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Fluorescent nanomaterials (NMs) are widely used in imaging techniques in
biomedical research. Especially in bioimaging systems, with the rapid
development of imaging nanotechnology, precious metal clusters such as Au,
Ag, and Cu NMs have emerged with different functional agents for biomedical
applications. Compared with traditional fluorescent molecules, precious metal
clusters have the advantages of high optical stability, easy regulation of shape and
size, and multifunctionalization. In addition, NMs possess strong
photoluminescent properties with good photostability, high release rate, and
sub-nanometer size. They could be treated as fundamental agents in
bioimaging usability. This review summarizes the recent advances in
bioimaging utilization, it conveys that metal clusters refer to Au, Ag, and Cu
fluorescent clusters and could provide a generalized overview of their full
applications. It includes optical property measurement, precious metal clusters
in bioimaging systems, and a rare earth element-doped heterogeneous structure
illustrated in biomedical imaging with specific examples, that provide new and
innovative ideas for fluorescent NMs in the field of bioimaging usability.
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Introduction

Bioimaging technology is an important research tool to view biological functions in real-
time and to elucidate various physiological functions of organisms (Karlas et al., 2021;
Mazumder et al., 2022; Ju et al., 2023), this approach has minimal interference with life
processes and allows the direct acquisition of microstructural images by using optical or
electron microscopy (Yang et al., 2022; Sobhanan et al., 2023). The analysis of the resulting
images is used to understand different physiological processes in biological cells. In addition,
bioimaging is widely used to acquire data on the three-dimensional structure of an observed
object without physical interaction (Klymchenko et al., 2021). Biological imaging covers a
wide range of modalities, including X-ray, ultrasound, computed tomography (CT), positron
emission computed tomography (PET), magnetic resonance imaging (MRI), etc (Wen et al.,
2020). Among them, fluorescence imaging technology plays an important role in whole
imaging medical works. Its advantages are divided into such categories as high sensitivity,
easy observation, and simple instrumentation, which mainly utilize the change of
fluorescence characteristics to obtain optical images (Collot, 2021). Also, it is necessary
to introduce exogenous fluorescent materials as a contrast agent to calibrate specific cells,
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tissues, and organs (An et al., 2020; Zhang et al., 2020; Wang et al.,
2021). Due to the lack of endogenous fluorescent materials in many
biological structures and processes, it is difficult to utilize the
intrinsic fluorescence of biological samples for imaging
characterizations. Therefore, the potential of fluorescent agents is
recognized as a new type of typical functional material, that could be
utilized in this area. For example, in the field of bioimaging, they
have the advantages of excellent fluorescence performance,
tunability, multifunctionality, and high photostability (Cai et al.,
2021; Guo et al., 2021). Fluorescene imaging technology can provide
comprehensive detection methods from cells, isolated tissues, and
living biological samples in terms of structural and dynamic
information (Drozdov et al., 2022; Song et al., 2022) in the
interdisciplinary fields of materials, optics, and biomedicines.
Among them, noble metal nanoclusters, as a new type of
fluorescent agent recently developed, have a broad development
prospect in the field of bioimaging due to their unique optical
properties, biocompatibility, high contrast, tunability, and targeting.
In this review, we mainly summarize and outline the properties of
precious metal clusters as fluorescent NMs in the context of recent
trends and their application in bioimaging usability. Here, there are
three different parts fully illustrated: 1) pure-phasedmetal clusters as
fluorescent agents in optical measurements; 2) copper (Cu), silver
(Ag), and gold (Au)- based clusters were utilized in bioimaging
usability; 3) rare earth element-doped fluorescent materials in
imaging applications. Based on the applied research on the
functional materials of noble metal clusters, they will gradually
come to be widely used in imaging analysis and therapies. Hence,
based on the application research of precious metal clusters’
functional materials, it will graduallycome to have extensive
application in imaging analysis and treatments.

Precious metal clusters as fluorescent
agents in optical measurement

Fluorescent NMs are of interest for their multifunctional
applications in solar cells, biomarkers, imaging, etc. Among
them, metallic NMs exhibit strong fluorescence emission and
offer great potential for the development of biomarkers and
imaging. In particular, precious metal nanoparticles (NPs), which
are represented by gold (Au), silver (Ag), and copper (Cu), with
unique surface plasmon resonance (SPR) in the range of light from
the ultraviolet (UV) to the near-infrared (NIR) (Chakraborty and
Pradeep, 2017), and distinctive optical properties such as molecular
absorption and strong luminescence, have attracted much attention
(Babu Busi et al., 2022). Metal nanoclusters have improved
luminescence efficiency and enhanced biocompatibility compared
to metal nanoparticles and can escape the renal barrier. Among
them, the fluorescent metal clusters exhibit tunable fluorescence
from the visible to the near-infrared region. This tunable
fluorescence occurs either through molecular-like electronic leaps
within the conduction band or due to charge transfer leaps from the
ligand to the metal nanoparticles. It was considered a class of
fluorescent clusters with novel properties such as ultra-small
morphologies, water-solubility, biocompatibility, and so on. By
virtue of their usefulness, these precious metal clusters can
complement or even replace traditional fluorescent probes in

sensor fabrication. This can provide great opportunities for the
advancement of imaging technology (Wang et al., 2018),
represented by Au nanocluster (NCs), Ag NCs, and Cu NCs. Au
NCs have recently been used for bioimaging and other biomedical
applications due to their favorable intrinsic optical properties, highly
stable chemical properties, and good biocompatibility (Chen et al.,
2015). For example, Liu et al. prepared atom-precise Au NCs with
25 gold atoms and 18 peptide ligands, such that the cluster can be
used as a NIR-II fluorophore (Liu et al., 2019). Especially in brain
imaging, this study found that NIR-II imaging based on Au NCs is
able to monitor many small blood vessels and can be used as NIR-II
dyes for imaging. The preparation of cluster structures can be
realized by using organic ligands in order to optimize their
performance with better biological properties. In a recent
research report, Obstarczyk et al. prepared ultrasmall Au NCs
using 12-crown-4 ligand capped (Obstarczyk et al., 2023). Such
nanoclusters were amphiphilic and could be successfully transferred
between aqueous and organic solvents while maintaining their
physicochemical integrity. They can be used as probes for light
(because they emit near-infrared fluorescence) and electron
microscopy (because of the high electron density of Au) in
multimodal biological imaging (Figure 1A). Wang et al. used in
situ self-assembly to biosynthesize fluorescent Au nanocluster-DNA
(Au-DNA) complexes for precise bioimaging and safe, targeted
cancer therapy (Wang et al., 2019).

Copper (Cu), silver (Ag), and gold (Au) based
clusters utilized in bioimaging systems

The work on photoluminescence characterization by utilizing Cu
clusters in biomedical imaging works. Cu materials were thought to be
one functional substrate material due to their abundance and relatively
low cost (Lai et al., 2020; Akhuli et al., 2021; Saraf et al., 2021) in nature.
In addition, as one typical application of biosensors, it was modified by
different surfactants to form functional agents. As in bioimaging
works, Chandran et al. (2023) developed blue-emitting colloids, Cu
NCs, using different functional groups (-SH and -COOH). Some
characteristics (size, cytotoxicity, and emission properties of Cu
NCs) were controlled due to surface functionalization. It protected
the particle surface from aggregation and oxidation, mainly through
the binding of polymer molecules with thiol and carboxyl groups. The
bright blue fluorescence emitted by HeLa cells treated with acetic acid
(sample code: CAGP) (Figure 1B) showed excellent bioimaging
properties. The functional group in molecules was used as a simple
and cost-effective method to synthesize glutathione-coated copper
nanoclusters (Cu-GSH NCs) with strong, bright red fluorescence
(625 nm) (Chandran et al., 2020). It was used as an effective pH-
based bio-imaging probe for the detection of cancerous cells and had
the potential to be used for label-free subcellular organelles for tracking
and labeling. Also, Ag clusters received tremendous attention for
biomedical applications due to their low toxicity, size-dependent,
and emission properties (Liu et al., 2017). Despite the relatively low
photo-oxidative stability of Ag, it has been shown that very strong
fluorescence signals can also be generated by using different ligands in
the formatting process (Tao et al., 2015; Song et al., 2016). In a recent
study, Lyu et al. (2019) utilized cationic polyelectrolytes to modify
fluorescent DNA-Ag NCs through electrostatic interactions between
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the positive polymer backbone and the negatively charged phosphate
groups of the DNA strand. The experimental results showed a 3-fold
enhancement of fluorescence emission from Ag NCs for rapid cellular
imaging, increased stability in the internal environment, and enhanced
cellular uptake of DNA-Ag NCs (Figure 1C). Xu et al. (2022) prepared
Ag clusters with near-red fluorescence by using polymethacrylates
(PMAA) as a template.Whichwas used as a glutathione (GSH) sensing
and bioimaging probe (Figure 1D). Yu et al. (2021) stabilized the Ag
cluster (BSA-Ag) by using bovine serum albumin (BSA) with near-

infrared electrochemiluminescence (ECL) properties. It exhibited a
strong anodic ECL spectral peak at 904 nm in aqueous media with
excellent bioimaging properties. As one acceptable approach, the
integration procedure should be one effective path to construct
heterogeneous composites because of their superiority over
single metals in terms of electronic, optical, and catalytic properties
(Tian et al., 2017; Zhai et al., 2017). Jia et al. (2020) developed peptide-
capped Au-Ag clusters for lysosome-targeted imaging of hypochlorite
with high fluorescence quantum yield (Figure 1E). Zhou et al. (2013)

FIGURE 1
(A) Absorption and emission spectra and fluorescence microscopy images of Au18GNC in water; (B) PEGylated Cu nanoclusters: A nontoxic,
multifunctional colloidal system for bioimaging and peroxide sensing; (C) The formation of FL DNA-Ag NC/cationic polyelectrolyte complexes for cell
imaging; (D) Schem of self-Cascade Nanoenzyme of Cupric Oxide Nanoparticles (CuO NPs) Induced in Situ Catalysis Formation of Polyelectrolyte as
Template for the Synthesis of Near-Infrared Fluorescent Silver Nanoclusters; (E) Schematic of synthesis of peptide@Ag/Au NCs and reaction
mechanism of peptide@Ag/Au NCswith ClO−; (F) AuNCs@SiO2-FA nanoprobes for fluorescence imaging; (G) Representative xenograft tumor nudemice
models of Cervical carcinoma in vivo imaging. Reproduced from Obstarczyk et al. (2023) with permission of ACS Omega. Reproduced from Chandran
et al. (2023) with permission of Biochim Biophys Acta Gen Subj. Reproduced from Lyu et al. (2019) with permission of Anal Chem. Reproduced from Xu
et al. (2022) with permission of Analytical Chemistry. Reproduced from Jia et al. (2020) with permission of Talanta. Reproduced from Zhou et al. (2013)
with permission of J Nanobiotechnology. Reproduced from Ge et al. (2015) with permission of J Nanobiotechnology.
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utilized folic acid (FA)-coupled silica-coated Au clusters in forming
AuNCs@SiO2-FA probes with biocompatible properties and applied
them to fluorescence imaging in mice (Figure 1F). Ge et al. (2015)
explored a new strategy for the synthesis of fluorescent Au-Ce NCs by
doping trivalent cerium into the crystal seed growth process of Au
clusters. Its fluorescent property can be used to achieve highly sensitive
in vitro or in vivo bioimaging of tumor targets (Figure 1G). In addition,
Yang et al. (2020) developed a therapeutic nanomedicine (AuNCs-Pt)
based on nanocarrier gold nanoclusters (AuNCs), which has the dual
function of NIR-I/NIR-II imaging and glutathione scavenging ability.
The long emission wavelength of AuNCs-Pt allows deep penetration,
enabling high-resolution NIR-II tumor imaging and improved
visualization of platinum transport in deep tissues. Moreover, alloy
structures such as Ag-Pt (Bootharaju et al., 2017) andAu-Cu (Shellaiah
et al., 2019; Shan et al., 2022) have a wide range of applications in the
field of bio-imaging, where they are characterized by good light
stabilization, strong NIR-II absorption, and better imaging depths.
In summary precious metal clusters with good biocompatibility, stable
optical properties, and high luminescence efficiency have a wide range
of development prospects in the field of bioimaging.

Rare earth element-doped fluorescent
materials in imaging systems

Rare earth-doped nanoparticles (RENPs) have become the
preferred candidate for NIR-II imaging due to their attractive
features such as a narrow emission spectrum, long fluorescence
lifetime, and absence of photobleaching (Qu et al., 2020; Gu et al.,
2022; Song et al., 2022). Zhang et al. (2021) prepared two RENPs,
NaYF4:Yb20Er2@NaYF4 and NaYF4:Nd5@NaYF4, and modified
them with poly (ethylene glycol) (PEG) to explore simultaneous
imaging in NIR-IIb (1,530 nm, under 980 nm laser excitation) and
NIR-IIb. It showed that RENP’s NIR-II fluorescence has a highly
synergistic imaging capability in versatile biomedical applications
with higher temporal and spatial resolution, respectively. Tan et al.
(2018) reported a synthesis of long-lived rare-earth-doped fluoride
nanoparticles using a different strategy: core/shell and dopant
engineering, which showed intense infrared emission in a second
biological window with a luminescence lifetime of close to 1 m.
Karthickraja et al. (2021) synthesized calcium fluoride (CaF2)
nanoparticles by doping them with optimal concentrations of
Nd3+ and Yb3+ as sensitizers and activators. It performed ex vivo
fluorescence imaging experiments on chicken breast tissues of
different thicknesses with a maximum theoretical depth of
penetration of 14 mm for near-infrared light. There is a process
of surface modification in doped materials, lanthanide-doped
materials can be carried out to realize luminescence through
energy level jumps with high luminescence efficiency (Li et al.,
2022). Alternatively, the loading of fluorescent molecules into
organic nanomaterial structures via covalent bonding or
electrostatic/hydrophobic interactions to generate fluorescent
organic nanoparticles (FON) can also enable efficient bioimaging.
FON is another classical material with bioimaging properties that is
mainly composed of natural or synthetic organic polymers. The
related advantages involved luminescence, biocompatibility, and a
high signal-to-noise ratio (Asahi et al., 2008; Sinha et al., 2022). In
imaging usability, FONs generally showed stable photo-induced

characterizations (Blasi et al., 2017), but they also conveyed that
small molecules contributed to higher fluorophore density and
spatial resolution in whole fabrications (Vargas-Nadal et al., 2022).

Conclusion and outlooks

This mini-review, mainly describes the recent advancements
in fluorescent precious metal clusters, which are used in
biomedical imaging applications such as fluorescence imaging
and near-infrared region applications. Based on recent research,
precious metal clusters could be considered an acceptable unit for
fabricating multifunctional constructions. But also, its particular
morphology is a fundamental agent in further designing optical
characterization modifications. Using precious metal
nanoclusters as the basic building blocks can improve the
photostability and durability of bio-imaging and achieve better
imaging results. In addition, referring to the heterogeneous
structure, precious metals can dope with or be doped with
different materials for fabricating imaging substitutes.
Meanwhile, their optical properties and biocompatibility are
mainly represented by precious metal clusters and hetero
composites. Doped with rare-earth elements, they can be used
as highly sensitive and selective molecular probes for precise
imaging at the cellular and tissue levels, providing more
accurate diagnostic and therapeutic tools for clinical medicine.
By recognizing the fundamental property, these different precious
metal clusters played an important role in the early diagnosis of
diseases, individualized therapy, and life-accessible research for
further challenges.
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