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Monoelemental two-dimensional (2D) materials, which are superior to binary and
ternary 2D materials, currently attract remarkable interest due to their fascinating
properties. Though the thermal and thermoelectric (TE) transport properties of
tellurium have been studied in recent years, there is little research about the
thermal and TE properties of multilayer tellurium with interlayer interaction force.
Herein, the layer modulation of the phonon transport and TE performance of
monolayer, bilayer, and trilayer tellurium is investigated by first-principles
calcuations. First, it was found that thermal conductivity as a function of layer
numbers possesses a robust, unusually non-monotonic behavior. Moreover, the
anisotropy of the thermal transport properties of tellurium is weakened with the
increase in the number of layers. By phonon-level systematic analysis, we found
that the variation of phonon transport under the layer of increment was
determined by increasing the phonon velocity in specific phonon modes.
Then, the TE transport properties showed that the maximum figure of merit
(ZT) reaches 6.3 (p-type) along the armchair direction at 700 K for the monolayer
and 6.6 (p-type) along the zigzag direction at 700 K for the bilayer, suggesting that
the TE properties of the monolayer are highly anisotropic. This study reveals that
monolayer and bilayer tellurium have tremendous opportunities as candidates in
TE applications. Moreover, further increasing the layer number to 3 hinders the
improvement of TE performance for 2D tellurium.
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1 Introduction

Two-dimensional (2D) nanomaterials have become a hotspot in research since the discovery
of graphene (Geim, 2009; Abergel et al., 2010), hexagonal BN (Meziani et al., 2015; Zhang et al.,
2017a), transition metal dichalcogenides (TMDs) (Zhang et al., 2017b), and so on (Meziani et al.,
2015;Wang et al., 2023; Zhang et al., 2023). This can be attributed to their distinctive layer-related
and thermal properties (Gu et al., 2017). As a newly proposed type of 2Dmaterial, monoelemental
2D materials (ME2DMs) have application potential in many fields (Zhou et al., 2021). These
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elements are placed between non-metals and metals and have different
allotropes with intersectional electronic and chemical properties (Si and
Niu, 2020). Besides, ME2DMs containing single elements provide a
suitable model for studying the mechanisms of tractable chemistries
(Borlido et al., 2019). The success of graphene in 2004 demonstrated the
prospects of ME2DMs and sparked research on other ME2DMs with
excellent electrical, mechanical, thermal, and optical properties
(Novoselov et al., 2004). The combination of electrons confined in
the 2D honeycomb lattice and peculiar energy electronic properties
endow graphene with extreme electronic mobility (Du et al., 2008;
Huang et al., 2023) and transparency (Nair et al., 2008), thereby realizing
quantum phenomena (Novoselov et al., 2007). In addition, other
ME2DMs such as black phosphorus, arsenene, antimonene, and
bismuthene have also been widely reported (Pumera and Sofer, 2017).

Due to unique properties, monolayer tellurium has been proven to
have potential applications in robust piezoelectricity for reliable memory

(Rao et al., 2022) and optical properties for all-optical non-linear
photonic devices (Wu et al., 2019). Especially, the ultra-low thermal
conductivity and excellent thermoelectric (TE) performance (Gao et al.,
2018a; Sang et al., 2019) of monolayer tellurium have been predicted by
simulation. However, up to now, studies on the thermal and TE
properties of multilayer tellurium are lacking. Besides, the method of
constructing heterojunctions provides an idea to regulate and control
electronic (Bediako et al., 2018;Hamer et al., 2018), optoelectronic (Geim
and Grigorieva, 2013; Withers et al., 2015), and thermal (Tielrooij et al.,
2018) properties. These properties are achieved not only by monolayer
but also by multilayer structures and are promising to be applied in
nanoscale optoelectronic or electronic equipment. More importantly,
previous reports have provided references to layer-dependent phonon
transport and TE properties (Sun et al., 2019; Lee et al., 2021). However,
the impacts of layer numbers on phonon transport and TE properties of
multilayer tellurium have not been studied explicitly enough.

FIGURE 1
Crystal structures of the top and side views for (A) monolayer, (B) bilayer, and (C) trilayer tellurium.

FIGURE 2
Phonon dispersion for (A) monolayer, (B) bilayer, and (C) trilayer tellurium. Electronic band structure for (D) monolayer, (E) bilayer, and (F) trilayer
tellurium.
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Inspired by the above, phonon transport and TE properties of
monolayer, bilayer, and trilayer tellurium have been investigated by
first-principles calcuations at 300 K in our study. We first discuss
phonon dispersion and energy electronic properties of the three
materials and further obtain and discuss differences in phonon
thermal conductivity and TE transport properties among them. We
provide theoretical predictions of layer-dependent thermal
transport and TE transport properties through different layer
numbers of tellurium. This unexpected discovery may provide
some theoretical references for future research on the application
of multilayer 2D materials.

2 Methodology

The first-principles calculations were completed within the
method of density functional theory (DFT) using

pseudopotentials as used in the Vienna Ab initio Simulation
Package (VASP) code (Kresse and Furthmüller, 1996a; Kresse
and Furthmüller, 1996b). The exchange-correlation energy
function was treated using the Perdew-Burke-Ernzerhof (PBE)
function of generalized gradient approximation (GGA) (Perdew
et al., 1996). A kinetic energy cutoff of 500 eV was selected. The
geometry-astringent tolerance for energy and force was less than
10–8 and 10–6 eV/Å. For all tellurium, the Monkhorst–Pack
k-point grid was set to 13 × 13 × 1, and the vacuum region
was set to 20 Å. The DFT-D3 methods for the vdW mechanism
were also considered in our calculations. The interatomic force
constants (IFCs) were obtained by the supercell (4 × 4 ×
1 supercell) and Γ-point mesh method using the Phonopy
(Togo et al., 2008). For the calculation of third-order IFCs in
the thirdorder.py script (Li et al., 2014), a 4 × 4 × 1 supercell was
also used. The cutoff was set for the 16th nearest number. The
Q-grid of 60 × 60 × 1 was selected for obtaining the phonon

FIGURE 3
(A) Lattice thermal conductivity convergence test of the Q grid. (B) Lattice thermal conductivity of telluriumwith different layer numbers at different
temperatures along the zigzag and armchair directions. (C) Phonon group velocity along the armchair direction and (D) zigzag direction. (E) Phonon
relaxation time.
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properties. The lattice thermal conductivity (κp) and phonon
transport properties were calculated using ShengBTE (Li et al.,
2014). In the electronic transport part, the electrical conductivity
was calculated using BoltzTraP (Madsen and Singh, 2006). The
carrier mobility (μ) was calculated using the deformation
potential theory. In 2D systems, the carrier mobility can be
expressed as (Qiao et al., 2014; Zhang et al., 2014)

μ2D � 2eh3C2D

3kBT m*| |2EDP

, (1)

where C2D is the elastic modulus, m* is the electronic effective mass,
and EDP is the deformation potential. In addition, the carrier
relaxation time can be calculated by τ = μm*/e.

The performance of TE materials can be determined by the ZT
value (Zhao et al., 2014):

ZT � S2σT

κe + κp( )
, (2)

where S, T, σ, κe, and κp are the Seebeck coefficient, temperature,
electrical conductivity, and electronic and phonon thermal
conductivity, respectively. The electronic conductivity can be
calculated as κe � LσT (Lorentz constant L = 1.5 × 10−8 WΩ/K2)
(Jonson and Mahan, 1980; Stojanovic et al., 2010).

3 Discussion

3.1 Geometrical, phonon, and electronic
structures

As shown in Figures 1A–C, monolayer tellurium consists of
three atomic subplanes with buckling distances, while graphene has
a planar structure. The calculated lattice constant of monolayer
tellurium by us in the a and b directions is 5.62 and 4.23 Å,
respectively. These values are very close to previously calculated
values of 5.69 and 4.23 Å by Sang et al. (2019) and other reports
(Gao et al., 2018a; Gao et al., 2018b). Different lattice constants in
different directions usually indicate the directional dependence of
the transport properties. Bilayer tellurium built on an AA stack and
trilayer tellurium built on an AAA stack has the same characteristics
as monolayer tellurium. As shown in Figures 1B, C, the stacking
methods of bilayer and trilayer for our structures are AB and ABA
types, respectively. The formation of dislocations between layers
significantly affects their physical and chemical properties and
further leads to differences in their TE performance.

Figures 2A–C show the phonon spectra of monolayer, bilayer,
and trilayer tellurium. The frequency of the phonon spectra of the
three structures is greater than 0, confirming the stability of the
material. Through the three figures, we can also see that the
frequencies of the acoustic branch of tellurium and some optical
branches near the acoustic branch are very small, much smaller than
those of many 2D materials (Geim, 2009; Abergel et al., 2010). The
low-frequency distribution is similar to that reported for ultralow
thermal conductivity 2D materials, such as triphosphides (Sun et al.,
2020), monolayer Hf2Cl4 (Li et al., 2021), and XIS (X = Al, Ga, In)
(Cheng et al., 2022). Our results show that the phonon harmonic
vibration of tellurium is very weak with a small thermal
conductivity, as is expected of a TE material with good
application potential. Obviously, the increasing number of layers
can reduce the vibration frequency of the optical branch but does not
affect the frequency distribution of the acoustic branch. In addition,
we find that multilayer tellurium has an indirect energy gap and
significant asymmetry between the conduction and valence bands.
Moreover, the number of layers can effectively regulate the

TABLE 1 Effective massm*/m0, DP constant EDP, elastic constant C2D, and carrier
mobility μ of monolayer, bilayer, and trilayer tellurium at room temperature.

m*/
m0

EDP (eV) C2D (N m-1) μ (m2

V−1s-1)

Monolayer

p-type h-zigzag 0.434 4.697 30.698 0.011

p-type h-armchair 0.240 1.965 32.604 0.209

n-type e-zigzag 1.131 2.934 30.698 0.004

n-type e-armchair 0.627 4.942 32.604 0.005

Bilayer

p-type h-zigzag 1.260 1.121 50.965 0.036

p-type h-armchair 0.380 4.133 70.040 0.040

n-type e-zigzag 0.698 2.735 50.965 0.020

n-type e-armchair 0.161 5.745 70.040 0.117

Trilayer

p-type h-zigzag 1.587 2.745 79.266 0.006

p-type h-armchair 0.879 3.453 87.900 0.014

n-type e-zigzag 0.642 1.270 79.266 0.190

n-type e-armchair 0.356 1.625 87.900 0.376

TABLE 2 Relaxation time τ (fs) of monolayer, bilayer, and trilayer tellurium at
300, 500, and 700 K.

300 K 500 K 700 K

Monolayer p-type h-zigzag 25.985 15.591 11.137

p-type h-armchair 285.080 171.048 122.177

n-type e-zigzag 25.523 15.314 10.938

n-type e-armchair 17.215 10.329 7.378

Bilayer p-type h-zigzag 260.423 156.254 111.610

p-type h-armchair 87.311 52.387 37.419

n-type e-zigzag 79.098 47.459 33.899

n-type e-armchair 106.795 64.077 45.769

Trilayer p-type h-zigzag 53.708 32.225 23.018

p-type h-armchair 67.810 40.686 29.062

n-type e-zigzag 692.384 415.430 296.736

n-type e-armchair 759.934 455.960 325.686
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electronic band structure of tellurium. Specifically, the indirect
bandgap of tellurium decreases with an increasing number of
layers, as shown in Figures 2D–F. The bandgaps of monolayer,
bilayer, and trilayer tellurium are ~1.7, ~1.5, and ~0.9 eV,
respectively. The bandgap of monolayer tellurium is very close to
the previous report of ~1.5 eV by Sang et al. (2019).

3.2 Thermal transport properties

In Figure 3A, we test the convergence of thermal conductivity
for three materials along different directions. It can be seen that the
thermal transport shows good convergence when the Q grids exceed
50. The results in Figure 3B show that the thermal conductivity of
monolayer, bilayer, and trilayer tellurium follows the 1/T law with
temperature, and the layer-dependent thermal transport properties
have obvious differences. The trend of thermal conductivity with the
number of layers is an unusual non-monotonic behavior. Most
importantly, as the number of layers increases, there is an
unexpected difference in thermal conductivity between different

numbers of layers. That is, the thermal conductivity of monolayer
tellurium along the zigzag direction is much larger than that of
bilayer and trilayer tellurium (twice), while the thermal conductivity
of bilayer and trilayer tellurium is similar along the zigzag direction.
However, in the armchair direction, both monolayer and bilayer
tellurium exhibit ultralow thermal conductivity, while the thermal
conductivity of trilayer tellurium is the highest relative to single and
double layers. The lattice thermal conductivity depends, to some
extent, on phonon anharmonicity. The phonon group velocity can
be determined by the slope of the phonon dispersion curve. Since the
acoustic branch contributes the most to thermal transport, here, the
only focus is on the acoustic branch phonon. The detailed analysis of
the phonon harmonicity and anharmonicity of the different layers of
tellurium is as follows: the group velocities of phonons with high
frequency along the armchair direction are similar, with the main
difference being at low frequencies of 0–2 THz (Figure 3C). The
values of the monolayer are the smallest at low frequencies, resulting
in the lowest phonon thermal conductivity. The phonon group
velocity of the bilayer and trilayer is similar. For the zigzag direction,
in the 0–2 THz region (Figure 3D), the magnitude and distribution

FIGURE 4
Calculated Seebeck coefficient S along zigzag and armchair directions at 300, 500, and 700 K.
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of the phonon group velocities for the bilayer and trilayer are similar,
while the monolayer is significantly larger than the bilayer and
trilayer, so the phonon transport of the monolayer along the zigzag
direction is the strongest. We also analyzed the impact of layer
number on anharmonicity. We find that interlayer interactions
weaken the anharmonicity. In particular, trilayers exhibit higher
phonon relaxation times at low frequencies (Figure 3E), and surface
interlayer interactions weaken intrinsic phonon–phonon interaction
and lead to the enhancement of anharmonicity.

3.3 Electrical transport properties

As shown in Table 1, we have predicted the m*
b � m*/m0, EDP,

C2D, and μ of the monolayer, bilayer, and trilayer tellurium at room
temperature with different types of doping along the zigzag and
armchair directions through the first-principles calculations (Qiao
et al., 2014; Zhang et al., 2014). For the monolayer, the anisotropy of

the in-plane C2D can be ignored, and other parameters have obvious
anisotropy in the armchair and zigzag axes of our unit cell. Owing to
the effective mass of the holes in the monolayer being very small, a
high carrier mobility of 0.209 m2 V−1s−1 for p-type doped tellurium
along the armchair direction can be calculated. The bilayer also
shows anisotropic electronic properties, but them*

b is relatively small
and has a higher carrier mobility and electron relaxation time.
Although electrons have a high μ for trilayer, the p-type doping
has a larger m*

b, and the μ and τ are not very high. Through the
calculation results in Table 2, the variation of electron relaxation
time (τ) with temperature is obtained, and the TE transport
properties are further obtained.

The energy conversion efficiency of the TE materials can be
assessed with the dimensionless figure of merit (ZT). The TE
transport properties of tellurium with different layers are mainly
explored. Figure 4 shows the calculated S of n-type and p-type doped
tellurium with different layers as a function of the carrier
concentration at 300, 500, and 700 K. The monolayer has

FIGURE 5
Calculated electrical conductivity σ along zigzag and armchair directions at 300, 500, and 700 K.
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anisotropic S. It can be found that S increases with the carrier
concentration along the zigzag and armchair directions, almost
similar to the bilayer. This phenomenon indicates that S is
isotropic for bilayer tellurium, and S of n-type doped monolayer
tellurium can reach ~600 μV/K at a carrier concentration of 1 ×
1011 cm-2 under 300 K, while that of n-type doped bilayer tellurium
can reach ~400 μV/K.When the environmental temperature reaches
700 K, S becomes larger. In fact, the S coefficient of typical TE
materials is only between 200 and 300 μV/K, while the S coefficient
of monolayer and multilayer tellurium is much better than that of
the mature TE material SnSe (Guo et al., 2015). High values of S
indicate that higher ZTmay exist in the tellurium system. The origin
of very high S values is related to the previously mentioned band
structure. In Figure 1, the band graph has a multi-valley
characteristic, which leads to a high slope of the density of states
(DOS) near the Fermi energy, resulting in a high S. For monolayer
n-type doped tellurium, S is greater than that of p-type tellurium at
an effective carrier concentration n, mainly because the number of
conduction band energy valleys is greater than the valence band.
Contrary to S, σ increases with an increase in n, as shown in Figure 5.

σ changes little at different temperatures, and bilayer and trilayer
tellurium have their respective weaker anisotropies. When the
carrier concentration increases, the σ of p-type doping is greater
than that of n-type doping in monolayer and bilayer tellurium.
However, the trilayers have similar electrical conductivities under
the two different doping types. As we know, σ is directly
proportional to the contributed κe, which means that the greater
the σ, the higher the electronic thermal conductivity κe. In fact, TE
properties not only depend on σ. This is because S, σ, and κe are
interrelated in TE transport. In this work, using the abovementioned
calculated TE transport parameters, we have predicted the TE
performance for tellurium with different layers.

3.4 Figure of merit

Figure 6 shows the relationship between the ZT value with
different layers of tellurium and the carrier concentration under
different types of doping. First of all, for the monolayer, the
maximum ZT value of p-type doping along the armchair

FIGURE 6
Calculated dimensionless figure of merit (ZT) along zigzag and armchair directions at 300, 500, and 700 K.
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direction is 6.3 at a lower carrier concentration (1011–1012 cm−2). For
the zigzag direction, the ZT value is not very high, so the p-type
doping has a strong anisotropy. For n-type doping, the ZT value
reaches 3.8 in the zigzag direction under 700 K at lower carrier
concentrations (1011–1012 cm−2). For the bilayer, the ZT value along
the armchair is not high, and the main reason is that the bilayer has
stronger phonon thermal transport along the armchair direction. Its
p-type doping has strong anisotropy, and the ZT value can reach
6.6 under 700 K along the zigzag direction at low carrier
concentrations (1011–1012 cm−2). Such a high ZT value of bilayer
tellurium is also larger than other typical 2D TE materials, such as
~0.8 at 700 K for Bi2Te3 monolayer (Rashid et al., 2019), 3.46 at
500 K for SnP3 monolayer (Zhu et al., 2019), and 3.45 at 800 K for
Bi2O2Se monolayer (Wang et al., 2019). For trilayer tellurium, the
anisotropy of the ZT value is weakened, and the ZT value is lower
than it is for monolayer and bilayer tellurium. The abovementioned
calculations indicate that monolayer and bilayer tellurium are p-type
TE materials with high ZT values and have broad practical
application expectations in TE and energy-related applications in
the future. When the structure has three layers, the TE performance
of tellurium will decrease.

4 Conclusion

In this study, based on the Boltzmann transport equation and
first-principles calculations, the TE transport parameters of
monolayer, bilayer, and trilayer tellurium materials were
comprehensively explored and compared. First, our results validate
their thermal stability and determine the structural reliability by
calculating the atomic second-order force constants. The three
abovementioned 2D tellurium materials all have low lattice
thermal conductivity. The lattice thermal conductivity does not
change monotonically with the number of layers. Through analysis
of phonon group velocity and relaxation time, it has been explained
that phonon harmonicity dominates thermal conductivity. Unlike the
phenomenon where the effective mass of holes in bilayer and trilayer
structures is greater than that of electrons, for monolayer structures,
the m*

b of the electrons is higher than that of the holes. This leads to
low carrier mobility, and the σ of the n-type monolayer tellurium
becomes lower than that of the p-type doped system. With the
abovementioned results and S, the relationship between the ZT
values at different temperatures as a function of carrier
concentration is obtained. The maximum ZT value of monolayer,

bilayer, and trilayer tellurium can reach 6.6, 6.3, and 3.8, respectively.
Due to weak phonon transport, high S, and high μ of monolayer/
bilayer tellurium, these exhibit excellent TE properties. Although
trilayer tellurium has low thermal conductivity, the ZT values are
not as high as those of monolayer and bilayer tellurium.
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