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Identifying compound–protein interaction plays a vital role in drug discovery.
Artificial intelligence (AI), especially machine learning (ML) and deep learning (DL)
algorithms, are playing increasingly important roles in compound-protein
interaction (CPI) prediction. However, ML relies on learning from large sample
data. And the CPI for specific target often has a small amount of data available. To
overcome the dilemma, we propose a virtual screeningmodel, in which word2vec
is used as an embedding tool to generate low-dimensional vectors of SMILES of
compounds and amino acid sequences of proteins, and the modified multi-
grained cascade forest based gcForest is used as the classifier. This proposed
method is capable of constructing a model from raw data, adjusting model
complexity according to the scale of datasets, especially for small scale
datasets, and is robust with few hyper-parameters and without over-fitting. We
found that the proposed model is superior to other CPI prediction models and
performs well on the constructed challenging dataset. We finally predicted 2 new
inhibitors for clusters of differentiation 47(CD47) which has few known inhibitors.
The IC50s of enzyme activities of these 2 new small molecular inhibitors targeting
CD47-SIRPα interaction are 3.57 and 4.79 μM respectively. These results fully
demonstrate the competence of this concise but efficient tool for CPI prediction.
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1 Introduction

Drug discovery is a time and resource-consuming process.
About 2.6 billion US dollars is needed for developing a new drug
and 17 years for FDA approval (Mullard, 2014). Accurate prediction
of compound–protein interactions (CPI) may help lead
identification, which plays a vital role in drug discovery. And ML
has quickly penetrated various aspects of drug discovery, including
the successful application in CPI prediction, such as the recently
proposed CPI model called DeepLPI and CoaDTI (Rifaioglu et al.,
2019; Shan et al., 2021; Huang et al., 2022a; Jung et al., 2022; Su et al.,
2022; Wei et al., 2022; Wong et al., 2023; Zheng et al., 2023).

However, there are several obstacles that hinder accurate
predictions of compound-protein interactions. One of these
challenges is the complexity of biological systems.
Compound-protein interactions occur within the context of
intricate cellular pathways and networks. How to represent
these proteins and small molecules for ML is the frist issue
we need to face. The extracted chemical and genomic
information of compounds and proteins, such as the
substructures of compounds, physicochemical and biomedical
properties of proteins, were usually considered as input in ML-
based methods for CPI prediction (Ma et al., 2019; Sachdev and
Gupta, 2019; Tsubaki et al., 2019; Lin et al., 2021; Xu et al., 2019;
Jung et al., 2022). Differently, several ML-based models such as
DeepCPI, DeepConvolutional DTI, GraphDTI, DeepLPI and
CoaDTI enable the process of raw data, in which DeepLPI
and CoaDTI are all well-known end-to-end frames using raw
data of compounds and proteins, such as SMILES of compounds
and amino acid sequence of proteins (Wen et al., 2017; Li et al.,
2019a; Ester, 2019; Huang et al., 2022a; Wei et al., 2022). These
DL-based models have the defects of many hyper-parameters,
which makes the training and theoretical analysis difficult. In
addition, DL-based models are often over-fitting and with lower
accuracy on small-scale datasets, which are obstacles to CPI
predictions (Li et al., 2019b; Lee et al., 2019; Wan et al., 2019; Liu
et al., 2021).

GcForest (Zhou and Feng, 2017) is an ensemble decision tree
learning algorithm with unique features. GcForest can adaptively
determine the model complexity and avoid overfitting, in which 3-
fold cross validation is used in the training process, and the training
stops when the performance of the model is not significantly
improved. GcForest could be trained easily with few hyper-
parameters, which enable the robust and excellent performances
on both large-scale and small-scale datasets. GcForest does not
require fine-tuning of parameters such as learning rate, number
of hidden units or depth of layers as in DL. Instead, it only needs to
set some basic parameters such as number of trees, number of
features and number of classes for each random forest layer (Zhou
and Feng, 2017). While task-specific tuning is carried out for DL,
gcForest outperformed DL with just the same configuration (Zhou
and Feng, 2017). Besides, the training of gcForest is efficient and
robust even with low computing power computers.

In this article, we innovatively proposed the combination of
word2vec (Mikolov et al., 2013) and the modified concise but
efficient gcForest (Zhou and Feng, 2017) classifier as a new CPI
prediction model. As shown in Figure 1, the transformed embedding
vectors of compounds and proteins obtained from word2vec are
used as input to the modified gcForest classifier to predict the CPIs.
Although the most current CPI prediction models all have excellent
performances on the benchmarks, few of them could be taken into
realistic application to find new drugs for a specific protein (Lim
et al., 2021).

Nowadays, new proposed models have to be proved to be useful
through solving experimental problems. In our research, we took the
modified gcForest into realistic application to screen the new
compounds for an anti-tumor immune target, cluster of
differentiation 47 (CD47). CD47 is an immunoglobulin which is
overexpressed in many different tumor cells. Its interaction with
signal-regulatory protein α (SIRPα) can help cancer cells escape
phagocytosis, which is a promising anti-cancer target. Currently
only one small molecular inhibitor has entered the phase of clinical
development (Burgess et al., 2020; Yu et al., 2021; Qu et al., 2022). As
a result, our model predicted 2 compounds that inhibited CD47 and
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SIRPα interaction with IC50 values of 3.57 and 4.79 μM,
respectively. These results fully demonstrate the competence of
the proposed CPI prediction model, especially for targets with
few known drugs.

2 Materials and methods

2.1 Construction and validation of the
proposed modified GcForest CPI prediction
model

2.1.1 Preparation of the benchmark datasets
The performance of gcforest in the face recognition task is

better than that of Convolutional Neural Network (CNN), which
has more obvious advantages in the case of less training data
(Zhou and Feng, 2017). Our research group previously
constructed a 2D image recognition model based on CNN,
which predicted two active CDK4 inhibitors (Xu et al., 2018),
namely, indocyanine green and candesartan, with IC50 values of
2.0 and 5.2 μM, respectively, this model used 2D images of
structures of drugs as input. In order to evaluate the
performance of gcforest with less training data, we compared
the performance of gcforest with CNN based CDK4 drug
screening model, we used the same dataset of the CNN based
CDK4 drug screening model (Xu et al., 2018), which contains a
total amount of 1,040 active and inactive 2D images of structures
of drugs. It is worth noting that the CNN based CDK4 inhibitor
screening model increased the amount of training data by
rotating the images of inactive compounds. And we deleted
the rotated compound images, remaining a total amount of
777 active and inactive 2D images of structures of drugs. The
code of CNN based CDK4 drug screening model include the
datasets can be obtained from Github (https://github.com/Xyqii/
intuitive-drug).

Most datasets used in the CPI prediction methods contain
positive data and randomly generated negative data, while these

randomly generated negative data may contain true positive data.
Thus, it is vital to construct reliable true negative CPI datasets
(Liu et al., 2015). We downloaded the datasets provided by Liu
(Liu et al., 2015) who constructed reliable true negative CPI
datasets. Liu constructed human and C. elegans datasets, which
are based on the assumption that the proteins dissimilar to any
known/predicted target of a given compound are not much likely
to be targeted by the compound and vice versa (Liu et al., 2015).
Positive samples of the datasets were retrieved from two
manually curated databases: DrugBank 4.1 (Wishart et al.,
2008) and Matador (Gunther et al., 2008). The Tanimoto
coefficient was used to measure the similarity between
compounds and proteins, and the negative samples that have a
low similarity score with any positive sample were selected (Liu
et al., 2015). The ratio of positive and negative samples was 1:1.
We deleted duplications and drugs whose length of the SMILES
string was less than 3 (to train word2vec). In the end, the human
dataset contains 5,995 interactions between 2,724 unique
compounds and 2,001 unique proteins; the C. elegans dataset
contains 6,527 interactions between 1,763 unique compounds
and 1869 unique proteins. We used these two datasets, and 80%
of each was used as the training set and 20% as the test set.

To further evaluate the performance of our model, we
constructed a large-scale dataset, and we randomly selected
20% as the training set and 80% as the test set, which is more
challenging and more in line with the real virtual screening scene
where the number of known active molecules towards a specific
target is small. We used ChEMBL data retrieved from BindingDB
(Liu et al., 2007). BindingDB is a public and available database
that contains measured binding affinity data and is focused on
CPIs. We deleted duplications and drugs whose length of the
SMILES string was less than 3. We then constructed the positive
and negative datasets using the standard that the value of IC50 or
Ki was less than or equal to 1 µM was filtered as positive data, and
the value of IC50 or Ki of that was greater than or equal to 30 µM
was filtered as negative data. We set the ratio of the positive data
with the negative data as 1:3. Finally, the dataset we constructed

FIGURE 1
A flow-chart of the data preparation process for our proposed
model.

FIGURE 2
T-SNE to visualize the distribution of the constructed challenging
dataset.
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had 29,320 positive data and 87,960 negative data, in which
3,420 unique proteins and 80,931 unique small molecules are
included. As shown in Figure 2, T-SNE was used to visualize the
distribution of the whole challenging dataset, each point
represents a pair of compound and protein, the orange points
represent the dataset for training, and the blue points represent
the dataset for test. We can see that the training and test sets have
a broad and similar distribution and that the random splitting is
rational.

Besides the old and classic humans and C. elegans datasets,
we also made our model compared with other state of art models
using the latest benchmark datasets, BindingDB. We
downloaded all the CPI data in the dataset version 2022-12-
01. The initial dataset has 2,627,702 CPI measurements,
1,129,664 compounds and 8,946 targets. We conducted the
following pretreatment to achieve more convincing data.
First, only the CPI data has Kd value was retained. Kd is a
direct measure of the binding affinity between a compound and a
protein, which reflects the strength of their interaction. Other
measures, such as IC50, EC50, or Ki, may be affected by various
factors, such as the assay conditions, the protocol, the sources of

enzymes, the substrate concentration, or the presence of other
molecules. Second, the CPI value containing “<” or “>” was
deleted. Third, Kd values less or equal to 1,000 nM were filtered
as positive data, and larger than 1,000 nM as negative data. Our
preprocessed dataset has vigorous and convincing standards
similar to DeepLPI (Wei et al., 2022). We set the ratio of the
positive data with the negative data as 1:4. The processed
datasets were randomly shuffled and 80% of which was
selected as training data, the remaining 20% as test data.
Finally, there are 39,563 pair CPIs containing 15,950 drugs
and 1,707 proteins in the whole processed benchmark dataset.
In the training dataset, there are 31,648 CPIs containing
13,541 drugs and 1,620 proteins. And in the test dataset,
there are 7,915 CPIs containing 4,555 drugs and
1,162 proteins. As shown in Figure 3, T-SNE was used to
visualize the distribution of the constructed latest benchmark
dataset, each point represent a pair of compound and protein,
the blue points represent the dataset for training, and the orange
points represent the dataset for test. We can see that the training
and test sets have a broad and similar distribution and that the
random splitting is rational.

FIGURE 3
T-SNE to visualize the distribution of the constructed latest benchmark dataset.

TABLE 1 Construction information of the benchmark datasets.

Human C.elegans The constructed challenging dataset The constructed latest BindingDB dataset

Number of compounds 2,724 1,763 80,931 15,950

Number of proteins 2,001 1,869 3,420 1,707

Number of positive CPIs 2,997 3,263 29,320 26,209

Number of negative CPIs 2,997 3,263 87,960 13,354
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The above benchmark datasets were collected for model
construction and validation, construction information of the
above datasets is summarized in Table 1.

2.1.2 Generation of compound-protein feature
vectors

As shown in Figure 1, the transformed embedding vectors of
compounds and proteins obtained separately from word2vec
(Mikolov et al., 2013) are then combined to be used as input to

the modified gcForest classifier to predict the CPIs. In particular, we
used the skip-gram method of negative sampling to train the word
embedding model and learn the context relationship between the
words in the sentences. In our study, the dataset used to train
word2vec is all the 80,931 pairs of CPI data in the challenging
dataset. We followed the method of Wan’s (Wan et al., 2019) to
parse SMILES and protein sequences into words of length 3. The
SMILES of drugs and amino acid sequence of the targets were
regarded as “sentences”, and every three non-overlapping amino
acids and SMILES were regarded as a “word” (Wan et al., 2019). We
followed the principle of commonly trained word2vec to select the
hyper-parameters of skip-gram (Asgari and Mofrad, 2015). More
specifically, the size of the context window is set to b = 12, the
number of negative samples is set to k = 15, and the embedded
dimension is set to d = 32. This dimension is far less than 100, which
is the most commonly used embedded dimension in previous
research (Wan et al., 2019), thus effectively reducing the
dimensions of the input data for the same sample. We have
trained word2vec separately on the SMILES of compounds and
the amino acid sequences of proteins, and obtained the low-
dimensional vectors of them. Then, we have combined the
vectors of compounds and proteins to be used as input to the
modified gcForest classifier to predict the CPIs. We used a simple
merging method to combine the low-dimensional vectors of
proteins and compounds obtained separately from word2vec.
Specifically, we have concatenated the 32-dimensional vector of
the compound and the 32-dimensional vector of the protein,
resulting in a 64-dimensional vector that is used as input to the
classifier.

One of the advantages of using word2vec is that it is a simple and
fast method that can generate features of proteins and ligands from
their sequences or SMILES representations, without requiring any
additional information or preprocessing. Word2vec can capture the
semantic similarity and the local context of the amino acids in the
sequences or SMILES representations, and can produce fixed-length
vector features that are suitable for downstream machine learning
tasks. Moreover, word2vec is a well-established and widely used
method that has been proven to be effective in various domains, such
as natural language processing, computer vision, and bioinformatics.
However, one of the disadvantages of using word2vec is that it may
not be able to capture the complex and high-dimensional features of
compounds and proteins that are relevant for CPI prediction, such
as their 3D structures, physicochemical properties, functional
domains, binding sites, interactions, etc., which may affect their
binding affinity and specificity, but word2vec just learn the semantic
similarity and the local context of raw data of the amino acids in the
sequences or SMILES without further process, which make it easily
interpretable or explainable. and Yu Fang Zhang (Zhang et al., 2019)
has explained the biochemical implications of word2vec generated
features, that is the proteins and compounds with the similar
sequences which indicate similar biochemical implications are
close to each other. Therefore, a possible future direction for
improving our method is to use more advanced language models
that can learn compound and protein features, such as ESM (Arndt
et al., 2023), ProGen (Madani et al., 2020) ChemBERTa-2 (Ahmad
et al., 2022) CGR (Huang et al., 2022b) AminoBERT (Chowdhury
et al., 2022) and MMseqs2 (Steinegger and Söding, 2017). These
language models are based on deep neural networks, such as

FIGURE 4
The architecture of the modified gcForest and its training
process.
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TABLE 2 Information of the 2 known most active CD47 small molecular inhibitors.

Structure Activity (nM) Source

771 BindingDB ID: CHEMBL3946082

62.5 Cortellis ID: 725,899

TABLE 3 Performances of our proposed model and other ML models on human dataset.

Metrics k-NN RF L2 SVM Tsubaki’s Our proposed model

AUC 0.860 0.940 0.911 0.910 0.970 0.990

Precision 0.798 0.861 0.891 0.966 0.923 0.965

Recall 0.927 0.897 0.913 0.950 0.918 0.932

TABLE 4 Performances of our proposed model and other ML models on C.elegans dataset.

Metrics k-NN RF L2 SVM Tsubaki’s Our proposed model

AUC 0.858 0.902 0.892 0.894 0.978 0.994

Precision 0.801 0.821 0.890 0.785 0.938 0.960

Recall 0.827 0.844 0.877 0.818 0.929 0.962

FIGURE 5
Performances of our proposed model and the specialized CPI prediction models and Tsubaki’s model on Human Dataset.
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transformers or recurrent neural networks that can learn rich and
contextualized features of compounds and proteins from their
sequences or SMILES representations. These language models can
also leverage the pre-training and fine-tuning techniques to transfer
the knowledge learned from large-scale unlabeled data to specific
CPI prediction tasks. Moreover, these language models can handle
the large vocabulary size and the sparsity of the data in CPI
prediction, and can also adapt to the new or unseen compounds
or proteins by using dynamic or self-attention mechanisms. These
language models may be able to achieve better performance and
robustness than word2vec in CPI prediction. However, using these
advanced language models may also have some challenges and
drawbacks. For example, these language models may require
more computational resources and time to train and evaluate
than word2vec. These language models may also suffer from

overfitting or underfitting problems due to the complexity of
their architectures or the heterogeneity of their data sources.
Moreover, these language models may not be easily interpretable
or explainable, which may hinder their practical use in drug
discovery.

2.1.3 Architecture and training process of the
modified GcForest

GcForest is robust to hyper-parameter adjustments. Even when
working with diverse data from various domains, it can achieve
outstanding performance with the same default setting. The 3-fold
cross validation is employed to make it reliable and consistent across
various data splits without adjusting the random seeds. And
gcForest specifically divides the training set into two components,
the growing set and the estimating set. The growing set is used to
grow the cascade and the estimating set to estimate performance.
The cascade’s development stops and the number of levels is
acquired if adding a new level does not significantly increase the
performance. And gcForest uses 20% of the training data for
estimating set and 80% for growing set (Zhou and Feng, 2017).

There are two stages in the training process of multi-grained
cascade forest model: Multi-grained scanning and cascade forest.
The multi-grained scanning was used to extract feature vectors
through different sliding windows, and the cascade forest was
applied to obtain the prediction results through multiple cascades
forest. And the following features enable gcForest to avoid
overfitting: gcForest uses Multi-Grained Scanning to split data,
which can increase the diversity and randomness of data, and the
Cascade Structure is used to increase the complexity of the model
layer by layer, and performs cross validation at each layer to decide

FIGURE 6
Performances of our proposed model and the specialized CPI prediction models and Tsubaki’s model on C. elegans dataset.

FIGURE 7
ROC curve of our proposed model on the constructed
challenging dataset.

TABLE 5 Performances of our proposed model on the constructed latest
BidningDB benchmark dataset.

Accuracy (%) AUC

Training set 95.50 0.9629

Test set 79.71 0.8685
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TABLE 6 Information of the 30 hit small molecules and the preliminary screening results.

ID Structure Purity Mol weight Preliminary activity

SWY-AF-060 >95% 211.28 >100 μM

SWY-AG-052 90% 478.51 >100 μM

SWY-AG-115 90% 478.59 >100 μM

SWY-AG-752 90% 438.88 >100 μM

SWY-AG-194 >90% 350.37 >100 μM

SWY-AG-025 95% 349.73 >100 μM

SWY-AG-217 95% 322.23 >100 μM

SWY-AG-020 >95% 292.41 >100 μM

(Continued on following page)
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TABLE 6 (Continued) Information of the 30 hit small molecules and the preliminary screening results.

ID Structure Purity Mol weight Preliminary activity

SWY-AG-101 >95% 381.41 >100 μM

SWY-AG-660 >95% 412.51 >100 μM

SWY-AG-490 90% 519.67 >100 μM

SWY-AH-010 95% 429.29 >100 μM

SWY-AI-116 >95% 263.68 >100 μM

SWY-AF-282 95% 368.39 >100 μM

SWY-AJ-008 90% 501.92 >100 μM

(Continued on following page)
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TABLE 6 (Continued) Information of the 30 hit small molecules and the preliminary screening results.

ID Structure Purity Mol weight Preliminary activity

SWY-AK-309 >95% 332.42 <10 μM

SWY-AK-653 90% 222.27 >100 μM

SWY-AK-624 95% 362.47 >100 μM

SWY-AK-850 90% 497.57 >100 μM

SWY-AK-691 95% 554.58 >100 μM

SWY-AM-335 >95% 399.56 >100 μM

SWY-AM-262 >95% 398.92 >100 μM

(Continued on following page)
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TABLE 6 (Continued) Information of the 30 hit small molecules and the preliminary screening results.

ID Structure Purity Mol weight Preliminary activity

SWY-AM-009 >95% 482.25 >100 μM

SWY-AM-598 >95% 329.81 <10 μM

SWY-AN-658 >90% 331.35 >100 μM

SWY-AN-823 95% 191.27 >100 μM

SWY-AN-001 90% 630.58 >100 μM

SWY-AO-102 >95% 494.54 >100 μM

(Continued on following page)
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whether to continue adding layers. GcForest uses Random Forest as
a basic classifier, generating multiple random forests at each layer
and combining their results, which can improve the robustness and
accuracy of the model (Zhou and Feng, 2017).

We modified the parameters and the architecture of gcForest
(Zhou and Feng, 2017). The modifications include the
parameters to adapt to the input of low-dimensional
embedding vectors generated by word2vec, specifically, the
dimensions of the raw data, the dimensions of the sliding
windows, the categories of the classifiers used inside as well as
the added final Random Forest classifier layer to improve
performance on top of the initial gcForest. The original input
dimension of the combined feature vectors obtained by word2vec
is 64, and 3 different sizes of sliding windows are used for multi-
grained scanning, 4, 8 and 16 respectively. The multi-grand
scanning and the cascade forest components both utilized two
kinds of classifiers, XGB classifier and random forest classifier,

respectively. In order to further improve the performance, we
added a random forest classifier on top of the above architecture,
and the above transformed data combined with the original
vectors obtained by word2vec were used to train the final
random forest classifier on top to obtain the final predictions
of CPIs. The architecture of the modified gcForest and its training
process are shown in Figure 4.

2.1.4 Metrics for model evaluation
We used accuracy (ACC), precision, AUC (area under the ROC

curve), sensitivity (SE) and specificity (SP or recall) to evaluate and
compare the performance of our model with other CPI models. The
area under the receiver operating curve (AUC) is calculated by
plotting the true positive rate versus the false positive rate for varying
decision thresholds. The closer the value of AUC to 1, indicating the
better performance of the model. The metrics above are calculated
using the formulas as follows:

TABLE 6 (Continued) Information of the 30 hit small molecules and the preliminary screening results.

ID Structure Purity Mol weight Preliminary activity

SWY-AO-756 90% 542.43 >100 μM

SWY-AP-110 >95% 434.45 >100 μM

FIGURE 8
IC50s of the 2 most active molecules in the preliminary screening assay.
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Accuracy � TP + TN
TP + FP + TN + FN

Sensitivity � TP
TP + FN

Specif icity � TN
TN + FP

Precision � TP
TP + FP( )

TP: number of true positives, FN: number of false negatives, TN:
number of true negatives, FP: number of false positives.

2.2 Application to screen new
CD47 inhibitors

2.2.1 Preparation of datasets of known CD47 small
molecular inhibitors

We retrieved 68 CD47 small molecule inhibitors from Reaxys (Levy,
2014), Cortellis (Mulvihill, 2012) and BindingDB (Liu et al., 2007),
among which, 2 CD47 small molecule inhibitors have activities (IC50 or
binding affinity) of less than 1 µM. The activities and structures of the
2 known most active small molecule inhibitors are shown in Table 2.

FIGURE 9
Interactions of the 2 known most active small molecular inhibitors with CD47 binding pocket.

FIGURE 10
Interactions of the predicted 2 active inhibitors with CD47 binding pocket.
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2.2.2 Preparation of the commercial library for
virtual screening

We downloaded the available small-molecule compounds lists
from Specs, a commercial library (https://www.specs.net/), and after
preprocessing, 309,246 small molecules were obtained for virtual
screening.

2.2.3 Models to screen new CD47 small molecular
inhibitors, visualization of compound-protein
interactions and visualization of the similarities
between the screened inhibitors and the known
inhibitors

We trained the proposed models with 2 different datasets to
screen the commercial library individually. The first model was
trained with the entire challenging dataset, and the second model
was trained with the entire datasets of the 68 known CD47 small
molecular inhibitors. The second model was only trained with the
known CD47 small molecular inhibitors without the CD47 protein
information, since the protein sequences are the same in the process
of training and screening new CD47 inhibitors. Therefore, we think
that the protein information is redundant and irrelevant for the
second model, which is only trained with the known CD47 small

molecular inhibitors. The model trained on the large scale dataset,
namely, the challenging dataset, which contains a huge number of
different compound-protein interactions, can capture the general
features and patterns of molecular recognition and binding. This
model can provide a broad and unbiased screening of potential
inhibitors for our target protein. The second model aims to learn the
specific characteristics and preferences of the ligands that can bind
to CD47, rather than the general features and patterns of molecular
recognition and binding. By using both models, we can combine the
advantages of each model and obtain a more comprehensive and
reliable screening result.

The 3D structure of the CD47 protein was obtained from the
RCSB database, ID: 2JJS. At present, there is no available crystal
structure of CD47 with its active small molecule ligand. We used
Discovery Studio 2016 to dock the known inhibitors and the
predicted inhibitors for CD47 and visualize the compound-
protein interactions.

We used Find Similar Molecules by Numeric Properties
function in Discovery studio 2016 to visualize the similarities
between the screened two active CD47 inhibitors with the
68 known inhibitors. The Find Similar Molecules by Numeric
Properties protocol finds ligands that have similar properties

FIGURE 11
Visualization of the similarities between the screened inhibitors and the known inhibitors.
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compared to the reference ligands. A distance is measured between
the properties of each input ligand and the properties of the
reference ligands. The ligands that have the smallest distance are
considered the most similar. When there are two or more reference
ligands, the distance is measured as the distance to the nearest
reference. The distance is computed as a Euclidean distance.

2.2.4 Biochemical evaluation of the hit molecules
Shanghai Medicilon Biomedical Co., Ltd (https://www.

medicilon.com.cn/) is a professional preclinical comprehensive
research and development service CRO with a history of 19 years,
providing comprehensive one-stop new drug research and
development services that meet domestic and international
application standards for pharmaceutical enterprises and
research institutions worldwide. It is listed on the Shanghai
Stock Exchange Science and Technology Innovation Board
with the stock code of 6882021. We entrusted Shanghai
Mediciloniomedical Co., Ltd. to conduct in vitro assay for hit
molecules using the methods provided by the CD47/SIRPα
binding kit (https://www.cisbio.cn/human-cd47-sirp-alpha-
biochemical-binding-kit-44631).

The HTRF CD47/SIRPα binding assay was designed to measure
the interaction between CD47 and SIRP alpha. Utilizing HTRF
(homogeneous time-resolved fluorescence) technology, the assay
enables simple and rapid characterization of compound and
antibody blockers in a high throughput format. The interaction
between CD47 and SIRP alpha was detected by using anti-Tag1
labelled with europium (HTRF donor) and anti-Tag2 labelled with
XL665 (HTRF acceptor). When the donor and acceptor antibodies
are brought into close proximity due to CD47 and SIRP alpha
binding, excitation of the donor antibody triggers fluorescence
resonance energy transfer (FRET) towards the acceptor antibody,
which in turn emits specifically at 665 nm. This specific signal is
directly proportional to the extent of CD47/SIRP alpha interaction.
Thus, compounds or antibodies blocking the CD47/SIRP alpha
interaction will cause a reduction in the HTRF signal.

We consulted the database and related literature to determine
the preliminary screening concentrations. The maximum IC50 value
of the active CD47 small molecular inhibitor is 50 μM, and the
maximum measured concentration is 100 µM. Therefore, we set the
two preliminary screening concentrations, which were 10 and
100 μM. The in vitro assay of the hit molecules was evaluated
under the protocol of the CD47/SIRP alpha binding kits (https://
www.cisbio.cn/human-cd47-sirp-alpha-biochemical-binding-
kit44631). For every concentration point of every molecule, a
repeated point was conducted.

The ratio was calculated according to the following equation:
emission ratio (ER) = Em665/Em615. Then, the ER of the
compound was recorded as ER compound, the ER of the vehicle
control was recorded as ER vehicle, and the ER of the blank control
was recorded as ER blank. The inhibition rates at the two
concentration points (10 μM and 100 μM) were calculated to
indicate their ability to inhibit CD47-SIRPα binding. The
inhibition rate was calculated by the following formula:

Inhibition Rate � ER vehicle – ER compound( )/ ER vehicle
−ER blank

( ) × 100%

3 Results and discussion

3.1 Performance of gcforest with less
training data

The architecture and training process of gcforest for CDK4 drug
screening can refer to the architecture and training process of gcforest
for face recognition task (Zhou and Feng, 2017). We adjusted the
dimensions of multi-grand scanning windows, specifically, the original
input dimension of the raw feature vectors of images of drug structures
is 28*28, and 3 window sizes are used for multi-grained scanning, 7*7,
10*10 and 13*13 respectively.We use accuracy (ACC) and the screened
active drugs to compare the performace of gcforest with CNN based
CDK4 drug screening model (Xu et al., 2018). The results showed that
the drugs predicted by gcforest include indocyanine green, and the
accuracy was 91.35% (the most active CDK4 inhibitor predicted by
CNN was indocyanine green, and the accuracy was 91.92%). We
deleted the rotated compound images in the training set while
gcforst could still screen out indocyanine green, and the accuracy
was 89.43%. These results can fully prove the competence of
gcforest in the case of less training data.

3.2 Performances on the benchmark
datasets

We compared the performance of the proposed model with
other CPI prediction models on the human and C. elegans datasets
constructed above. The evaluation metrics are AUC, precision and
recall. The performances of all the CPI prediction models except our
proposed model are obtained from the literature (Tsubaki et al.,
2019). The ML based CPI prediction models’ environments in the
literature are as follows: k-NN and RF were run by Weka 3.7, L2 was
run by Liblinear 1.94, and the SVM was run by libsvm 3.17 (Tsubaki
et al., 2019). Our model was run in the Ubuntu system and python
3.7 environment. And other ML CPI prediction models used the
manual extracted features, such as the PubChem fingerprint and
Pfam domain (Tsubaki et al., 2019). As shown in Tables 3, 4, on the
human dataset, our model achieved significantly better performance
compared with other models: k-NN, random forest (RF), logistic-2
(L2), SVM and Tsubaki’s model, while the precision and recall were
only slightly less than that of the SVM. On the C. elegans dataset, our
model is significantly superior to other methods on all evaluation
metrics. We also compared the proposed method with other existing
methods specifically for CPI prediction, i.e., BLM (Bleakley and
Yamanishi, 2009), RLS-avg and RLS-Kron classifiers with GIP
kernel (Laarhoven et al., 2011), KBMF2K classifier and KBMF2K
regression (Gonen, 2012), which were running on the same
experimental settings as Liu’s (Liu et al., 2015). Figures 5, 6 show
the AUC scores on the human and C. elegans datasets. As can be
seen, on both humans and C. elegans datasets, our model is superior
all other methods. The above results fully demonstrated that the
proposed method based on multi-grained cascade forest classifier
and word2vec embedding tool to construct the model from raw data
has great advantages compared with other CPI prediction models.

In addition, the accuracy on the challenging dataset constructed
above is 85.21%, and the AUC is 0.8865, as shown in Figure 7. We
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can see that our model can still perform well on the challenging
dataset where the percentage of the training set is only 20% to mimic
the real scene that the number of the known drugs for a specific
target is small.

Our proposed model achieved satisfying performances on both
training and test datasets of the constructed latest bindingDB
dataset. Similar to the performance of the recent popular end-to-
end learning frame DeepLPI (Wei et al., 2022), which achieved AUC
of 0.95 and 0.89 respectively for the training and validation on the
bindingDB dataset, the performance on the validation set is not
perfect but real enough, DeepLPI (Wei et al., 2022) also used
SMILES of compounds and amino acid sequences of proteins as
input. The performances of our model on the latest BindingDB
dataset are summarized in Table 5. These results fully demonstrate
the effectiveness and robustness of our model.

3.3 Application to screen new
CD47 inhibitors

We used the proposed models trained with 2 different
datasets mentioned above to screen the commercial library.
The inputs of the two screening models are the low-
dimensional vectors of SMILES of molecules of specs and
amino acid sequences of CD47 generated by word2vec, which
are in the same form as the inputs of the corresponding training
models. The only difference is that the model trained with the
whole challenging dataset takes both SMILES and amino acid
sequences as inputs, while the model trained with the known
CD47 inhibitors takes only SMILES as inputs. The outputs of the
two screening models are the predicted probabilities of being
positive inhibitors for each molecule in the commercial library.
The higher the probability, the more likely the molecule is to
inhibit CD47. We selected 30 small-molecule compounds by
applying a probability threshold of 0.515 to both models and
choosing the molecules that met this criterion in both models.
This means that the selected molecules have a high probability of
being positive inhibitors for CD47 according to both models. A
higher threshold would result in fewer hits, but a higher
confidence, while a lower threshold would result in more hits,
but a lower confidence. By choosing a threshold of 0.515, the
screening model aimed to balance these two factors and select an
appropriate amount of hit molecules for further validation.

The information of the 30 hit small molecules and the
preliminary screening assay results are shown in Table 6. SWY-
AK-309 and SWY-AM-598 showed a strong ability to inhibit CD47/
SIRP alpha binding with activity less than 10 μM.

The IC50 values of the 2 most active molecules in the preliminary
screening assay are shown in Figure 8, which are SWY-AK-309 and
SWY-AM-598 with IC50s of 3.57 and 4.79 μM, respectively. These
results fully demonstrate the efficiency of our proposed CPI
prediction model.

The 2 small molecules with the highest known CD47 inhibitory
activity do not have much structural similarity, but the screened
2 active inhibitors are similar to one of the known active inhibitors,
both containing aromatic rings and amide segments. We used
docking to visualize the compound-protein interactions and find
similarities between the known active inhibitors and the predicted

inhibitors. We found that the 2 known most active CD47 inhibitors
in Table 2 all interact with the binding pocket with two key residues
in CD47, which are LYS81 and ASP77, respectively, as shown in
Figure 9. We also docked the predicted 2 active molecules into
CD47 pocket, as shown in Figure 10, SWY-AK-309 and SWY-AM-
598 show similar interactions, in addition to the key residue
LYS81 mentioned above in the analysis of the 2 known most
active inhibitor, they all interact with residues like SER65,
MET82, ASP83, which indicates the importance of these residues
and may be useful clues for future molecule design. As shown in
Figure 11 to visualize the similarities between the screened two active
CD47 inhibitors with the 68 known inhibitors. The red points are
the screened inhibitors and the blue point are the known inhibitors,
the X-axis represents the ALogP, the Y-axis represents the Num_
AromaticRings and the Z-axis represents the Num_H_Acceptors.
We can see that the red points representing SWY-AK-309 and SWY-
AM-598 are all close to the known inhibitors in the 3D space formed
by the above 3 different axis properties, and SWY-AK-309 is closer
with the known inhibitors than SWY-AM-598, which may explain
its better activity. These results suggest that our models have learned
some important features of CD47 inhibition and can screen new
inhibitors that have similar properties. We also used SwissADME
(Daina et al., 2017) to evaluate the drug-likeness of the predicted two
new inhibitors and we find that the Lipinski, Ghose, Veber, Egan
features all passed the standards without violation.

4 Conclusion

In this research, we suggested a unique CPI prediction model
that benefits of end-to-end learning and ensemble learning. We
utilized word2vec to generate low-dimensional vectors of SMILES
of drugs and amino acid sequences of targets and a multi-grained
cascade forest as the classifier to predict CPIs, enabling the model
construction from raw data. Furthermore, our model can
adaptively determine the complexity of the architecture
according to the scale of dataset. Therefore, the model can
perform well on small-scale datasets without many hyper-
parameters and over-fitting compared with DL-based models.
The suggested model outperformed the benchmark datasets,
predicting two new small molecular inhibitors for CD47 which
has few known inhibitors. We demonstrated that our suggested
model is a succinct but efficient tool for CPI prediction through a
series of optimization, validation and practical application in a
specific target CD47. Our research group has applied this model to
other targets and demonstrated good generalization ability (to be
described in another article). Our paper focuses on the
computational prediction and screening of CD47 inhibitors,
which is a preliminary step in drug discovery. The toxicity of
the discovered CD47 inhibitors in human cells is a complex and
important issue that requires further experimental validation and
evaluation.

In a word, our proposed model has few hyper-parameters and is
competent on any scale datasets without over-fitting, especially for
the specific target with few known drugs. Therefore, we believe that
our model can overcome some of CPI’s challenges, serve as a concise
but efficient tool to facilitate virtual screening, and be greatly
efficient in more drug discovery scenarios.
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