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Under the background of energy crisis, hydrogen owns the advantage of high
combustion and shows considerable environment friendliness; however, to fully
utilize this novel resource, the major hurdle lies in its delivery and storage. The
development of the in-depth yet systematical methodology for two-dimensional
(2D) storage media evaluation still remains to be challenging for computational
scientists. In this study, we tried our proposed evaluation protocol on a 2D
material, g-C3N5, and its hydrogen storage performance was characterized;
and with addition of Li atoms, the changes of its electronical and structural
properties were detected. First-principles simulations were conducted to verify
its thermodynamics stability; and, its hydrogen adsorption capacity was
investigated qualitatively. We found that the charges of the added Li atoms
were transferred to the adjacent nitrogen atoms from g-C3N5, with the
formation of chemical interactions. Thus, the isolated metallic sites tend to
show considerable electropositivity, and can easily polarize the adsorbed
hydrogen molecules, and the electrostatic interactions can be enhanced
correspondingly. The maximum storage capacity of each primitive cell can be
as high as 20 hydrogen molecules with a gravimetric capacity of 8.65 wt%, which
surpasses the 5.5 wt% target set by the U.S. Department of Energy. The average
adsorption energy is ranged from −0.22 to −0.13 eV. We conclude that the
complex 2D material, Li-decorated g-C3N5 (Li@C3N5), can serve as a promising
media for hydrogen storage. This methodology provided in this study is
fundamental yet instructive for future 2D hydrogen storage materials
development.

KEYWORDS

hydrogen storage, reversible, g-C3N5, Li-decorated, DFT

OPEN ACCESS

EDITED BY

Kai Ren,
Nanjing Forestry University, China

REVIEWED BY

Lili Liu,
Chongqing Three Gorges University,
China
Pengru Huang,
Guilin University of Electronic
Technology, China

*CORRESPONDENCE

Peng Gao,
pgao177@gmail.com

RECEIVED 25 September 2023
ACCEPTED 11 October 2023
PUBLISHED 25 October 2023

CITATION

Chen X, Liu Z, Cheng J, Li J, Guo D,
Zhang L, Niu X, Wang N, Wang G and
Gao P (2023), First-principles study of Li-
doped planar g-C3N5 as reversible H2

storage material.
Front. Chem. 11:1301690.
doi: 10.3389/fchem.2023.1301690

COPYRIGHT

© 2023 Chen, Liu, Cheng, Li, Guo, Zhang,
Niu, Wang, Wang and Gao. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Chemistry frontiersin.org01

TYPE Original Research
PUBLISHED 25 October 2023
DOI 10.3389/fchem.2023.1301690

https://www.frontiersin.org/articles/10.3389/fchem.2023.1301690/full
https://www.frontiersin.org/articles/10.3389/fchem.2023.1301690/full
https://www.frontiersin.org/articles/10.3389/fchem.2023.1301690/full
https://www.frontiersin.org/articles/10.3389/fchem.2023.1301690/full
https://www.frontiersin.org/articles/10.3389/fchem.2023.1301690/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2023.1301690&domain=pdf&date_stamp=2023-10-25
mailto:pgao177@gmail.com
mailto:pgao177@gmail.com
https://doi.org/10.3389/fchem.2023.1301690
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2023.1301690


1 Introduction

Under the context of global energy crisis, development of
clean yet renewable resource is highly needed. Hydrogen, which
is regarded as the fuel of future, owns the advantage of high
renew-ability, and its combustion has zero-emission of CO2

(Allendorf et al., 2018; Züttel, 2004; U.S Department of
Energy, 2020); thus it can be widely applied in many fields.
However, in real practice, the main limitation lies in the fact
that we are lack of high-efficiency storage media (U.S
Department of Energy, 2020; Huang and Autrey, 2012; Züttel,
2003). Solid state materials based media are preferred due to their
superior properties. In the current stage, some researchers tend to
use metal-organic frameworks (MOFs) or metal hydrides based
materials for this task (Bogdanovi and Schwickardi, 1997; Züttel
et al., 2003; Sakintuna et al., 2007; Graetz, 2009; Gao et al., 2022);
and at the same time, hydrocarbons or BN compounds had also
been reported to own high content of hydrogen (Campbell et al.,
2010; Luo et al., 2011a; Luo et al., 2011b; Teichmann et al., 2012;
Gao et al., 2020; Gao and Zhang, 2020; Gao and Zhang, 2021). To
successfully develop a high-performance hydrogen storage
media, not only the storage capacity should be highlighted,
manufacturing convenience is also crucial.

Within the past few decades, 2D carbon materials based
storage media are promisingly emerging due to their high
adsorption ability (Jürgens et al., 2003; Holst and Gillan,
2008; Thomas et al., 2008; Wei and Jacob, 2013; Algara-Siller
et al., 2014; Dong et al., 2014; Fina et al., 2015; Hussain et al.,
2016; Liu et al., 2019; Wang et al., 2019; Gao et al., 2021a; Wang
et al., 2023; Zhang et al., 2023). These kinds of materials own
superior aperture structures that enable themselves to be easily
doped metal atoms or superalkali clusters for properties
optimization and performance enhancement (Zhang et al.,
2009; Wu et al., 2013; Zhu et al., 2014; Mahmood et al., 2015;
Nair et al., 2015; Ruan et al., 2015; Wei et al., 2016; Gao et al.,
2019; Panigrahi et al., 2020; Gao et al., 2021b; Gao et al., 2021c;
Chen et al., 2021). Moreover, their original structure features can
be qualitatively correlated with their optimizability and
functions; thus computational investigation and evaluation of
the novel derivatization units can be highly instructive for
experimental practice (Wang et al., 2018; Bafekry et al.,
2021). The graphene-like 2D unit, g-C3N5, is reported to be
one of the most promising structures for electronic and optical
devices development; and, it is proposed to own higher
adsorption carrier, making itself suitable for storage media
design.

Moreover, a systematic computation protocol for 2D
materials’ hydrogen storage performance evaluation is of great
importance for future studies; in this study, we proposed a
density functional theory (DFT) calculations based
methodology for the solution of structural and electronic
properties of the pristine and metal-doped 2D materials, and
the rules of the correlation between the properties and functions
were summarized as reference. We tried our methodology upon
Li@C3N5; and its hydrogen adsorption mechanism was
successfully summarized. We anticipate that the fundamental
insights provided in this study will be highly instructive for future
development of 2D energy storage media.

2 Computational details

First-principles calculations were carried out within the Vienna Ab-
initio Simulation Package (VASP) under periodic boundary conditions
(Kresse and Furthmüller, 1996; Grimme, 2006). Considering the

FIGURE 1
The optimized structures of (A) g-C3N5 primitive cell and (B) Li@
C3N5 primitive cell. The black, red and blue balls represent C, N and Li
atoms, respectively.

FIGURE 2
The AIMD simulations of Li@C3N5. The black, red and blue balls
represent C, N and Li atoms, respectively.
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balance between cost and efficiency, g-C3N5 primitive cell was selected
as a prototype, and the applied lattice parameters were a= b= 15 Å. The
electronic states were explored with the plane wave basis projector
augmented wave (PAW) method (Blöchl, 1994), the cutoff of energy is
set to 520 eV. The exchange-correlation energies were obtained with the
generalized gradient approximation, by the PBE method
(Perdew–Burke–Ernzerhof) (Perdew and Wang, 1992; Perdew et al.,
1996). The convergence of the Hellmann-Feynman forces is 0.01 eV/Å.
The conjugate-gradient algorithm was employed for structural
relaxations with an energy convergence criteria of 1 × 10−5 eV. The
post-processing of figures were conducted by VESTA. In our
calculations, Van der Waals (VDW) corrections are included to
describe long-range interactions with the DFT-D2 method (Grimme,
2006). To avoid the interactions between the periodic slabs along the z-
axis, the vacuum layer with the magnitude of 20 Å was inserted. Bader
analysis was employed to estimate the amount of charge transferred
among the pristine g-C3N5 surface and Li atoms (Bader, 1990). And, a
3 × 3 × 1 Gamma-centered k-point grid was used for sampling within
the Brillouin zone (Monkhorst and Pack, 1976; Chadi, 1977).

The thermodynamics stability of Li@C3N5 was investigated by first-
principles molecular dynamics (MD) simulations under the canonical
(NVT) ensemble (Martyna et al., 1992). The adsorption energy of Li
atom upon g-C3N5 were obtained by the equation below:

Ead Li( ) � [E(Lik◦C3N5) − E C3N5( ) − kE Li( )]/k, (1)

where k represents the number of Li atoms, and E is the energy term.
The averaged adsorption energy per hydrogen molecule was
calculated by the following equation:

Ead H2( ) � [E(nH2•Lik◦C3N5) − E(Lik◦C3N5) − nE H2( )]/n,
(2)

where n indicates the number of adsorbed hydrogen molecules upon
the surface of Li@C3N5. The hydrogen storage capacity can be
obtained by the following equation:

HSC � m H( ) *M H( )
m C( ) *M C( ) +m N( ) *M N( ) +m Li( ) *M Li( ) × 100%,

(3)

FIGURE 3
(A) The simulated ELF of Li@C3N5; the isosurface value is set to be 0.0013. (B) The calculated charge density difference of Li@C3N5. The black, red
and blue balls represent C, N and Li atoms, respectively.

FIGURE 4
Crystal orbital Hamilton population COHP analysis of (A) C-N and (B) N-N bonds within pristine g-C3N5.
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where m(X) is the number of X (X = C, N, Li, and H) atom, and
M(X) is the corresponding molar mass. The desorption temperature
(TD) between hydrogen molecules and the substrate can be
defined as:

TD � Ead

KB

ΔS
R

− lnP( )
−1
. (4)

Here, R and KB are the universal gas constant and Boltzman
constant, respectively; ΔS is the change of entropy for hydrogen
molecules from the gas to liquid state (75.44 J mol−1 K−1); while P is
the pressure of equilibrium (1 atm).

3 Results and discussion

3.1 Structural and electronic properties of Li-
doped g-C3N5

The optimized configurations of pristine and Li@C3N5 were
presented in Figure 1. To systematically estimate its
thermodynamics stability, ab initio molecular dynamics
(AIMD) simulations were conducted, and the results were
shown in Figure 2 for reference. It is notable that under the
temperature of 400 K, the fluctuation of the total energy mainly

FIGURE 5
COHP analysis of (A) C-N, (B) N-N and (C) Li-N bonds within Li@C3N5.

FIGURE 6
The simulated PDOS of (A) pristine g-C3N5 and (B) Li@C3N5.
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oscillates at the equilibrium point; and from the snapshot that
reflects the complex structure of the last frame, we noticed that
the Li atom can stably bind with the N atom of the g-C3N5. All
the observations indicate the high stability of this complex 2D
material. At the same time, the mechanical properties of the
pristine g-C3N5 (see in Figure 1A) were also investigated, and the
simulated independent elastic constants are: C11 = 17.05 N/m,
C12 = 15.24 N/m, and C66 = 0.91 N/m, respectively. These
obtained values satisfy the Born-Huang criterion, revealing
that the such a CN bonding network displays considerable
mechanical hardness.

To in-depth solve the binding mechanism of g-C3N5

monolayer, the electronic localization function (ELF) and
charge density difference calculations were carried out, the
results are presented in Figures 3A, B. The crystal face was
obtained by cutting the g-C3N5 primitive cell based on the
Mille index (−2.528, 1, 379.194). One can clearly see that the
calculated ELF value of N-C binding is around 0.8 that is, within
the reasonable range of covalent bonds. To further investigate the
strength of this kind of binding, the Crystal Orbital Hamilton
Population (COHP) calculations were employed, and the
calculated results of N-N and N-C bonds
are −0.46 and −2.61 eV, respectively (more details can be
found in Figures 4A, B). With addition of Li atoms, we
noticed that both the N-N (changed to −0.28 eV) and N-C
(changed to −2.43 eV) bonds become weaker (more details can
be found in Figures 5A–C), further indicating the fact that the
charges of Li atoms are effectively transferred to the antibonding
orbitals of C-N and N-N bonds. And for pristine g-C3N5, we
notice the anitbonding states move down to the Fermi level,
further indicating its capability of adsorbing metallic atoms that
own ability of electron donating. The partial density of states
(PDOSs) were also calculated for reference, and the results are
shown in Figure 6. We can notice that the state density
component of conduction band bottom and valence band top
were both dominated by the 2p orbitals of N atoms, while less
contributions were from 2p orbitals of C atoms.

The N-2p and C-2p orbitals overlap at the energy interval,
indicating chemical interactions among these two atoms; such an

observation is consistent with the conclusion obtained by ELF
calculations. We hope these theoretical insights could be
instructive for future experiment work upon this novel 2D
material.

With the addition of Li atoms (the configuration is shown in
Figure 1B), we first estimated the absorption energy per metal atom
upon this 2Dmaterial; the obtained value is around −4.88 eV, within
the reasonable range to overcome the risk of cohesive effects.
Secondly, we notice that its 2s orbital can effectively overlap with
the 2p orbitals of N atoms from g-C3N5 within the ranges
of −2.5 ~ −2 eV and −4.5 ~ −4 eV, respectively. (details can be
found from the simulated PDOSs shown in Figure 6), indicating the
binding availability between these atoms. And also, from the
calculated results of ELF, we can confirm that there exist
chemical interactions between the added Li atoms and g-C3N5

monolayer. With the assistance of Barder analysis, we figure out
each Li atom transfers 0.89 e− to g-C3N5, and displays
electropositivty. Such an observation further indicates the
possible potency of these metallic sites for gas molecules
adsorption due to enhanced electrostatic interactions.

3.2 Hydrogen storage performance in Li@
C3N5

Then we optimized the geometric configurations of Li@C3N5

with adsorbed hydrogen molecules by first-principles calculations.
We can clearly see that the adsorbed hydrogen molecules can be
easily polarized by the metallic sites that display considerable
electropositivity, consistent with our previous conclusion. We can
also see from the calculated reduced density gradient (RDG) shown
in Figure 7, the electrostatic interactions between these polarized
hydrogen molecules and Li atoms can be correspondingly enhanced.
And from the results shown in Figure 7, the main interaction
between the adsorbed hydrogen molecules and Li atoms can be
attributed to van der Waals interaction.

The optimized configurations of Li@C3N5 with multiple
adsorbed hydrogen molecules are presented in Figure 8 for
reference. The corresponding results are listed in Table 1. The

FIGURE 7
(A,B). The simulated RDG of Li@C3N5 with adsorbed hydrogen molecules.
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averaged adsorption energy per H2 molecule is ranged
from −0.22 to −0.13 eV, with the storage capacity from 0.43 to
8.65 wt%. And for the adsorbed hydrogen molecules, the binding
length of H-H is predicted to be slightly stretched between 0.753 Å
and 0.755 Å. As stated before, the behind reason can be attributed to
the induced polarization by addition of metal atoms. We also

anticipated that the storage capacity can be further increased,
with the decoration of extra metal atoms. We conclude that the
overall electronic structures of 2D monolayer materials can be
favorably improved with respect to specific needs of adsorption
tasks in real practice, further indicating a promising methodology by
computational evaluation for functional materials design.

FIGURE 8
(A–E) The optimized configurations of Li@C3N5 with multiple adsorbed hydrogen molecules.
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4 Conclusion

In summary, we proposed a systematic methodology for 2D
materials’ hydrogen storage performance evaluation; and we
decently investigated the adsorption mechanism of Li@C3N5

monolayer. DFT computational studies reveal that the pristine
g-C3N5 cannot form strong interactions with hydrogen
molecules; by decoration of Li atoms, its structure and
electronic properties can be modified. Binding interaction
between the added Li atoms and the adjacent N atoms from g-
C3N5 is proved to be stable. Bader charge analysis reveals that
each Li atom can transfer 0.89 e− to the pristine g-C3N5 and
display considerable electropositivity. These metallic sites can
essentially polarize the adsorbed hydrogen molecules and
generate stronger electrostatic interactions, leading to the
enhanced hydrogen adsorption performance. The average
adsorption energy per hydrogen molecule on the Li@C3N5

complex 2D material is up to −0.22 eV that is, within a
reasonable range; and each primitive cell can adsorb up to
20 hydrogen molecules, and the overall storage capacity can
reach to 8.65 wt%. The insights obtained by this study
indicated that the Li@C3N5 can serve as a promising storage
media; and moreover, the proposed methodology is highly
instructive for future studies.
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