. However, as pointed out by Kononov et al., protected
sugar derivatives may not be uniformly dispersed in solution;
instead, they often tend to form clusters because of interactions
such as intermolecular hydrogen bonding (Kononov, 2015;
Kononov et al., 2017; Podvalnyy et al., 2017; Orlova et al., 2017;
Nagornaya et al., 2018; Myachin and Kononov, 2023a; Myachin and
Kononov, 2023b). Microflow mixing of glycosyl donor and/or
receptor clusters can afford a non-equilibrium mixing state
similar to well-dispersed biphasic mixture. Therefore, the use of
microreactors, as with biphasic reactions, can influence both the
yield and selectivity.

We observed a similar phenomenon in the synthesis of partial
structures of Helicobacter pylori-derived lipopolysaccharides.
Lipopolysaccharides consist of a glycolipid portion called lipid A and
a polysaccharide part, with the polysaccharide part being linked to lipidA
through an acidic sugar termed Kdo (3-deoxy-D-manno-oct-2-ulosonic
acid). In the synthesis of Kdo-lipid A, we developedKdo glycosyl donor 1
protected with isopropylidene at the 4th and 5th hydroxyl groups and
containingN-phenyltrifluoroacetimidate as a leaving group (Shimoyama
et al., 2011a; Shimoyama et al., 2011b). Compound 1 adopts a boat
conformation, with the isopropylidene group covering the β-face of Kdo.
As a result, in glycosylation using 1, sugar acceptors attack from the α-
direction, leading to a high selectivity for α-glycosides. However, a
substantial amount of glycal 4 was generated as a byproduct through
intramolecular elimination reactions, and a considerable excess of 1
(5 equivalents) was used to obtain the desired trisaccharide 3 in 70%yield.

For the total synthesis of Kdo-lipid A, microflow synthesis was
employed to increase the efficiency of glycosylation. The solution of
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glycosyl donor 1 and glycosyl acceptor 2 in cyclopentyl methyl ether
(CPME) and the solution of TBSOTf in CPME were mixed using a
micro-mixer, allowing the reaction to proceed for 42 s in a tube
reactor (Figure 1). This method enabled us to reduce the amount of
glycosyl acceptor to 1.5 equivalents, yet we still obtained
trisaccharide 3 with a 72% yield, which is almost equivalent to
the batch process. This result suggests that efficient mixing disrupts
the solute clusters and promotes intermolecular reactions.

We have developed other microfluidic glycosylation reactions,
including α-sialylation (Tanaka K. et al., 2005; Tanaka S et al., 2007;
Uchinashi, Y. et al., 2014), β-mannosylation (Takaka, K. et al., 2009),
and N-glycosylation of asparagine (Takaka, K. et al., 2009), many of
which have successfully improved both selectivity and yield. The
main factor thought to contribute to the improvement in selectivity
and yield is efficient temperature control; however, enhancedmixing
efficiency may also play a role in the improvement. We achieved
quantitative sialylation usingN-phenyltrifluoroacetimidate donors 5
and 6 with C5-phthalimide (Tanaka K. et al., 2005; Tanaka S et al.,
2007) or azide (Uchinashi, Y. et al., 2014) with high α-selectivity
under microfluidic conditions (Figure 2).

Despite previous studies describing low to modest efficiency, we
re-examined the readily available C5-acetamide donor 10 for its
application in α-sialylation under batch and microfluidic conditions
(Figure 3). N-Phenyltrifluoroacetimidate donor 10 was efficiently
mixed with an appropriate amount of TMSOTf to yield α (2–6) and

α (2–3)-sialylation products of galactose and glucosamine acceptors
with excellent yields and high α-selectivity (Uchinashi, Y. et al.,
2011).

4 Diacetyl strategy

4.1 Diacetyl strategy for the synthesis of
GlcNAc containing oligosaccharides

As described above, Crich et al. demonstrated that N-acetylated
glucosamine acceptors exhibit lower reactivity than N-phthaolyl
glucosamine and 2-azido-2deoxy glucose derivatives. They
attributed the reduced reactivity to intermolecular hydrogen
bonding, which was confirmed by the concentration-dependent
chemical shift of NHAc in 1H-NMR. We also confirmed that the
NHAc group of GlcNAc derivative 17 formed intermolecular
hydrogen bonds based on the concentration- and temperature-
dependent chemical shift of the amide proton in the 1H-NMR
spectrum in CH2Cl2 (Figure 4) (Tsutsui et al., 2020). The
supramolecular structure of GlcNAc 17 formed by intermolecular
hydrogen bonds was observed using diffusion-ordered two-
dimensional nuclear magnetic resonance spectroscopy (DOSY)
measurements (Figure 5). The effective volume of GlcNAc 17
was 1.2 times larger than that of N,N-diacetylated glucosamine

FIGURE 1
Glycosylation of Kdo donor by using the microreactor.

FIGURE 2
α-Sialylation under microfluidic conditions.
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(GlcN(Ac)2) 18 according to the DOSY spectra, indicating that 17
formed a supramolecular structure through intermolecular
hydrogen bonds, whereas 18 did not aggregate. This slight
difference suggests that the hydrogen bonds formed by NHAc
are likely dynamic but still have a significant impact on the
reactivity of GlcNAc.

Next, we demonstrated the effectiveness of the diacetyl strategy
in the synthesis of α-gal trisaccharide and H antigen trisaccharide.
As anticipated, diacetyl protection significantly enhanced the
reactivity of all the tested glycosylations. After the preparation of
thiodisaccharide 16, the glycosylation of glucosaminyl acceptors 17
or 18 with 16 was performed to evaluate the effectiveness of the

FIGURE 3
Re-investigation of α-sialylation using C5-acetamide donor 10 under batch and microfluidic conditions.

FIGURE 4
Concentration and temperature dependence of the 1H-NMR spectrum of acetamide acceptor 17, where downfield shifts of the amide proton are
observed upon increasing the concentration and decreasing the temperature.
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diacetyl strategy (Figure 6). The reaction of N,N-diacetylated
acceptor 18 with 16 proceeded more smoothly than that of 17
with 16, yielding trisaccharide 20 in excellent yield. These results
indicated that the formation of hydrogen bonds by NHAc in 17
decreased its reactivity and demonstrated the effectiveness of the
diacetyl strategy.

Efficient α-gal synthesis was accomplished through one-pot and
one-flow glycosylation employing the armed-disarmed strategy,
benefiting from enhanced reactivity due to diacetylation. The
one-flow method under microflow conditions enhanced the
reproducibility of the consecutive glycosylations (Figure 7). This
was the first report of one-flow glycosylation utilizing the armed-
disarmed strategy, which offers distinct advantages in terms of
reproducibility compared to one-pot glycosylation in a batch system.

In H antigen synthesis, enhancement of reactivity by NAc2
protection was observed in both glycosylations proximal and
distal to GlcNAc (Figure 8). We investigated the glycosylation of
GlcNAc 17 and GlcN(Ac)2 18 with a galactosyl donor 23. As
expected, glycosylation with 17 was less reactive, requiring an

increase in temperature to 0°C to give compound 24 in 24%
yield. In contrast, glycosylation with 18 proceeded smoothly
at −20°C, affording disaccharide 25 with perfect β-selectivity in
76% yield.

Next, we compared the reactivity of the disaccharide acceptors
26 (N-acetylated) and 27 (N,N-diacetylated) after deprotection of
the Fmoc groups in 24 and 25. The glycosylation of 26 with fucosyl
donor 28 did not proceed at −30°C; however, when the reaction
temperature was elevated to room temperature (rt), trisaccharide 29
was obtained in 45% yield. In contrast, the glycosylation of 27
proceeded smoothly at −30°C to give 30 in 83% yield. This illustrates
that N,N-diacetyl protection enhances reactivity even when the
reactive sites are distant from the NAc2 group, underscoring the
versatility of the diacetyl strategy in synthesizing glycans containing
GlcNAc.

4.2 Diacetyl strategy for the synthesis of
sialic acid containing oligosaccharides

We also reported a “diacetyl strategy” for the efficient synthesis
of sialyl glycans. Disialylated tetrasaccharide (Neu5Ac (α2,3) Gal
(β1,3) [Neu5Ac (α2,6)] GlcNAc) is a structural motif found in the
N-glycans of human Factor X and fetuin, gangliosides in human
colon adenocarcinoma, and human milk. For the synthesis of this
motif, we investigated a convergent route based on the glycosylation
of two sialylated disaccharides (Figure 9) (Zhou et al., 2016). The
reactivity of the glycosylation reactions between two sialyl
disaccharides 31 and 32 with NHAc at the C5 position of sialic
acid residues was found to be extremely low, resulting in no desired
product formation (0% yield). However, NAc2 protection of both
sialyl fragments 34 and 35 significantly enhanced the reactivity,
leading to the quantitative yield of the desired tetrasaccharide 36.
Protection of the amide group of the sialic acid residues resulted in a
substantial improvement in the glycosylation yield between the two
sialylated disaccharides, suggesting that the presence of hydrogen
bonding on the sialic acid residues decreases reactivity.

Asparagine-linked (N-linked) glycans in glycoproteins
(N-glycans) are oligosaccharides present in eukaryotes and some
prokaryotes that display a broad spectrum of structural diversity.
These can be classified into three categories: high-mannose type,
complex type, and hybrid type. Typically, N-glycans exhibit
heterogeneity even at specific glycosylation sites. Complex
N-glycans play crucial roles in various biological processes and

FIGURE 5
DOSY spectrum of N-acetylated (red) and N,N-diacetylated
(black) glucosamine derivatives. The effective volume (V) was
estimated by Stokes–Einstein equation.

FIGURE 6
The [2 + 1] glycosylation using N-acetylated acceptor 17 or N,N-diacetylated acceptor 18 for the synthesis of protected α-gal 19 or 20.
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diseases, including regulation of glycoprotein dynamics, cell
development, immunity, and cancer invasion.

We aimed to synthesize sialylated N-glycans, including core
fucose-containing disialylated biantennary N-glycans, disialylated
biantennary N-glycans with asymmetrically deuterated sialic acid
acetyl groups, and fully sialylated tetraantennary N-glycans, using a
diacetyl strategy, and we successfully achieved their synthesis
(Nagasaki et al., 2016; Shirakawa et al., 2021).

The synthesis of N-glycans has been extensively investigated by
several research groups. Danishefsky (Wu et al., 2006; Wang et al.,
2009; Walczak and Danishefsky, 2012; Walczak et al., 2013) and
Unverzagt (Schuberth and Unverzagt, 2005; Eller et al., 2007;
Mönnich et al., 2016; Luber et al., 2018) successfully chemically
synthesized N-glycans, including those with core fucose and
bisecting GlcNAc. Ito (Koizumi et al., 2013), Boons (Wang et al.,
2013; Li et al., 2016; Gagarinov et al., 2017),Wang (Li et al., 2015), and
Wong (Shivatare et al., 2013; 2016) constructed N-glycan libraries
through a combination of chemical and enzymatic synthesis.

Our approach to N-glycan synthesis is characterized by two key
aspects: 1) the practical synthesis of fragments using micro-flow
reactions, as described above, and 2) the development of a
convergent synthetic route for the efficient assembly of N-glycan
skeletons. Another distinctive feature of our N-glycan synthesis is
the early-stage incorporation of asparagine (Asn). Glycans were
extended from the Asn-containing reducing-end fragment, which
was obtained through N-glycosylation, as described above. This
approach facilitates the straightforward preparation of
glycoconjugates, including glycopeptides and glycoproteins, as it
eliminates the need for Asn attachment following deprotection.

4.2.1 Synthesis of core-fucosylated N-glycan by
the convergent synthetic route

Mammalian core fucose is added to complex-type glycans by
fucosyltransferase 8 (FUT8) via α (1–6) fucosyl linkages. Knockout
mice lacking FUT8 exhibit severe developmental delays and a 70%
mortality rate within the first 3 days of life. Core-fucosylated

FIGURE 7
One-flow synthesis of protected α-gal 20 under microfluidic conditions.

FIGURE 8
Synthesis of H-antigen trisaccharides.
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immunoglobulin G (IgG) is significantly less functional (100-fold
weaker) in antibody-dependent cell-mediated cytotoxicity (ADCC)
than non-core-fucosylated IgG. The importance of core-
fucosylation is evident in various stages of carcinogenesis and
tumor progression. Reduced core-fucosylation in human colon
carcinomas leads to resistance against TRAIL-induced apoptosis
and immune evasion. In hepatocellular carcinoma, elevated levels of
core-fucosylated α-fetoprotein serve as a valuable marker.
Additionally, upregulation of core-fucosylation on growth factor
receptors, such as epidermal growth factor receptor (EGFR) and
fibroblast growth factor receptor (FGFR), has been associated with
receptor activation.

We first examined the synthesis of the non-reducing-end
tetrasaccharide in the synthesis of the core-fucosylated N-glycan
(Nagasaki et al., 2016) (Figure 10). When attempting glycosylation
between the NHAc-containing sialyl disaccharide donor 37 and the
disaccharide acceptor 39, only 52% of the desired tetrasaccharide 40
was obtained, even after raising the temperature to room
temperature. On the other hand, using 38 where the NHAc at
the 5-position of sialic acid was converted to NAc2, improved the
reactivity. Glycosylation proceeded rapidly at 0°C, yielding the
desired tetrasaccharide 41 in 96% yield. We observed a
concentration-dependent chemical shift of the amide protons in
NMR measurements at various concentrations of 37 (Figure 11),

revealing that the NHAc in 37 forms intermolecular hydrogen
bonds. This also highlights the significant impact of
supramolecular structures formed through hydrogen bonding on
reactivity.

Solvent selection played a crucial role in the glycosylation of the
reducing-end tetrasaccharide 42 with the non-reducing-end
tetrasaccharide 43. When ether-based solvents were used,
particularly cyclopentyl methyl ether (CPME), the desired
octasaccharide was obtained in 91% yield. The ether solvents
probably stabilize and prolong the lifetime of the intermediate
oxocarbenium ion by coordination. However, the stereoselectivity
of this glycosylation was moderate (α/β = 3/1). Following cleavage of
the benzylidene group from the obtained octasaccharide, the α-
isomer 44 was separated. Subsequently, glycosylation at the 6th
position of the branched mannose in 44 was investigated. When
CPME was used as the solvent, the desired product 45 was obtained
in high yield. However, α/β selectivity remained low, and 45 was
obtained as a 1/1 mixture.

After the cleavage of allyl ester of 45 with Pd(OAc)2, PPh3,
sodium 2-ethylhexanoate in acetone, all acyl groups, N-Troc groups,
and methyl esters were removed by aqueous LiOH and the resulting
amino groups were acetylated. Both the α and β isomers were then
separated using HPLC, and all benzyl-type protecting groups were
removed under catalytic hydrogenation conditions to afford the core

FIGURE 9
Synthesis of disialylated tetrasaccharide.

FIGURE 10
Comparison of reactivity of NHAc donor 37 and NAc2 donor 38.
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fucose-containing N-glycan (Figure 12). Protection of the acetamide
in sialic acid as a diacetyl moiety may have facilitated the efficient
glycosylation of each fragment coupling. The problem of low
selectivity in the two glycosylation steps was resolved by remote

participation using O-3 and O-6 acyl protection of the mannose
residue in the synthesis of N-glycans containing bisecting GlcNAc,
along with the synthesis of the previously mentioned deuterated
disialylated biantennary N-glycans and the fully sialylated
tetraantennary N-glycan (Manabe et al., 2018; Shirakawa et al.,
2021).

4.2.2 Synthesis of asymmetrically deuterated sialyl
N-glycans

The diacetyl strategy was applied to synthesize two
asymmetrically deuterated sialyl N-glycans, 55 and 56. Using
deuterium-labeled N-glycan 55, it was revealed that the
neuraminidase derived from H1N1 preferentially cleaved sialic
acids on α1,3-branched chains over α1,6-branched chains.

Deuterated N-glycans 55 and 56 were synthesized by
glycosylation first at the 3-position of branching mannose in
trisaccharide 48 with sialyl tetrasaccharides 46 or 47, followed
by glycosylation at the 6-position of branching mannose
(Figure 13) (Shirakawa et al., 2021). We employed the remote
participation method previously described by Kim et al. for
mannosylation, in which acyl protection of the mannosyl
donors at the O-3 and O-6 positions enhances α-selectivity
(Baek et al., 2009).

In fact, the glycosylation between 46 and 48 proceeded smoothly
with a stoichiometric amount of TMSOTf in Et2O to afford the
desired heptasaccharide 49 in 71% yield with perfect α-selectivity.
Glycosylation of the azide-containing sialyl tetrasaccharide 47 with
48, followed by the deprotection of benzylidene in 50, afforded 52 in
good yield.

FIGURE 11
1H NMR of the disaccharide donor 37 at various concentrations.

FIGURE 12
Synthesis of core fucosylated N-glycan.
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Because of the low solubility of sialyl glycan 51 obtained by the
deprotection of 49 in Et2O, the [7 + 4] glycosylation between 51 and
47 was carried out in a mixed solvent system of Et2O/CH2Cl2 = 1/1,
yielding the desired undecasaccharide 53 in 85% yield with perfect α-
selectivity. Glycosylation between 52 and 46 under similar conditions
afforded 54 in 54% yield (BRSM: 63%). Thus, we successfully
constructed two asymmetric disialyl undecasaccharides, 53 and 54,
with one sialyl unit having an azide group available for deuterium
labeling. The target deuteratedN-glycans, 55 and 56, were obtained by
introducing a deuterated acetyl group, followed by global
deprotection. Deuterium-hydrogen exchange was observed during
the alkaline treatment for the removal of acyl and Troc groups,
resulting in a decrease in the deuterium ratio of 55 to 42% and
that of 56 to 63%, respectively.

4.2.3 Synthesis of tetraantennary sialyl N-glycan
Among the naturally occurring N-glycans, tetrasialylated

N-glycan 61 is essential for evaluating the impact of multivalency

and steric hindrance associated with the multiantennary structure.
Fully sialylated tetraantennary N-glycan 61 was synthesized in a
manner similar to those of 55 and 56 (Figure 14) (Shirakawa et al.,
2021). The glycosylation between trisaccharide 48 and
heptasaccharide donor 57 in the mixed solvent of Et2O/CH2Cl2 =
1/1 proceeded with complete α-selectivity, followed by cleavage of
the benzylidene group, yielding decasaccharide 58 in 33% yield
(BRSM: 49%) in two steps. The selection of the Lewis acid, solvent,
and temperature played a crucial role in the subsequent
glycosidation between decasaccharide 58 and heptasaccharide
donor 59. The glycosylation of 58 and 59 was achieved using
TBDPSOTf at 0°C in a mixed solvent with a high ether ratio
(Et2O/CH2Cl2 = 5/1), resulting in the formation of compound 60
with 36% yield. Following the deprotection of 60 and Fmoc
introduction under conditions similar to the synthesis of 55 and
56, we obtained fully sialylated tetraantennary N-glycan 61.

In conclusion, the diacetyl strategy was instrumental in
overcoming the challenges in sialyl glycan synthesis, allowing for

FIGURE 13
Synthesis of two biantennary N-glycans with asymmetrically deuterium-labeled sialic acid.
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the successful chemical synthesis of the asymmetrically deuterium-
labeled sialyl N-glycans and the tetraantennary sialyl N-glycan.

5 Discussions

As mentioned above, the presence of NHAc groups in either
glycosyl donors or acceptors significantly decreased the reaction rate
of glycosylation. These phenomena are attributed to the decrease in
the molecular motion of the substrates owing to intermolecular
hydrogen bonding. Kononov et al. demonstrated that various
protected saccharides form cluster structures termed supramers
in solution, through intermolecular interactions mediated by
hydrogen bonds and/or other non-covalent interactions between
saccharides, and the formation of supramers significantly affects
glycosylation reactivity. We observed that the effective volume of
GlcNAc 17 was 1.2 times larger than that of N,N-diacetylated
glucosamine (GlcN(Ac)2) 18 by DOSY experiments, indicating
the formation of a supramer in the reaction solution through
intermolecular hydrogen bonds. In the glycosylation of glycosyl
donor 31 and glycosyl acceptor 32, both of which have an NHAc

group, the yield of sialic acid-containing tetrasaccharide 33 was 0%
(Figure 8). Glycosylation reactions with either the donor or acceptor
possessing an NHAc group afforded glycosylation products, despite
the low yield. The notable difference in yields indicated an
exceedingly low probability of collision between glycosyl donor
31 and glycosyl acceptor 32. This outcome is suggested by the
formation of supramers in both donor 31 and acceptor 32, in
addition to the decreased substrate mobility caused by
intermolecular hydrogen bonds.

Myachin and Kononov reviewed the influence of reactor shape
and flow rate on the efficiency and selectivity of reactions based on
the formation of supramers and their dynamic behavior (Myachin
and Kononov, 2023a; Myachin and Kononov, 2023b). In the Kdo
glycosylation mentioned above, despite the absence of amide groups
in the substrates, the efficiency of the glycosylation reaction
increased when using a microflow reactor (Figure 1). This could
be interpreted as microflow mixing disrupting the supramer
structures in the solution to promote glycosylation.

In contrast, imide protection is used in the diacetyl strategy to
prevent the formation of cluster structures via intermolecular
hydrogen bonding, thus avoiding a decrease in reactivity. In our

FIGURE 14
Synthesis of tetraantennary sialyl N-glycan.
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N-glycan synthesis, the Asn residue was bound to the reducing-end
sugar. The amide group of the Asn side chain did not significantly
affect synthetic efficiency. In the synthesis of the tetraantennary
sialylN-glycan, solubility decreased as the molecular size of the sialyl
fragments increased. Consequently, glycosylation yields with such
fragments were low. To improve the solubility of such fragments, it
is necessary to change synthetic strategies, such as the selection of
protective groups. Research focusing on solution structures in glycan
synthesis is still in its early stages, and further advancements are
anticipated in the future.
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