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The global cost-benefit analysis of pesticide use during the last 30 years has been
characterized by a significant increase during the period from 1990 to
2007 followed by a decline. This observation can be attributed to several
factors including, but not limited to, pest resistance, lack of novelty with
respect to modes of action or classes of chemistry, and regulatory action. Due
to current and projected increases of the global population, it is evident that the
demand for food, and consequently, the usage of pesticides to improve yields will
increase. Addressing these challenges and needs while promoting new crop
protection agents through an increasingly stringent regulatory landscape
requires the development and integration of infrastructures for innovative,
cost- and time-effective discovery and development of novel and sustainable
molecules. Significant advances in artificial intelligence (AI) and cheminformatics
over the last two decades have improved the decision-making power of research
scientists in the discovery of bioactivemolecules. AI- and cheminformatics-driven
molecule discovery offers the opportunity of moving experiments from the
greenhouse to a virtual environment where thousands to billions of molecules
can be investigated at a rapid pace, providing unbiased hypothesis for lead
generation, optimization, and effective suggestions for compound synthesis
and testing. To date, this is illustrated to a far lesser extent in the publicly
available agrochemical research literature compared to drug discovery. In this
review, we provide an overview of the crop protection discovery pipeline and how
traditional, cheminformatics, and AI technologies can help to address the needs
and challenges of agrochemical discovery towards rapidly developing novel and
more sustainable products.
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1 Introduction

The development and application of computational tools has
accelerated the pace of research and product development in diverse
domains. Considering the impact computation has created, it was no
exaggeration when it was stated that ‘behind every great scientific
finding in the modern age, from astronomy to zoology, there is a
computer’ (Perkel, 2021). Following decades of impressive growth,
both pharmaceutical and agricultural industries have faced several
challenges in bringing new products to market. Elevated costs (W.
Zhang, 2018), increased regulatory requirements, and the need for
differentiated products with novel modes of action (Sparks et al.,
2018) are requiring unprecedented research and development
investments to account for attrition in the pipeline and success
in developing promising products (McDougall, 2016; Wouters et al.,
2020).

Agrochemical product development, while having some
parallels to pharmaceutical industry, has its own set of challenges
that include addressing resistance development in pests (Siegwart
et al., 2015; Hawkins et al., 2019), identifying sustainable chemistries
(Whiteker, 2019), striking a balance with available genetically
modified solutions, and competing with alternative and emerging
technologies (Nishimoto, 2019). The data explosion and significant
developments in data analytics that occurred throughout recent
decades have provided means to address these challenges. In fact,
this has further motivated the creation of newer, faster, and more
scalable computational methods and tools for data generation,
analysis, and hypothesis generation with the potential of
decreasing the cost and time requirements for research and
development of bioactive molecules.

Cheminformatics, also referred to as chemoinformatics, is the
application of computer and informatics technologies to chemistry
and has revolutionized the understanding of chemistry by
improving the speed of development of novel products (Engel,
2006). It is a multidisciplinary field that employs tools and
learnings from chemistry, biology, biochemistry, mathematics,
statistics, and a host of other fields. Although the specific term
cheminformatics has been in circulation for a little over two decades,
its foundations can be traced back to the middle of last century when
the conversion of chemical literature and mass spectra from print to
electronic formats was initiated, database search systems were
developed, and the widely used substructure matching algorithm
came into existence (W. L. Chen, 2006; Ray and Kirsch, 1957). These
seminal advances were followed by notable progress in subsequent
decades that includes the development of chemical database retrieval
systems and AI-based expert systems in the 1960s, creation of major
chemical databases and development of binary fingerprints for
substructure and similarity searches in the 1980s, introduction of
new structural representation formats such as the Simplified
Molecular-Input-Line-Entry System (SMILES) in the 1980s
(Weininger, 1988) and the IUPAC International Chemical
Identifier in the 2000s (Goodman et al., 2021), and the
development of the first Machine Learning (ML) models to
predict activity and physical properties in the 1990s (W. L. Chen,
2006). A key aspect of computational modeling that became a vital
part of modern cheminformatics was the correlation of molecular
structures with their biological function, which came to be known as
Quantitative Structure-Activity Relationship (QSAR) (W. L. Chen,

2006). While linear models, partial least squares (PLS), and related
traditional mathematical techniques enabled initial successes in
QSAR modeling, the use of artificial neural networks (ANNs) for
QSAR studies, first reported in 1990, was in prominence for several
years until the onset of Random Forest and Support Vector Machine
(SVM) approaches (Aoyama et al., 1990). The revolutionary
successes of deep neural network (DNN) architectures in imaging
(Baskin et al., 2016) brought about a renaissance of neural network
architectures in a host of new and emerging tools for almost all steps
in the discovery and development pipeline in both pharma and
agricultural sectors since the mid-2010s. These include transformer-
based ANNs for accurate conversion of chemical notations and the
prediction of physicochemical properties, generative adversarial
networks (GANs) for exploring chemical space as well as
optimizing the functionality of known compounds, and deep
learning (DL) and generative methods for intelligent navigation
of small molecule space (Lo et al., 2019; Kell et al., 2020; Blanchard
et al., 2021; Krasnov et al., 2021).

Several excellent reviews exist that describe the role of
cheminformatics in drug discovery (Begam and Satheesh Kumar
2012; Lo et al., 2018; Lo et al., 2019; Chen and Kirchmair, 2020;
Martinez-Mayorga et al., 2020). The motivation behind this article is
to provide such a review for agrochemical discovery and
development and to highlight how cheminformatics and AI tools
are impacting the efficiency and speed of this process and in
realizing the goals of developing sustainable and environmentally
friendly products.

2 The crop protection discovery
pipeline

The value of cheminformatics has been demonstrated in all
stages of the pipeline used for the discovery of new crop protection
active ingredients. In this review, we will refer to the crop protection
pipeline (See Figure 1) as hit → active → lead generation → lead
optimization as outlined by Loso et al. (Loso et al., 2017). Briefly, a
‘hit’ is defined as a compound that passes an activity threshold in the
earliest tests (typically high-throughput screening) while an ‘active’
is a synthetically actionable compound with activity against target
species that makes it a reasonable starting point for further
exploration. A ‘lead’ molecule has an activity profile and novelty
that warrant significant investment. Each stage of the pipeline has
unique challenges that have the potential to be partially or entirely
addressed with cheminformatics technology.

There are many approaches to begin the search for new hits to
feed into the pipeline (Lamberth et al., 2013). Some examples
include retrospective searches through databases for hints of
activity from historical assays, known target site binders from the
pharma literature, genome searches for cross-species target sites,
pesticidal natural products (Lorsbach et al., 2019; Meyer et al., 2021;
Sparks et al., 2021), novel fragments (Zhu et al., 2011), and
competition inspired hit generation (Lahm et al., 2007). The
success of any of these approaches hinges on the ability to
quickly and accurately search across multiple chemical structure
databases of millions of structures (company databases and
literature) to billions or more in the case of virtual databases
such as Enamine’s REAL offerings (Grygorenko et al., 2020).
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These search results should be easily narrowed down to those
compounds that are predicted to not only have activity against
target pests, but also have ag-like physicochemical properties (Zhang
et al., 2018). It is also desirable to limit screening decks to diverse but
relevant subsets, that ideally are small so they can be built upon in
subsequent optimizations.

Once a hit has been identified, the advancement to an active
typically involves broad exploration of nearby chemical space,
Structure-Activity Relationship (SAR) exploration, and scaffold
hops with testing to define the general areas of activity (e.g.:
lepidopterans vs. coleopterans, broadleaf vs. grasses, ascomycetes
vs. basidiomycetes, etc.). Compound sourcing at this stage is similar
to hit generation such that compounds available within the company
compound library, from commercial vendors, and from direct
synthesis are all utilized. Broadly trained predictive models are
generally still relevant, as the chemical space in which active
generation takes place is still large and there are insufficient data
points to create a meaningful active-specific predictive model.

At the active-to-lead stage of the pipeline, the SAR exploration
becomes narrower, however, there is still significant probing of
available chemical space. Typically, from this point forward all
additional molecules are custom prepared, as commercial vendor
chemical space is exhausted. It is at this point that there are usually
enough molecules tested to generate area-specific predictive models.
Physical property guidance becomes even more important. Initial
work on target site identification begins, if it is not already known.
The general pest spectrum is characterized, and a potential product
concept is sketched out.

Once an active is advanced to lead, it is then considered a full-
fledged project with significant resources made available. The SAR
has been narrowed to the point that each portion of the molecule is
deep-drilled due to the need for optimization of many parameters
simultaneously (potency, selectivity, toxicity, environmental fate,
cost of manufacture, etc.). Target site and mode of action
confirmation become imperative, which can then further inform
models.

3 Cheminformatics and AI for the
design-make-test-analyze cycle

The Design-Make-Test-Analyze (DMTA) cycle is a central,
iterative process consisting of interdependent steps that aim at
efficiently designing, testing, and validating hypotheses, upon
which data generated through experiments are analyzed, in order
to discover new information that advances the discovery and
optimization of leads (Plowright et al., 2012) (See Figure 2).
Through several cycles, chemical hits are gradually optimized
with respect to activity, selectivity, toxicity, and stability, into
actives and eventually into more efficient lead molecules.
Subsequently, selected lead molecules are further assessed using
advanced models before development is initiated (Andersson et al.,
2009). In this section, we will discuss how cheminformatics and AI
are enhancing the pace and efficiency of DMTA cycle. In addition,
we will highlight some of the challenges that need to be addressed to
further accelerate the digitalization and automation as well as
improve the success rate of DMTA processes in the discovery
and optimization of sustainable agrochemicals.

3.1 Design

Molecular design closely ties to the design cycle of the widely
accepted concept of iterative lead discovery. Its primary goal is to
deliver new chemical entities with specified properties and potencies
(Kuhn et al., 2016); however, those properties (e.g.: physicochemical,
ADME-Tox properties) can vary greatly from the pharmaceutical
industry (Tice, 2001). Molecular design includes two critical steps -
generating a pool of candidates, and using molecular scoring
strategies to select molecules from the collection for different
disciplines in the agrochemical (agchem) industry, such as insect
management, weed management (Gandy et al., 2015; Quareshy
et al., 2018), and crop disease management, each of which has
differing physiochemical property requirements (Avram et al., 2014;

FIGURE 1
Overview of the crop protection discovery pipeline.
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Zhang et al., 2018) (See Figure 3). At the hit generation stage,
molecules with appropriate physical properties should be chosen
since targets tend to gain mass during the active and lead generation
process within the bounds of a given discipline. Since this stage also
contains the largest possible chemical space, tools that accurately
predict these properties quickly and display the results to a user
alongside relevant activity-based metrics (e.g.: predicted assay
activity, similarity to a query structure with known activity,
relative location in known chemical space, etc.) in an intuitive
and responsive manner are particularly important. Rapid
searching and virtual screening of billions of compounds in
modern commercial screening collections can be accomplished
using tools such as fastROCS (OpenEye Scientific, 2023a), Ftrees
(BioSolveIT, 2023a), and InfiniSee (BioSolveIT, 2023b) (See
Table 1). The optimization of targets from hits to actives and
leads should adhere as closely as possible to principles of green
chemistry, namely low use rates, low ecological toxicity, minimal
bioaccumulation, and thorough breakdown into benign fragments
(Casida, 2012; Whiteker, 2019). Therefore, computational methods
used at this stage such as QSAR and traditional ML and deep
learning (DL) largely focus on molecule generation, docking, virtual
screens, or molecular properties prediction, with molecule
generation being a popular application of cheminformatics
capability.

Historically, molecule generation included creating novel
molecules from scratch and modifying structures based on
scaffolds or fragments with demonstrated activity by bioisostere
replacement, scaffold hopping/replacement, attaching functional
groups, or linking multiple fragments. These functions have been

implemented in popular tools such as DataWarrior (Sander et al.,
2015), and KNIME (Berthold et al., 2008) (See Table 1). Early efforts
in this area mostly prioritized the development of heuristic
algorithms that focused on molecules predicted to be highly
active and with desired properties (Sliwoski et al., 2013). The
accumulation of data and advancement of ML methods are
replacing these heuristics with evolving DL methods (Mater and
Coote, 2019; Paul et al., 2021). Deep generative models (DGMs),
leveraging the power of DNN architecture, are designed to learn
latent representations of molecules even within a low-data setting
and have a function to approximate the true distribution from which
new compounds with desired molecular properties are sampled
(Michael A. et al., 2021). Based on the architecture, these models can
be categorized into (variational and adversarial) autoencoders
(Blaschke et al., 2018; Richards and Groener, 2022), generative
adversarial networks (GANs) (Méndez-Lucio et al., 2020; Abbasi
et al., 2022), recurrent neural networks (RNN) with long short-term
memory (LSTM) and gated recurrent unit (GRU) variants (Segler
et al., 2018; He et al., 2021), and hybrid models combining deep
generative models with reinforcement learning (RL) (Elton et al.,
2019; Xue et al., 2019; Pereira et al., 2021) or autoencoders
(Prykhodko et al., 2019). RL (Ståhl et al., 2019; Blaschke et al.,
2020; Langevin et al., 2020) or conditional generative models (Kang
and Cho, 2019; Sagar, 2020) speed up the process by generating only
the molecules with desired properties or interesting scaffolds. Most
DGMs take SMILES strings as inputs and then use a Variational
Autoencoder (VAE) with Bayesian optimization in the latent space
to generate molecules. Instead of generating molecules atom by
atom, fragment-based language models can significantly reduce

FIGURE 2
Overview of the iterative Design-Make-Test-Analyze (DMTA) cycle in agrochemical discovery. Cheminformatics and artificial intelligence play an
increasingly significant role in each of the phases.
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FIGURE 3
Overview of the molecular design workflow. Some examples of computational tools used in the design phase are provided.

TABLE 1 Examples of software tools used in molecular design.

Name Description References/Examples

RDKit Cheminformatics RDKit, (2023)

MOE Molecular design, cheminformatics, QM, MM, QSAR, MD ULC, C.C.G. (2023)

Data
Warrior

Molecular design, cheminformatics Sander et al. (2015)

KNIME Data analysis, visualization, machine learning, deep learning, workflow Berthold et al. (2008)

Pipeline Pilot Data analysis, visualization, machine learning, deep learning, workflow Dassault Systèmes SE, (2023)

Maestro Molecular design, cheminformatics, QM, MM, QSAR, MD Schrödinger, (2023b)

Spark Molecular design Cresset, (2023)

DeepFMPO Deep learning, generative de novo design, reinforcement learning Ståhl et al. (2019)

REINVENT Deep learning, generative de novo design, multi-parametric
optimization, reinforcement learning

Blaschke, Arús-Pous et al. (2020)

Makya Deep learning, generative de novo design, multi-parametric
optimization

Iktos, (2023a)

LillyMol Cheminformatics Eli Lilly & Co, (2019)

FastROCS™ Virtual Screening, Lead Hopping & Shape Clustering OpenEye Scientific (2023b)

Ftrees Virtual Screening BioSolveIT, (2023a)

InfiniSee Virtual Screening BioSolveIT, (2023b)

Others Deep learning, generative de novo design, multi-parametric
optimization

Ståhl et al. (2019); Chuang et al. (2020), Khemchandani et al. (2020); Grechishnikova,
(2021); Krishnan et al. (2022)
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chemically invalid or duplicate compounds (Podda et al., 2020) as
well as achieve comparable performance with fewer parameters and
less training data (Chen et al., 2020). To further reduce the rate of
chemically invalid generated molecules, Krenn et al. (Krenn et al.,
2020) have introduced SELF-referencIng Embedded Strings
(SELFIES), a more robust string-based representation of
molecules. They demonstrated that VAEs and GANs using
SELFIES generated only chemically valid molecules. Moreover,
the generated sets of molecules were orders of magnitude more
diverse when using SELFIES compared to SMILES strings. SELFIES
were implemented in PASITHEA (Shen et al., 2021), a deep
generative tool that applies “inceptionism” to propose new
molecules with desired properties. Other popular approaches,
such as Graph Neural Network (GNNs) have also been used in
the generation of molecules (Shi et al., 2020; Mercado et al., 2021).
GNNs, such as graph convolutional networks (GCNs) or message
passing neural networks (MPNN), take graph-structured data as
input and output a latent representation for the input graph. To
improve performance, DGMs can be combined with each other
(Méndez-Lucio et al., 2020) or other traditional ML algorithms
(Blanchard et al., 2021). Metrics such as speed, coverage of chemical
space, novelty, diversity, Kullback–Leibler (KL) divergence, and
Fréchet ChemNet distance (Brown et al., 2019; Polykovskiy et al.,
2020; Jie et al., 2021), among others, are widely used to evaluate their
performance. The resulting molecules are then screened by agchem-
related physiochemical property filters or pesticide-likeness scores
(Zhang et al., 2018), predictive models trained by machine learning
methods (Ray et al., 2017), or docking with protein models or
homology models (Durrant et al., 2009; Chevillard et al., 2018; Hefke
et al., 2020). In contrast to drug-likeness scores such as Quantitative
Estimate of Drug likeness (QED) or drug-likeness models, the
pesticide-likeness scores or models should include not only
parameters related to bioactivity but also environmental effects
such as volatilization, wash-off, photolysis, ecological toxicity,
bioaccumulation, and soil metabolism for sustainability as well as
the biodiversity of pests and usage conditions (Avram et al., 2014;
Ouyang et al., 2021). The use of DGMs for molecule generation
(Fromer and Coley, 2022) is promising but the challenges remain in
how to improve diversity, novelty, and synthesizability (Benhenda,
2017; Gao and Coley, 2020), among other factors, within a
multiparameter optimization framework. The advent of DGM
has provided the opportunity to significantly improve the
automated generation of molecules with desired properties and/
or scaffolds using tools such as REINVENT and COMA, and thus,
accelerate the advancement of molecules throughout the pipeline
(Arús-Pous et al., 2020; Blaschke et al., 2020; Choi et al., 2023). The
use of models trained on domain-relevant data, including the
generative model, and associated scoring functions (e.g.:
pharmacophore scoring) can lead to higher discovery rates of
actionable and synthesizable compounds. For instance, by
integrating pharmacophore features (e.g.: aromaticity,
hydrophobicity) into the training of a REINVENT agent
network, Yoshimori et al. (Yoshimori et al., 2021) were able
synthesize nine DDR1 inhibitors with nanomolar potency.
Moreover, recent works have introduced deep learning-based,
protein-target driven de novo design approaches where the
generative model takes protein specific information (e.g.: primary
structure) to generate candidate ligands optimized towards various

parameters (e.g.: high binding affinity, low toxicity) (Born et al.,
2021; Zhang et al., 2023). While the methods used different
generative algorithms and representations, they were able to
propose ligands to relevant protein targets. Overall, the success of
de novo generative design projects requires that goals be clearly
defined by discovery teams, and priority be put on sampling strategy
and efficiency, as illustrated in a benchmarking study by Gao et al.
(Gao et al., 2022).

In contrast to the approach of creating novel molecules or
modifying existing scaffolds and fragments, it is often desirable
to screen libraries of compounds for novel hits. Molecular docking is
a structure-based method that uses a search algorithm to generate
ligand binding poses and a scoring function to quantitatively rank
them. A common pitfall lies in the generation of false positives
during ranking, either by failure to predict the correct pose of true
ligands or by failure to discern between true ligands and decoys
(Warren et al., 2006). Machine learning methods have shown
promise in addressing these issues. For example, a support vector
machine (SVM) regression analysis was used to score targets of AKT
serine/threonine kinase 1, which led to the discovery of nanomolar
inhibitors not attained with classical scoring functions (Zhan et al.,
2014). Convolutional Neural Networks (CNN) algorithms have
shown success at improving binding pose prediction by
extracting features from protein-ligand complexes by analyzing
their three-dimensional images (Ragoza et al., 2017).
Incorporating machine learning into docking protocols is not
without its share of issues. Neither protein-ligand structures nor
sufficient data to develop a training set are guaranteed in
agrochemical discovery. Moreover, the use of DL algorithms has
been shown to fail compared to standard docking protocols in some
cases (Gentile et al., 2020). As an alternative to developing novel
scoring functions, Jimenéz-Luna et al. employed DL to rationally
choose between standard docking protocols for a given protein-
ligand pair with modest success (Jiménez-Luna et al., 2020a).
Machine learning methods applied to docking and structure-
based virtual screening are in a constant state of improvement,
however, their utility in agrochemical discovery remains to be
proven.

3.2 Make

The synthesis of chemical compounds is executed during the
lead optimization and regulatory assessment phases, as well as once
the final product is ready for commercialization. Hundreds of ideas
and hypotheses can be generated in a relatively cost- and time-
efficient manner during the design phase; however, the capability to
convert these ideas into real and testable compounds remains one of
the bottlenecks in the discovery process (Andersson et al., 2009).
Because of the substantial number of assays to be run on target
species as well as non-target species such as crops, much greater
quantities of compounds are generally required compared to
pharmaceutical research. It is thus critical that the synthesis of
compounds is efficient, especially once an active has been optimized
into a lead molecule. Generally, the synthesis of molecules involves:
1) selection of efficient synthetic routes for target compounds; 2)
acquisition of building blocks and reagents; and 3) execution of the
synthesis and purification phases. Cheminformatics and AI tools
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can be used in each of these phases to accelerate the process and
reduce failures in the making of the novel molecules
(Venkatasubramanian and Mann, 2022).

The decision on how to synthesize a novel compound is not only
essential within the DMTA cycle, but also one of the most
intellectually challenging. It is even more critical when scaling
from gram to metric ton scale. At that stage, it cannot be
emphasized enough that optimal manufacturing routes must be
time- and cost-effective, efficient, safe, and environmentally
sustainable. Designing such routes requires scientific intuition, as
well as depth and breadth of knowledge in synthetic chemistry. Since
the 1960s, synthetic chemists have increasingly relied on computers
to suggest the most promising synthetic routes and help plan their
execution (Corey and Wipke, 1969; Cook et al., 2012). Computer-
Assisted Synthesis Planning (CASP) primarily involves
retrosynthesis, condition recommendation, and forward reaction
prediction (Struble et al., 2019). Retrosynthesis aims at generating
feasible pathways starting from the target compounds and ending
with building blocks that can be easily acquired. Traditionally, it has
been achieved using a knowledge-based approach, which iteratively
applies a priori expert knowledge (including reaction templates and
constraints) encoded as rules or heuristics (Marcou et al., 2015;
Szymkuć et al., 2016). One example of retrosynthetic pathway
prediction tools is Synthia™ (formerly Chematica) (Szymkuć
et al., 2016; Grzybowski et al., 2018), which was used in a
2018 study to design multistep synthetic routes to eight
structurally diverse targets with medicinal relevance that were
successfully executed in the laboratory (Klucznik et al., 2018).

Despite its interpretability, the knowledge-based approach can
be costly due to maintenance and expansion of knowledgebases and
is not very applicable to novel chemistries (Kayala, 2011; Reng et al.,
2018). Recent advances in deep/transfer learning have enabled the
development of innovative approaches that can automatically learn
from available data, suggest routes, and predict outcomes (Gao et al.,
2018; Dai et al., 2020; Schwaller et al., 2021). Additionally, several
hybrid approaches have been developed that implement rule-based
algorithms to suggest possible reactions which are then ranked and
selected using machine learning algorithms (Zhang and Aires-de-
Sousa, 2005; Segler and Waller, 2017; Nicolau et al., 2020). The
prediction of reaction conditions is helpful for the prioritization of
safe and efficient reactions. The outcome of such predictions usually
includes chemicals (e.g.: catalysts, reagents, and solvents) and
physical properties (e.g.: pressure, temperature). Examples of
such prediction models include expert systems (Marcou et al.,
2015) and machine learning-based models (Gao et al., 2018;
Walker et al., 2019; Maser et al., 2021). Forward reaction
prediction helps validate each reaction step and identify by-
products to facilitate purification. Additionally, the prediction of
yield provides a measure of how efficient a reaction step or route is.
Recently, several tools have been proposed that address the
prediction of both reaction outcomes and yields (Coley et al.,
2017; Haywood et al., 2021; Martinez et al., 2021). As with
several other applications of predictive modeling, high-quality,
comprehensively annotated data can be very scarce and sparse.
Moreover, collected reaction datasets tend to omit less successful
and failed reactions. However, these would provide more insights
into the mechanisms and latent variables that can best describe the
feasibility of chemical reactions and thus, improve prediction

accuracy. The recently released Open Reaction Database (ORD)
is an effort to promote the sharing of proprietary pre-competitive
reaction data in a comprehensive yet structured format (Kearnes
et al., 2021). The ORD allows users to upload, search, visualize, and
eventually submit chemical reaction data through programmatic
access and web interfaces. By adhering to those standards,
researchers can contribute to the amount and diversity of high-
quality data available to carry out diverse CASP projects.

Currently, several CASP tools are freely or commercially available.
Most of them provide a graphical user interface that enhances user
experience, with the capabilities of visualizing and interacting with the
proposed reactions and pathways (See Table 2). So far, it is not
immediately apparent whether rule-based or machine learning-based
approaches consistently provide superior results. However, a significant
advantage of machine learning-based tools is that they can be rapidly
improved and scaled efficiently as more data become available.
Additionally, they tend to be easier to generalize over a larger
chemical space. This is especially the case for template-free reaction
prediction models. The evaluation of predicted pathways is generally
carried out manually by groups of chemists. In order to perform
pathway evaluations in a systematic, reliable, and consistent manner,
automated and scalable frameworks need to be designed, which could
be improved with the availability of additional data. Mo et al. (2021)
introduced a data-driven approach to evaluate the relative strategic
levels of retrosynthesis routes. The resulting tree-LSTMmodel, built on
238K routes from patents, could not only recognize but also cluster
similar pathways. More recently, PaRoutes was introduced as a
framework for comparing the quality and diversity of predicted
synthetic pathways (Samuel and Bjerrum, 2022). The authors
suggested metrics that could serve as methods for comparing
predictions. It is envisaged that the significant efforts in this space
will help to define metrics and workflows for the comparative
evaluation and prioritization of predicted pathways, which would
eventually point to cases where one prediction algorithm or tool
performs comparatively better than its peers. Moreover, it could
enhance the identification of innovative synthetic routes.

The synthesis of target compounds requires that startingmaterials
and reagents are available. Electronic catalogs and databases
containing structural information and metadata about building
blocks and reagents can be linked to CASP platforms (e.g.:
ASKCOS (Coley et al., 2019)). Such libraries can be maintained
manually, or by service providers such as eMolecules (eMolecules,
2023), and Chemspace (Chemspace, 2023), the latter of which is the
world’s largest available compound catalog containing over 1.6 billion
in-stock andmake-on-demand building blocks. Another strategy used
by chemists is the enumeration of chemical virtual libraries, where
complex molecules are virtually created, using cheminformatics tools,
by applying selected, easily reproducible chemical reaction schemes
on available building blocks. The resulting compounds can then be
filtered based on several criteria (max price, delivery time, properties,
predicted activity), and then synthesized. An example of such virtual
libraries is the Proximal Lilly collection, which provides chemists with
a diverse collection of compounds that can be synthesized in-house
(Nicolaou et al., 2016). Once obtained, the compounds can be tested in
various experimental assays. Currently, cheminformatics platforms
are being developed to assist chemists from planning to compound
ordering to automation of synthesis (Schwaller et al., 2021; IBM,
2023).
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3.3 Test

In agrochemical discovery, substantial amounts of data from a
plethora of assays run on target and non-target species are obtained
for further analysis. It is thus particularly important to enhance
testing capabilities as well as data collection. The synergistic
interaction between cheminformatics and biological tests in
agrochemical discovery has not been commonly discussed, yet it
has been essential. Data from medium and high throughput assays,
such as in vitro enzyme assays, cell-based assays, metabolomics/
genomics assays, and in vivo whole organism plate-based assays
have been used as input for cheminformatics tools. The
improvement of computational power, data storage capacity, data
analysis capability, and the integration of these three in low-cost

cloud computing services (e.g.: Amazon Web Services™ cloud
computing platform (Amazon Web Services, 2023)) for
cheminformatics tools have enabled new generation of data
collection with existing assays, especially in whole organism level
assays. For example, data rich hyperspectral/multispectral imaging
(Thomas et al., 2018; Paulus andMahlein, 2020; Klie et al., 2022) and
video-based chemobehavioral phenotyping (Henry andWlodkowic,
2020) provides enriched data to further enhance cheminformatics
development such as building more sophisticated models and
enabling the training of AI predictive models (Ozdemir and
Polat, 2020). On the other hand, new and powerful predictive
models can further support the automation in non-destructive
data collection, mode-of-action prediction, and so forth, which
can further increase the test throughput potential and derive

TABLE 2 Examples of software tools and resources used in the Make phase of the DMTA cycle.

Name Description References/Examples

ASKCOS Machine-learning based; single- andmultistep retrosynthesis; condition recommendation; forward reaction
outcome and evaluation

Struble et al. (2019)

Synthia™
(Chematica)

Manual and computer-aided retrosynthesis; User-defined rules and filters; direct link and metadata to
commercially available and known building blocks

Grzybowski et al. (2018); Klucznik et al.
(2018)

IBM-RXN Molecular Transformer-based models for retrosynthesis, and forward reaction prediction Schwaller et al. (2021)

ICSYNTH Retrosynthesis analysis; machine-learned chemical rules; not limited to organic reactions Bøgevig et al. (2015)

Spaya Machine learning-based tool for full retrosynthetic analysis Iktos, (2023b)

Reaxys Predictive retrosynthesis with deep neural networks train on Reaxys data Elsevier, (2023)

ChemFinder™ Ultra Database management and structure search; retrieval of chemical and biological data (documents,
structures, reactions, properties, etc.); property calculation

Aldrich, (2023)

CAS SciFindern Search engine; retrieval of chemical data (structures, reactions, properties, etc.); linked to the CAS Content
Collection™

CAS, (2023)

ReactionSage™ AI-based reaction pathway prediction; retrosynthesis, and forward reaction prediction KEBOTIX, (2023)

FIGURE 4
Workflow to identify herbicide SoA/MoA for screening compounds using high-throughput (HTS) assay, data rich imaging technologies, andMachine
Learning/AI. Green colored workflow: compounds with known site of action (SoA)/mode of action (MoA) are used to build and validate the model to
generate SoA/MoA fingerprints; Blue colored workflow is for new compounds with unknown SoA/MoA handling. Arrow indicates the workflow direction.
After the model building and validation are completed with representative compounds from each known SoA/MoA, when new compounds with
unknown SoA/MoA are tested and analyzed using this workflow, the compounds can either be assigned as new or unknown SoA/MoA, which warrants
further efforts to use the DMTA cycle to discover novel herbicide with newmode of action; or be assigned as known SoA/MoA, after these assignment are
confirmed by in vitro and/or in vivo, these data can be used for further model refinement.
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TABLE 3 Examples of relevant resources, cheminformatics software, and machine/deep learning tools utilized in the analyze phase of the DMTA cycle in
agrochemical discovery. Abbreviations: Support vector regression (SVR), Liquid Chromatography – Mass Spectrometry (LC-MS), Graph Neural Network (GNN),
Retention Time (RT), Deep Graph Learning (DGL), Natural Products (NP).

Name Description References/Examples

Structural classifications tools

LeadScope SAR analysis and visualization tool, with a focus on toxicological data Roberts et al. (2000)

DataWarrior General purpose SAR tool Sander et al. (2015)

Pipeline Pilot Data pipeline tool; capabilities for various ad hoc analyses Dassault Systèmes SE, (2023)

KNIME Data pipeline tool; capabilities for various ad hoc analyses Berthold et al. (2008)

OpenEye Toolkit Molecular toolkit; Low-level API tools custom structure analyses OpenEye Scientific (2023a)

RDKit Molecular toolkit; Low-level API tools custom structure analyses RDKit, (2023)

Structure-Activity-Relationship Visualizations

DataWarrior General purpose SAR tool Sander et al. (2015)

StarDrop™ Includes multi-parameter optimization and SAR tools Optibrium, (2023)

TIBCO Spotfire® Lead Discovery collection adds extensive cheminformatics capabilities,
including predictive analytics

TIBCO, (2023)

Cheminformatics and AI-enabled Metabolomics

Peakonly DL-based model for LC-MS peak detection and integration Melnikov et al. (2020)

ChromAlignNet DL-based tool for peak-alignment of GC-MS data Li and Wang (2019)

CFM-ID Hybrid (AI-, rule-based) tool for LC-MS spectra prediction, peak
annotation, and metabolite identification

Wang et al. (2021a), Djoumbou-Feunang et al. (2019b)

3D-MolMS Tandem MS Spectra prediction Hong et al. (2023)

MassFormer Tandem MS Spectra prediction Young et al. (2023)

SIRIUS Computational platform for tandem MS data-based analysis of
metabolites; provides molecule search, and class prediction capabilities

Dührkop et al. (2019)

MESSAR Automated tool for metabolite substructure recommendation from
tandem mass spectra

Liu et al. (2020)

ClassyFire Structural classification of small and large molecules Djoumbou-Feunang (2016)

NP-Classifier DNN-based structural classification of natural products Kim et al. (2020)

BioTransformer Hybrid, comprehensive tool for metabolite prediction and
identification in humans, gut microbiota, and environmental
microbiota

Djoumbou-Feunang et al. (2019a)

ADMET Predictor Machine learning-based prediction of human metabolites SimulationsPlus, (2023)

QSAR Toolbox AI-based prediction of chemical products from abiotic transformations
and metabolism (microbial, rat liver S9, skin)

QSAR Toolbox, (2023)

OASIS Times AI-based prediction of chemical products from abiotic transformations
as well as in vitro (gut, lung, rat liver S9) and in vivo (rat) metabolites

OASIS, (2021)

GLORYx Machine learning-based prediction of human metabolites de Bruyn Kops et al. (2021)

MetaTrans Deep-learning-based, rule-free tool for prediction of small molecule
metabolites in humans

Litsa et al. (2020)

Retip ML-based retention time prediction Bonini et al. (2020)

GNN-RT GNN-based liquid chromatography retention time prediction Yang Q. et al. (2021)

DeepCCS Deep Learning tool for the prediction of collision cross-section values Plante (2019)

Spectral Databases Spectral databases commonly used for metabolite identification (NIST, (2023); Guijas et al. (2018); Wang et al. (2021b); Mehta, (2020);
Wishart et al. (2018); Wang et al. (2016)

Programming libraries and cheminformatics tools for predictive modeling

Scikit-learn General Python-based programming library Pedregosa et al. (2011)

PyTorch General Python-based programming library for deep learning,
including explainable DL

PyTorch, (2023)

Tensorflow General Python-based programming library for deep learning,
including explainable DL

Abadi et al. (2015)

DeepChem Python-based programming library for deep chemistry Ramsundar et al. (2019)

Chemprop Python programming package implementing Message Parsing Neural
Networks (MPNN) for the prediction of molecular properties as well as
chemical reactions; provides uncertainty quantification capabilities

Yang K. et al. (2019)

DGL-Lifesci Python programming library for graph neural network-based learning
for chemistry and biology

Li Y. et al. (2021)

MolPMoFit Transfer learning approach (and model) for molecular property
(QSAR/QSPR) prediction

Li and Fourches (2020)

Chemformer Irwin, Dimitriadis et al. (2022)

(Continued on following page)
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extra value from each test, especially for in vivo tests (Mishra et al.,
2017; Klie et al., 2022). For example, Klie et al. recently disclosed a
workflow that can be used to predict herbicidal site of action and/or
mode of action of novel chemistries using classical machine learning
and/or AI (See Figure 4).

3.4 Analyze

The Analyze phase of the DMTA cycle is a continual process
during the entirety of a project’s timeline. The analyses are used in
the Design phase to help determine what compounds to synthesize,
in the Test phase to help evaluate and plan additional tests, and in an
oversight role to determine whether to continue a project or not.
Cheminformatics plays a significant role in helping the researcher
answer key questions in all these phases. The following subsections
describe four critical aspects of the analyze phase and illustrate their
overall impact in the DMTA cycle, while providing a brief
description of several tools that enhance the analyses (See
Table 3). These include structure classifications, predictive
modeling, SAR visualizations, and metabolomics.

3.4.1 Structural classifications
Structure classification tools allow the partitioning of

compounds into groups that can be used in a variety of visual
and statistical tools to highlight areas of particular interest. This
capability is at the heart of commercial software tools such as
LeadScope (Roberts et al., 2000) and open-source software tools
such as DataWarrior (Sander et al., 2015).

Some of the most common classification approaches include the
identification of ring systems and frameworks, and clustering based
on structural fingerprints. The compounds in each cluster can be
further classified by determining the “Maximum Common
Substructure”, i.e., the largest substructure that is found in each
compound in the cluster. These classifications tend to be
“unsupervised”, driven solely by the nature of the structures on
hand, and thus are easy to accomplish with the use of modern
cheminformatics toolkits (See Table 3).

A semi-manual approach, R-Group Decomposition (RGD),
involves the identification of specific core structures in a
molecule set, then determining the substituents that are attached
in specific locations on the core (Agrafiotis et al., 2011; Naveja and
Vogt, 2021). This technique usually involves an iterative analysis in

order to describe as many compounds in the project as possible. In
the end, the researcher is left with a set of molecular partitions and
descriptors that generally align with the synthetic sources of the
molecules. One important use of the resulting RGD table is to track
the specific compounds that have been made and which of these
have been tested in which assays. It also helps to quickly spot and
track gaps in the already designed libraries, which is particularly
important given that most researchers work on many projects
simultaneously and over many years.

3.4.2 Predictive modeling
One of the most important activities in the DMTA cycle, and in

the analyze phase, involves the study of quantitative relationships
between molecular structures and various endpoints, including but
not limited to biological activity (QSAR), physicochemical
properties (Quantitative Structure Property Relationships; QSPR),
and biodegradation (Quantitative Structure Biodegradation
Relationship; QSBR). Leveraging diverse datasets generated
throughout the test phase, among other sources, machine
learning, and especially predictive modeling, have gradually
matured over the last few decades into an essential component of
discovery and regulatory processes for pharmaceuticals and
agrochemicals (Naik et al., 2009). They both deliver
mathematically sound, reliable, cost- and time-efficient, and more
accessible “in silico assays” that can predict relevant endpoints, and
be automatically improved with increasing data, in an adaptive
environment (J. C. Dearden, 2016; Yang K. et al., 2019; Shen and
Nicolaou, 2019). Most innovation in this space has occurred in
pharmaceutical research, and agrochemical research has followed
suit. Unfortunately, as illustrated by a relatively low number of
related publications (See Figure 5), the adoption of an AI-driven
discovery paradigm is not nearly as rapid in the relatively smaller
space of agrochemical discovery, leaving untapped an increasing
reservoir of innovative opportunities to accelerate research and
development. Yet, urgent needs for novel and safer crop
protection agents, along with the resolutions of regulatory
agencies (e.g.: U.S. EPA (United States Environmental Protection
Agency, 2023), EFSA (European Food and Safety Agency, 2023)) to
aggressively reduce animal testing (Barlow et al., 2009), highlight the
need for predictive tools that provide different lines of evidence and
support the use of New Approach Methodologies (NAMs) in
various scientific tasks, such as chemical risk assessment (U.S.
EPA, 2021; Kavlock et al., 2018).

TABLE 3 (Continued) Examples of relevant resources, cheminformatics software, and machine/deep learning tools utilized in the analyze phase of the DMTA cycle
in agrochemical discovery. Abbreviations: Support vector regression (SVR), Liquid Chromatography –Mass Spectrometry (LC-MS), Graph Neural Network (GNN),
Retention Time (RT), Deep Graph Learning (DGL), Natural Products (NP).

Name Description References/Examples

A Python library for molecular optimization, property prediction,
reaction and retrosynthetic prediction

DESlib A Python library for dynamic classifier and ensemble selection Cruz et al. (2020)

SHAP A Python programing library for Shapley Additive exPlanations Lundberg and Lee, (2017); Rodríguez-Pérez and Bajorath, (2021)

Alibi Explain Implements several algorithms for inspecting and explaining machine
learning models

Klaise et al. (2021)

GNN-Explainer A Python library for the explanation of GNN-based predictions Ying et al. (2019)

CIME A library for web-based exploratory analysis of chemical model
explanations

Humer et al. (2022)
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Ideally, a crop protection agent must display optimal properties
with respect to efficacy, metabolic stability, activity spectrum,
uniqueness of its mode of action, and sustainability, among other
parameters. High-Throughput Screening (HTS) is a key component
of the discovery pipeline that provides scientists with diverse types of
data exploitable for decision-making. In contrast to drug discovery,
however, most screening assays in “agchem” discovery are
phenotypic and run against whole organisms, especially in
preliminary stages, when the target site is unknown. An
advantage of such assays is that they incorporate the cellular
complexity of biology as they highlight molecules that are both
intrinsically active and bioavailable (Bender and Cortés-Ciriano,
2021a). However, they only provide little insight on the mode of
action, which may be species-dependent (FRAC, 2023; HRAC, 2023;
IRAC, 2023), and very little on the fundamental mechanisms that
make a compound more or less active or completely inactive (e.g.:
ADME properties), thus posing challenges for subsequent
optimization. Bottlenecks resulting from these limitations include,
among others, poor translation of activity against selected targets
from the greenhouse to the field, limited systemic activity, and
discrepancies between in vivo and in vitro activities (Zhang et al.,
2018) Since activity, ADME-Tox, environmental fate, and other
relevant mechanisms are influenced by the molecule’s
physicochemical properties (e.g.: lipophilicity (LogD), water
solubility (WS), UV stability, pKa), QSPR-based tools that
rapidly and accurately predict such properties are indispensable
for rapid exploration of the immense chemical space, efficient
selection of promising candidates, and decision making. For
instance, physicochemical property prediction tools support the

estimation of ag-likeness, typically defined with various degrees
of specificity. Herbicides and sap-feeding insecticides, which need to
be transported through the plant’s xylem typically display high WS
and low LogD, while chewing insecticides display high LogD and
low WS that limit their uptake by, and mobility within plant leaves
(Zhang et al., 2018). Commercial fungicides, however, occupy a
relatively broader range with respect to those properties. Several
guidelines have been proposed by Tice (2001), Zhang et al. (2018),
and others (Hao et al., 2011; Avram et al., 2014) to assess ag-likeness
based on various molecular (e.g.: constitutional, physicochemical)
descriptors. Examples of most commonly used open-source
cheminformatics packages for the computation of such molecular
descriptors include, among others, RDKit (RDKit, 2023), Mordred
(Moriwaki et al., 2018), the PaDEL-Descriptor software (Yap, 2011),
and the Chemistry Development Kit (CDK) (Willighagen et al.,
2017).While these tools typically provide a diverse set of descriptors,
they often either lack certain physicochemical properties used in ag-
likeness rules (e.g.: UV-stability, pKa) or provide different
implementations compared to those used in the rules (e.g.:
XLogP vs. ALogP vs. MLogP). Freely available and interactive
web platforms such as InsectiPAD (Chen-Yang et al., 2019),
FungiPAD (M.-y. Wang et al., 2019), and HerbiPAD (Huang,
2020) provide capabilities to explore pre-computed
physicochemical properties and evaluate pesticide-likeness of
chemicals. However, these are limited to only a few hundred
chemicals and cannot be easily integrated into in silico
workflows. OPERA (Mansouri et al., 2018) is an open-source/
open data, standalone, limited collection of QSPR/QSAR models
that predict several toxicity (e.g.: androgen receptor activity) and

FIGURE 5
Comparative analysis ofmachine learning and cheminformatics-related publication counts for pesticide and pharmaceutical discovery. Publications
(articles, reviews, reports, and dissertations only) were retrieved in May 2022 from the web of science literature database, upon mining the title and
abstracts for specific keywords. The search for cheminformatics papers was limited to publications containing either of the keywords in the title and/or
abstract: “cheminformatics” (or a derivative), ”QSAR”, “QSPR”, “QSBR”. The list was expanded to include papers from selected scientific journals
whose title contains either “cheminformatics” (e.g.: journal of cheminformatics) or “QSAR”. ML papers included various (groups of) keywords related toML
tasks, and metrics. The keyword “all” refers to publications including machine learning- and cheminformatics-related terms. Keywords describing the
molecule class included drug, pharmaceutical, agrochemical, pesticide, insecticide, herbicide, fungicide, nematicide, and their derivatives.
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environmental fate (biodegradation half-life) endpoints, along with
other fate-related properties (e.g.: water solubility). In general, the
combination of QSPR-, ag-likeness-, and other endpoint prediction
models (e.g.: QSAR), can guide stepwise virtual screening programs,
as demonstrated in several studies (Oršolić et al., 2021; Lewer et al.,
2022). These tools provide much needed capabilities for ligand-
based discovery, especially in early stages, where targets and/or
modes of action are unknown.

At later stages of the discovery pipeline, leads must still be
optimized with respect to activity against target and non-target
species (Martin et al., 2017), favorable/unfavorable modes of action
(Kienzler et al., 2017), efficacy, metabolism in target and non-target
species (Clark, 2018; Diéguez-Santana et al., 2022), abiotic
degradation, and (eco-)toxicity (Devillers et al., 2015; Venko
et al., 2018), among other parameters. Some examples include
the implementation of a 3D-QSAR approach for the prediction
of acetylcholinesterase inhibition of pesticides (Lee and Barron,
2016), the integration of mode of action information into
classification and regression QSAR models for the prediction of
acute toxicity in honeybees (Carnesecchi et al., 2020a), and the
development of OECD-compliant models that accurately predict
biodegradation rates of organic compounds (Tang et al., 2020).
Additionally, QSAR/QSPR models in later stages could enhance for
instance, the improvement of activity and ADME-Tox profiles, and
the promotion of more sustainable crop protection agents with
minimal risk of resistance (Oršolić et al., 2021). Given the structural
differences between pesticides and drugs, it is worth noting that the
QSAR/QSPR tools used at each stage of the pipeline, should be either
generalizable enough, or at the very least, applicable to the local or

global agchem space of interest. Unfortunately, most predictive
models available either commercially or open-source are trained
on datasets significantly biased towards drugs and drug-like
molecules. Moreover, many of the relevant published studies
focus on small samples (<500 compounds), thus describing local
models. Consequently, crop protection discovery scientists are often
forced to a tradeoff between using such tools with less certainty,
adapting them towards agrochemicals, or building entirely new
predictive models (See Figure 6).

Developing valid, OECD-compliant (Benfenati et al., 2011;
Belfield et al., 2023; OECD, 2023) predictive models depends on
several key factors: 1) high-quality datasets; 2) proper mathematical
representations of molecules that capture key elements essential for
the learning task, and powerful computational methods to capture
the complex patterns of association between the molecular
representations and target endpoints; 3) rigorous performance
evaluation criteria, and 4) adequate methods for explainability
and uncertainty estimation. In the following, “QSAR” is used as a
general term for the quantitative relationship between chemical
structures and relevant endpoints (activity, properties,
biodegradability, toxicity, etc.).

3.4.2.1 High-quality datasets
Predictive models typically require training on sufficiently large

and diverse datasets. Modern high-throughput techniques for the
measurement of proxy points (e.g.: LogD), along with increasingly
powerful automated text mining and data extraction technologies
(Han et al., 2010; Tarasova et al., 2019; NextMove Software, 2022;
Shavalieva et al., 2022) have enhanced the acquisition of

FIGURE 6
Schematic overview of the QSAR/QSPR modeling and deployment process.

Frontiers in Chemistry frontiersin.org12

Djoumbou-Feunang et al. 10.3389/fchem.2023.1292027

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1292027


physicochemical and biological data through internal laboratories
(Zhang et al., 2018), CROs, and large-scale data mining projects,
sometimes resulting in the publication of FAIR-compliant data
(Wilkinson et al., 2016). However, many data-related issues still
impede the development of accurate “Ag-adapted” models. These
issues include: 1) relatively smaller number of data collected through
whole organism assays; 2) relatively smaller coverage of ag-like
compounds and Ag-relevant assay data (e.g.: non-target toxicity,
bioremediation, plant metabolism, etc.) in public and private
databases (Lewis et al., 2016; Gaulton et al., 2017; Williams et al.,
2017; Wishart et al., 2017; Kim H. et al., 2021); and 3) the
inconsistencies in experimental settings, which are often not
taken into consideration during data curation. These limitations
can impede the modeling of complex biochemical characteristics or
activities and limit the exploration of algorithms such as deep neural
networks that require vast amounts of high-quality data. When
applicable, scientists often implement different techniques to
circumvent these obstacles, that include but are not limited to
oversampling/undersampling (Idakwo et al., 2020), cross-
validation and cross-testing (Korjus et al., 2016), ensemble
learning (Hung and Chang, 2021), data augmentation (Cortes-
Ciriano and Bender, 2015; Bjerrum, 2017), transfer learning
(Shen and Nicolaou, 2019), multi-task learning (Xu et al., 2017;
Martin and Zhu, 2021), representation learning (Kim S. et al., 2021),
and self-supervised learning (Dillard, 2021).

3.4.2.2 Mathematical representations andmachine learning
methods

The hypothesis underlying QSAR studies is that structurally
similar molecules tend to behave similarly and to exhibit similar
physicochemical properties. Therefore, the selection of molecular
representations that are predictive of the molecular property
endpoint (e.g.: activity, physicochemical property) is critical for
any machine learning task (Bender and Cortés-Ciriano, 2021b).
Ideally, such representations shall efficiently express the structural
composition of, and subtle nuances between molecules, in a faithful
and consistent manner (Chuang et al., 2020). Moreover,
interpretable representations would facilitate the human
understanding of relevant patterns learned. One can distinguish
between fixed, more interpretable representations (e.g.: whole
molecule descriptors, atomic descriptors, quantum properties,
dictionary- and hash-based fingerprints), and learned, more
parsimonious, less interpretable representations (e.g.:
convolution- or sequence-based embeddings). Readers are
referred to reviews that provide detailed descriptions,
comparisons, and applications of structural representations for
QSAR (Shen and Nicolaou, 2019; David et al., 2020).

Traditional machine learning approaches typically involve a
challenging combinatorial optimization process which consists of
selecting a set of most relevant features or feature combinations from
a variety of pre-calculated, fixed representations (Goodarzi et al.,
2012; Mao et al., 2021) that serve as input to build predictive models
that implement one or many algorithms (e.g.: Random Forest,
SVMs) (Wu et al., 2020; Yang L. et al., 2021). Molecular
fingerprints are often used in addition or as alternatives to the
common 2D/3D (e.g.: constitutional and topological) descriptors. In
fact, several studies have demonstrated that models based
exclusively on fingerprints can outperform 2D/3D-descriptor-

based models on various tasks (Venkatraman, 2021). For
instance, Li et al. (2017) developed binary and tertiary
classification models to predict pesticide aquatic toxicity against
rainbow trout and Lepomis species, using only fingerprints. The best
models implemented SVMs or ANNs on MACCS (Durant et al.,
2002) or Graph-only fingerprints and achieved accuracies of 0.89 or
higher. Examples of open-source packages that compute molecular
fingerprints (FPs) include RDKit, CDK, and the PaDEL descriptor
software. Limitations of molecular fingerprints include, among
others, limited applicability domain of dictionary-based FPs, and
sparsity, possible data loss, and bit collision for hash-based FPs.
Moreover, the best fingerprint type can vary depending on the
problem, and even between different train-test splits of the same
dataset (Sandfort et al., 2021). To address these, several methods
have been proposed, such as variants of circular fingerprints, and the
combination of various fingerprint features (Capecchi et al., 2020;
Sandfort et al., 2021). Fingerprints and molecular descriptors are by
no means mutually exclusive. In fact, in many cases, the
combination of both types of descriptors can lead to better
results (Shi et al., 2018; Tian et al., 2021).

The success of ANNs in computer vision and natural language
processing (NLP) in the 2000s has renewed interest in these
algorithms, which had fallen out of favor due to many practical
issues (e.g.: speed, overfitting, memory requirements). As early as
2008, Sparks et al. proposed a new ANN-based QSAR approach
capable of suggesting structural modifications that dramatically
improved the biological efficacy of Spinosyn analogs (Sparks
et al., 2008), where other machine learning methods had failed.
This innovation contributed to the design and registration of
Spinetoram, a semi-synthetic insecticide. In 2015, Ma et al.
(2015) demonstrated that deep neural networks trained using a
set of atom pair-, and donor-acceptor pair-descriptors for molecular
representation could routinely outperform the most-commonly
used random forest models, with a 10% mean R2 improvement
(Ma et al., 2015) on various datasets. These success stories
contributed significantly to the renewed interest in deep learning
(DL) for chemistry (Chen et al., 2018). Chemical structures can be
represented as graphs, or word sequences (e.g.: SMILES (Weininger,
1988)). Therefore, several algorithms have been developed to adapt
DL algorithms, once prominent mostly in computer vision, NLP,
and network modeling to the world of chemistry.

Prominent DL architectures for molecular property prediction
include Graph Convolutional and Sequence-based models (See
Figure 6). Graph convolutional networks (GCNs) take as input
molecules encoded as graphs where nodes represent heavy atoms
and edges represent covalent bonds between them (Gilmer et al.,
2017; Lee and Min, 2022). Sequence-based models borrow ideas
from NLP to utilize molecular representations such as SMILES
strings for learning relationships between different parts of a
molecule (akin to learning relationships between different words
in a sentence) through recurrent neural network-based architectures
such as LSTM and GRU (Goh et al., 2017). Several graph- and
sequence-based DL algorithms have been implemented in DL
packages such as DeepChem (Ramsundar et al., 2019),
Chemprop (Heid et al., 2023), and DGL-LifeSci (Li M. et al.,
2021). Over the last 5 years, significantly increased performances
in molecular property prediction using DL relative to traditional
machine learning models have been reported, with applications
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ranging from ADME-Tox modeling to bioactivity prediction
(Montanari et al., 2019; Zhou et al., 2019; Feinberg et al., 2020;
Stokes et al., 2020). More recently, several variations of graph-based
and sequence-based (SMILES) algorithms have been demonstrated
to achieve 14%–133% better performance than traditional machine
learning algorithms in the prediction of relevant properties, in
single- or multi-task settings (Honda et al., 2019; Yang X. et al.,
2019; Sun et al., 2020).

A key advantage of DL algorithms is their capability of learning
molecular representations in a supervised or unsupervised mode,
with varying degrees of generalizability, depending on the intended
use (Chuang et al., 2020). These representations, also known as
molecular embeddings, can be trained using a variety of algorithms
(e.g.: neural-based autoencoders, graph-neural networks, self-
attention) to extract diverse information about physicochemical
properties, structural properties, bioactivity, and other endpoints
(Koutroumpa, 2023). The resulting DL models not only learn their
own expert feature representations directly from the data, but they
also learn how to weigh these features to deliver accurate
predictions. Several frameworks have been implemented and
published, which consist of pretraining models for sequence- or
graph-based molecular representations in a self-supervised or
unsupervised framework, using large unlabeled datasets (e.g.:
ChEMBL (Gaulton et al., 2017), ZINC (Irwin and Stoichet,
2005)). The models can then be fine-tuned for more specific
tasks. This methodology is particularly amenable to transfer
learning, which has been very well exploited in both graph
computing and NLP spaces. For instance, Ashtawy et al.
(Ashtawy et al., 2021) pre-trained a GNN molecular
representation model that performs comparably or better than
supervised models when fine-tuned over several ADMET related
tasks. Li and Fourches proposed MolPMoFiT, a transfer learning
approach based on self-supervised pre-training and task-specific
fine-tuning for QSPR/QSAR modeling (Li and Fourches, 2020).
MolPMoFiT was used to build predictive models for small datasets
that showed comparable or better performances on several datasets
compared to state-of-the-art D-MPNN, Random Forest, and other
Feed Forward Network models. Lately, inspired by their success in
NLP, attention-based transformer models (Honda et al., 2019;
Irwin et al., 2022) have emerged as more powerful architectures for
encoding molecular representations to predict reactions or
properties. For example, to learn molecular embeddings, Irwin
et al. (Irwin et al., 2022) pre-trained several Bidirectional Auto-
Regressive Transformer (BART) models on >100 million datasets
from the ZINC-15 dataset (Irwin and Stoichet, 2005). In a multi-
task learning framework, the models were rapidly trained on
several sequence-to-sequence (e.g.: direct synthesis) and
discriminative (e.g.: activity) prediction tasks, yielding task-
specific models with comparable or better performance
compared to the baseline. Several other sequence-based (e.g.:
Bidirectional Encoder Representations from Transformers
(BERT), Siamese RNNs, and graph-based (e.g.: D-MPNNs)
frameworks for representation and transfer learning have been
developed and implemented to build predictive models with
improved performances (Yang K. et al., 2019; Payne et al.,
2020; Fernández-Llaneza et al., 2021) (See Table 4). Moreover,
to leverage the advantages and alleviate the limitations of various
molecular representations, it is common to build hybrid

architectures by combining them, as illustrated by several recent
publications (Hasebe, 2021; Li M. et al., 2021).

Training DNNs typically requires larger amounts of training
data compared to traditional MLmodels. NLP-based algorithms can
benefit from numerous augmentation methods, including SMILES
randomization (Bjerrum, 2017; Arús-Pous et al., 2019) and other
SMILES-derived encodings (Lambard and Gracheva, 2020) that can
lead to improvements even in low-data regimes. Representation and
transfer learning provide opportunities to lower data size
requirements for the development of accurate predictive models.
Increasingly popular techniques include one-shot-, few-shot-, and
meta-learning, which learn rich molecular representations from
relatively small datasets (Altae-Tran et al., 2017; Nguyen et al.,
2020; Wang F. et al., 2021; Fernández-Llaneza et al., 2021; Guo et al.,
2021) and self-supervised learning methods that leverage large
unlabeled datasets (Dillard, 2021; Li P. et al., 2021). Finally,
neural prediction models implement active learning approaches
that can effectively sample the set of possible training candidates
given a fixed training budget, thereby offering a systemic approach
for exploring the data that is at the core of drug discovery research
(Konze et al., 2019; Reker, 2019).

Overall, the methods mentioned above help modeling several
endpoints of utmost importance in agrochemical discovery that
have traditionally been difficult to tackle. For instance, the
prediction of activity translation, which is typically limited to
small datasets given the low number of molecules tested,
especially in higher tiers, could be addressed using approaches
that perform well in low-data regimes. The key methods
discussed above are summarized in Table 4. For a comprehensive
review of molecular representations and machine/deep learning
methods used for molecular property prediction, readers are
referred to other publications (Lo et al., 2018; Lo et al., 2019; Sun
et al., 2020; Wieder et al., 2020; Mao et al., 2021; Dhamercherla et al.,
2022).

3.4.2.3 Rigorous performance evaluation criteria
The success stories referenced throughout this review highlight

not only the importance of AI in crop protection discovery, but also
the fact that so far, no single (ML or DL) algorithm or molecular
representation (Sabando et al., 2021; Orosz et al., 2022) is found to
be best suited for most modeling tasks. It is thus important to define
means for adequate comparative evaluations of a model as it would
provide a fair model assessment and facilitate the selection of the
most suitable algorithms and approaches for future modeling tasks
(Liu et al., 2018b). Examples of high-quality datasets that are used
for training and comparative evaluations include, among others, the
Tox21 (Huang et al., 2016; Mayr et al., 2016), PubChem BioAssay
(Wang et al., 2012), and MoleculeNet (Wu et al., 2018) datasets,
which are available either in raw formats or as encoded objects in
various DL packages such as DeepChem (Ramsundar et al., 2019),
Chemprop (Yang X. et al., 2019), and DGL-LifeSci (Li P. et al., 2021).
It is highly desirable that such packages also include datasets for Ag-
relevant molecular endpoints. In recent years, several comparative
evaluations (with respect to accuracy, computational efficiency, etc.)
of traditional and deep learning algorithms have been published
(Jiang et al., 2021; Rao et al., 2021). In several experiments,
traditional machine learning using traditional molecular
representations approaches significantly outperformed deep
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learning models using unsupervised molecular representations,
showing a different trend than studies referenced in the previous
section. Interestingly, in a recent study combining less expensive
traditional algorithms, such as Gaussian processes and random
forests, Green et al. (Green et al., 2023) demonstrated that fixed
[e.g.: ECFP (Rogers and Hahn, 2010]) or learned representations
[e.g.: Mol2vec (Jaeger et al., 2018)] could often yield better overall
results compared to fully deep-learning-based approaches, both for
property- and ADMET-related predictive modeling tasks. The
overall takeaway is that the potential of DL has not yet been fully
exploited in chemistry. In contrast to other areas like computer
vision, there is still a lot to uncover and prove. Moreover, traditional
ML algorithms and molecular representation techniques will not be
obsolete soon. It can be expected, as pointed by Bender and Cortés-
Ciriano (Bender and Cortes-Ciriano, 2021a), that learned
representations could become more useful in high-data regimes,
whereas expert-chosen representations will probably remain more
useful when data is scarce. Benchmarking would help establish
guidelines in the setup and hyperparameter tuning, and in
identifying trends that guide the selection of appropriate
algorithms, molecular embeddings, and predictive models.
Additionally, meta learning (Olier et al., 2018) can help
understanding the relationships between the performance of ML
algorithms and measurable properties, as well as selecting the best

predictive models (Cruz et al., 2018; Olier et al., 2018; Cruz et al.,
2020). Furthermore, given that ligand-based models are prone to
false positives, more research is needed to develop algorithms that
systematically identify gaps where the model learned a trivial
relationship that is not generalizable.

3.4.2.4 Explainability and uncertainty estimation of
predictive models

Besides high performance (as measured by various metrics) and
scalability, it is highly desirable that predictive models be explainable.
The ability to assess the contribution of a molecule’s various structural
features and physicochemical properties, among other features, towards
quantitative or qualitative output variables is critical for designing,
assessing, and optimizing molecules. Unfortunately, the black box
nature of most ML (especially DL) approaches, makes it difficult to
interpret the prediction from QSAR models, and thus, impedes their
widespread adoption. In recent years, explainable AI (XAI) has been the
focus of numerous drug discovery research projects (Jiménez-Luna
et al., 2020b). In the area of QSAR, one can distinguish among feature-,
atom/fragment-, compound-, and graph-based approaches for model
explanation (Rodríguez-Pérez and Bajorath, 2021) (See Table 4). While
atom-/fragment-based and graph-based approaches could, for instance,
highlight substructures that contribute to soil degradation of a specific
molecule, feature-based approaches could explain how specific

TABLE 4 Examples of key AI-driven algorithms and methods for prediction of molecular properties.

Class Method description References/Examples

Dynamic Selection Techniques for dynamic selection of classifiers based on individual
sample

Cruz et al. (2018)

Ensemble learning Combination of multiple learners for performance improvement Svetnik et al. (2003); Sheridan et al. (2016); Kwon et al. (2019); Davronov
and Adilova, (2021)

Fully Connected DL Fully connected deep learning network for Single-task QSAR analysis Ma et al. (2015)

GCN Multitask graph convolutional networks Montanari et al. (2019)

Fully Connected DL Fully connected deep learning network for Multi-task QSAR analysis Kearnes et al. (2016)

GCN PotentialNet family of graph convolutions for protein-ligand binding
affinity

Feinberg et al. (2018); Feinberg et al. (2020)

GNN Molecular Contrastive Learning Wang et al. (2021c)

MPNN Message passing neural networks for molecular property prediction (Yang X. et al. (2019); Stokes et al. (2020); Chen et al. (2021); Heid et al.
(2023)

Graph Transformer Molecular encoding using hybrid MPNN-Transformer architectures Rong et al. (2021)

NLP inspired Autoencoder-based Molecular encoding and QSAR Winter et al. (2019)

NLP inspired Transformer based encoder model Honda et al. (2019); Payne et al. (2020); Irwin, Dimitriadis et al. (2022)

NLP inspired Transfer learning for NLP based classification tasks Li and Fourches (2020)

NLP inspired Siamese RNNs for QSAR Prediction Fernández-Llaneza et al. (2021)

Active Learning Retrosynthetic and combinatorial synthesis coupled with Active Learning Konze et al. (2019)

Explainable Artificial
Intelligence

Methods to provide interpretability to ML/DL models. These include
approaches for explaining their predictions, quantifying their
uncertainty, and estimating their applicability domains

Interpretability Ribeiro et al. (2016); Lundberg and Lee, (2017); Nori et al.
(2019); Rodríguez-Pérez and Bajorath, (2021)

Uncertainty estimation Liu et al. (2018a); Cortés-Ciriano and Bender,
(2019); Gawlikowski et al. (2021); Zhong et al. (2022)

Applicability domain Liu and Wallqvist, (2019), R. P. Sheridan, (2015);
Schroeter et al. (2007); Supratik et al. (2018)

Frontiers in Chemistry frontiersin.org15

Djoumbou-Feunang et al. 10.3389/fchem.2023.1292027

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1292027


molecular properties influence the toxicity against honeybees, for
example. Commonly used methods include feature attribution and
graph-convolution-based methods. Feature attribution methods, such
as SHAP, LIME, and DeepLIFT, determine the importance of every
input feature towards a prediction (See Figure 7). Various subgraph
identification, and attention-based approaches have been developed to
provide explainability to DNNmodels (Karpov et al., 2020;Weber et al.,
2021). For instance, GNN-explainer, which provides explanations for
every graph-based machine learning, was able to correctly identify
several functional groups known to be mutagenic to Salmonella
typhimurium (Ying et al. 2019). In recent years, several benchmarks
have been published for comparing the interpretability of various XAI
methods using traditional (e.g.: Random Forest, SVMs) and deep
learning models (Sanchez-Lengeling et al., 2020; Klaise et al., 2021;
Matveieva and Polishchuk, 2021).

The interpretability of a model can not only provide insights into
the relationship between features and the modeled outcome, but also
helps to select the best features tomodel similar tasks, resulting in better
performance. However, as recommended by Muratov et al. (2020),
model explanations must be used with caution. Scientists should only
be confident in a predictive model if it is generalizable enough to
perform well on unseen data, and the molecules of interest are within
the model’s domain of applicability. It is, therefore, important that the

predictive model be deployed along with tools or capabilities to define
its domain of applicability for the assessment of compounds of interest,
and to estimate the uncertainty of its predictions. Several approaches
(e.g.: ensemble, probabilistic, and distance) that are applicable to
different types of machine learning algorithms have been developed
to quantify prediction errors and estimate applicability domains
(Schroeter et al., 2007; Cortés-Ciriano and Bender, 2019;
Gawlikowski et al., 2021). As demonstrated by Zhong et al. (2022),
uncertainty estimation can also be used to increase the applicability
domain of QSAR models, which is critical, especially in low-data
regimes. Overall, it is believed that implementing methods for
uncertainty estimation and model explainability could help tackle
some of the most challenging, unaddressed problems, such as the
prediction of activity translation and the prioritization of molecules
between different experimental tiers, as the number of datapoints
becomes increasingly smaller and more realistic experimental
settings are employed for testing, thus increasing the complexity of
modeling tasks.

3.4.3 Structure-activity-relationship (SAR)
visualizations

Adding information from our structure classifications (e.g.:
R-group decomposition described above) and predictive models

FIGURE 7
Examples of QSARmodel explanations using feature attributionmethods LIME and SHAP. (A) Explanation of Quinalphos’ predicted aryl hydrocarbon
receptor (AhR) agonistic activity using LIME. The explanation displays the contribution of various tokens to the predicted output from an LSTM model
trained on the Tox21 AhR dataset using SMILES representations. (B) SHAP Waterfall Plot to explain the contributions of various features towards AhR
activity of a single molecule as predicted by a random forest model trained on the same dataset. This time, the model uses physico-chemical
properties computed by RDKit as input features. For this example, the ALogP contributes themost towards predicted activity (class 1), while the Largest Pi
Chain features contributes the most towards predicted inactivity (class 0). (C) Global interpretation of the AhR random forest model with SHAP. On
average the “Largest Pi Chain” features contributes the most towards predicted activity and predicted inactivity.
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to any plot of biological activity automatically gives rise to SAR plots.
It is now possible to look for themes and features that drive towards
the desired activity profiles. Modern data visualization tools such as
Tibco Spotfire with Lead Discovery (Perkin Elmer) (Elmer, 2023)
and Tableau (Tableau Software, 2023) make it easy to construct
interactive displays that allow the researcher to explore the
connections between the structural features and classes, and the

biological data. There are several good examples of additional SAR
visualizations in the literature including SARNEA (Lounkine et al.,
2010), SAR Matrices, which can overcome the inflexibility of
R-group decomposition (Yoshimori et al., 2019), and SAR Maps
(Agrifiotis et al., 2007). SAR Matrices can support bioactivity
prediction, and large-scale database building for analog searching,
among other applications (Yoshimori and Bajorath, 2020).

FIGURE 8
(Continued).
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One valuable visualization for the researcher is a “Chemistry-Space
Map”. This is often called a star-field map due to its similarity to
nighttime sky. Each compound ismapped in a 2D or 3D space in such a
way as to group the most similar compounds together while still
showing the relationships to more dissimilar compounds. The layout
is created using a set of structure descriptors and then analyzed using a
numerical approach such as t-distributed stochastic neighbor
embedding (t-SNE) (Karlov et al., 2019; Andronov et al., 2021),
Uniform Manifold Approximation and Projection (UMAP)
(McInnes et al., 2018), or Tree MAP (Probst and Reymond, 2020).
These maps provide a useful structure-based organization of the project
chemistry which can then be analyzed further by layering on the
biological results (Janssen et al., 2019). For example, Gonçalves et al.
(Gonçalves et al., 2021) utilized a combination of t-SNE and k-means
methods to compare several hundred novel isoxazolines to
commercialized isoxazoline insecticides, clearly identifying areas of
novelty. Additionally, Wang et al. (Wang et al. 2022) mapped
approved drugs with similar commercial herbicides to suggest
isoteric replacements for novel herbicide chemotypes. Figure 8A
depicts a t-SNE analysis of all FRAC, HRAC, and IRAC compounds
available in ChEMBL. As this dataset does not contain the newest
picolinamide fungicides Inatreq™, Adavelt™, and Haviza™, we added
these structures and filtered to only fungicides to highlight this
technique’s ability to qualitatively identify novel areas of chemistry
(Figure 8B). The newer, non-macrocyclic picolinamides are clearly
distinct from the natural product-derived macrocycle. Further filtering
to only sterol biosynthesis inhibitors (Figure 8C) provides clusters at
each site of action which generally overlap with chemical class.

3.4.4 Metabolism
Metabolomics is a field of “omics” research that focuses on the

high-throughput characterization and identification of small
products of cell metabolism, called metabolites, within biological
matrices (Wishart, 2008). In agriculture, the metabolite content and
its alterations are related to developmental and differentiation
processes, plant and fruit maturation processes, as well as
resistance to external stimuli such as pathogen attacks and other
environmental factors (Ibarra-Estrada et al., 2016). From an active/
lead discovery standpoint, how a molecule is metabolized within a
biological species influences its mode of action, bioactivity, and
toxicity, among other parameters (Aliferis and Chrysayi-
Tokousbalides, 2011). Compared to pharmaceutical discovery,
metabolomics studies in agrochemical discovery encompass a
larger and more complex set of biological systems, as pesticides
are applied on and around crops. These systems include pests
(insects, weeds, fungi, fish, etc.), the crops to be protected, and
the surrounding environment (non-target organisms, soil, water,
etc.). While in the early design phases scientists may often promote
molecules with no major toxic metabolites to rapidly discard toxic
molecules, or control the metabolism/activation process of the
future active ingredient (Jeschke, 2016), it becomes important, as
molecules progress through the lead optimization stage, to identify
all metabolites for toxicity and environmental fate (U.S. EPA,
2023a). Moreover, less toxic yet non-degradable compounds are
of concern too, due to bioaccumulation potential. For these reasons,
a deep understanding of small molecule metabolism and
environmental fate at early discovery stages would allow rapid

FIGURE 8
(Continued). T-SNE analysis of all FRAC, IRAC, and WRAC compounds in the ChemBL database using the cuML library using circular fingerprints
using the OpenEye toolkit (atom type, 2 bond radius) folded into a 512 bit array (A) then filtered to fungicides after the analysis (B) and further filtered to
sterol biosynthesis inhibitors (C).
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screening of millions of compounds to prioritize the more promising
ones, thus leaving more time and resources for synthesis and other
phases of the DMTA cycle (Clark, 2018) or simply to accelerate the
whole discovery process. Thus, over the last two decades,
cheminformatics and AI-based tools have become ubiquitous in
the development of cost-effective tools for automated metabolite
elucidation and metabolic data interpretation.

A major bottleneck in metabolomics is the structural elucidation
of small molecules detected in metabolism and environmental fate
studies (Wishart, 2008). Typically, this involves the acquisition of
spectra (mass or nuclear magnetic resonance (NMR)) from
biological or environmental samples, followed by their processing
and matching against reference spectral databases to identify the
corresponding chemical structure(s) (See Table 3). Unfortunately,
current libraries are neither comprehensive nor structurally diverse
enough to support the retrieval of all known metabolites, which
often leads to extremely low identification rates (<2%) in untargeted
metabolomics experiments (da Silva et al., 2015). To address this
data scarcity and many other challenges of structure elucidation, in
silico approaches usually follow the assumption that structurally
similar compounds possess similar fragmentation patterns and
properties under similar conditions (Schollée et al., 2017). To
assess and leverage this “quantitative structure-fragmentation
relationship” (QSFR), they generally combine cheminformatics
concepts such as molecular fingerprints (Rogers and Hahn,
2010), structure-based classification (Djoumbou et al., 2016; Kim
et al., 2020), chemical-informed clustering (R. Ash, 2019), and
structure/reaction representation languages (Daylight Chemical
Information Systems, Inc, 2019a; Daylight Chemical Information
Systems, Inc, 2019b) with machine learning approaches, ranging
from random forest to DNNs (Liebal et al., 2020). Notable
contributions to improve metabolite identification workflows
include, among others, tools for spectra pre-processing (Li and
Wang, 2019; Melnikov et al., 2020), the prediction of MS and
NMR spectra from molecular structures (Castillo et al., 2016;
Wang et al., 2021b; Hong et al., 2023), as well as the prediction
of molecular structures and features from MS spectra (Wang et al.,
2021c; Dührkop et al., 2021) (See Table 3). Altogether, suchML tools
can be used to propose chemical structures without database search
or expanding reference databases (Guijas et al., 2018; Wishart et al.,
2018; Djoumbou-Feunang et al., 2019b) to boost the identification
rates.

The identification of (major) metabolites and metabolic
pathway, and the expansion of metabolome databases in
particular, could be further facilitated by using metabolism and
environmental fate prediction tools, which can suggest
biologically feasible and relevant structures. Such tools are thus
relevant not only in early (e.g.: molecule design, lead optimization,
ADME-Tox profiling) but also in late (e.g.: metabolism and
environmental fate studies, ecotoxicological risk assessment)
stages of the agrochemical discovery process (Clark, 2018).
Currently, most of the available software tools focus solely on
human/mammalian metabolism (Litsa et al., 2020;
SimulationsPlus, 2023), and environmental microbial
metabolism (Wicker et al., 2016). Only a few tools (Djoumbou-
Feunang et al., 2019a; QSAR Toolbox, 2023) allow comprehensive
prediction for several biological systems including human hepatic
and gut microbial, environmental microbial, etc. Unfortunately,

most of these tools have been developed using training data
mostly comprising drugs and drug-like molecules and perform
less well on ag-relevant chemistries. Moreover, xenobiotics
metabolism is difficult to predict, as several factors
(polymorphisms, expression levels, reference data scarcity, etc.)
affect the training of predictive models. Another limitation to the
comprehensive prediction of metabolism and biodegradation
products obtained from agrochemicals is that software tools
that predict plant metabolism (Karp et al., 2019; Pathway
Tools, 2023), and abiotic transformations (U.S. EPA, 2023b) of
small xenobiotics are scarce at best. Furthermore, the increasing
emphasis on pollinator-friendly farming implies that there is an
urgency to develop and share computational tools and resources
that can enable the prediction/elucidation of metabolites in
pollinator species (e.g.: bees), and how metabolic alterations
affect them (du Rand, 2015). These limitations must be
addressed by harnessing data from publicly available regulatory
reports and private data. Furthermore, scientists should leverage
recent works in the area of synthetic reaction prediction, as the
methodologies and algorithms could apply to metabolism
prediction as well. For instance, Litsa et al. developed
transformer-based, template-free model for mammalian drug
metabolite prediction, with comparable performance to
template-based models such as BioTransformer and SyGMa
(Litsa et al., 2020).

The analysis and interpretation of metabolic data is another
very cumbersome task in metabolomics. Such analyses are
conducted to study the response of plants and target species
to external stimuli, and identify metabolic/biosynthetic
pathways, among other tasks. Some of the most promising
approaches rely on statistical analysis, as well as substructure-
and network-based methods, which are often combined with
machine/deep learning. Readers are referred to publications by
De Souza et al. (De Souza et al., 2020), Ramos et al. (Ramos et al.,
2019), and Beniddir et al. (Beniddir et al., 2021) for a
comprehensive review of such methods. Furthermore, several
recent articles provide a comprehensive review on the
applications of AI in metabolomics (Uppal et al., 2016;
Heinemann, 2019; Liebal et al., 2020; Pomyen et al., 2020).
For a list of software tools and resources that enhance
metabolomics, readers are referred to Table 3.

4 Impact of cheminformatics on
sustainability and environment-friendly
programs

Insect population decline (Belsky and Joshi, 2019; Sánchez-Bayo
and Wyckhuys, 2019) has, partly due to use of agrochemicals, led to
the development of novel strategies to promote ecological-resilience
and sustainable crop protection. Examples of such strategies include
designing new broad-utility nitrogen stabilizers with improved
safety, and herbicides with novel, un-exploited, or proven
efficient mode of action for effective and durable control of
driver weeds in crops. Within just a few decades, the term
sustainability has gained in popularity and significance. Recent
agricultural methods are far more efficient than those farmers
used a few decades ago, primarily due to advancements in
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technology such as using big data in agricultural practices to
characterize chemical toxicity and impacts on human wellbeing
and ecosystem health, and advancements in plant genotyping
methods and sequencing as promising tools for plant breeding
and genetics research. The insights and recommendations derived
from these advanced data analytics and bioinformatics tools
together with the adoption of precision agriculture technologies
guide us toward having safer, efficient, and more environmentally
friendly alternatives.

Mathematical and in silico models are being used in food (from
farm to fork) and agriculture sectors for sustainable and resilient
systems with the general goal of providing safer food and
transitioning to more sustainable farming. For instance,
DynamiCrop is a plant-uptake multi-compartment mathematical
model (DynamiCROP, 2023) used for the assessment of human
exposure from pesticide residues in food crops. The model uses
databases of reference plant dissipation half-lives of 333 pesticides in
crops to estimate the amount and traces of pesticides in multiple
crops and also to estimate human health impacts due to the uptake
of pesticides (Peter et al., 2014). Apart from dynamic mathematical
models, in silico models and tools in the agriculture industry are
being considered inexpensive and fast alternative approaches to
toxicological and ecological assessments (Supratik et al., 2017).
Short-term toxicity assays such as Ames-mutagenicity and
carcinogenicity (Benfenati et al., 2019), skin sensitization (Borba
et al., 2021), and bee toxicity (Carnesecchi et al., 2020b) are examples
of toxicity assessments that can be assisted by in silico models for
prediction of such toxicological testing where prediction on a new
pesticide candidate can be made merely by using the chemical
structure.

Natural products have long been used as pesticides and have
broadly served as a source of inspiration for synthetic organic
fungicides, herbicides, and insecticides. Natural products are
produced by biosynthetic enzymes and pathways.
Cheminformatics tools can enhance structural characterization
and activity specification of pesticidal natural products, and thus,
make substantial contributions to the renewed field of natural
product discovery (Chen and Kirchmair, 2020). During the hit-
to-lead and lead optimization phases, ML approaches have been
applied to natural products for predicting bioactivity and their
protein targets (Olğaç et al., 2017; Cockroft et al., 2019). For
example, STarFish (Cockroft et al., 2019) uses publicly available
natural product databases and implements a stacked ensemble
approach that combines multiple ML classification models to
predict the protein target for the bioactive natural product. A
recent publication uses machine learning classifiers to predict
antibacterial or antifungal activity directly from natural product
biosynthetic gene clusters (Walker and Clardy, 2021).

An example of commercially successful natural pesticides are
Spinosyns, a large family of substances produced from fermentation
of a soil inhabiting bacterium (Saccharopolyspora spinosa) (Kirst,
2010). Two insecticidal products have been commercialized from
spinosyns: 1) Spinosad, a naturally occurring mixture of spinosyn A
and spinosyn D, and 2) Spinetoram, a semi-synthetic derivative of
spinosyns (Sparks et al., 2021). Spinosad received an expedited
review and has been registered for integrated pest management
and insect control by EPA since early 1997 (National Pesticide
Infomation Center, 2023). It is valuable in control of insect pests,

while minimizing the impact on beneficial insects (Sarfraz et al.,
2005), and has a favorable environmental profile as it does not
persist in the environment. Moreover, since Spinosad adsorbs to the
soil with a higher affinity (especially in soil-clay), leaching through
unsaturated soil to groundwater resources is minimized (Sparks
et al., 2021). Molecular modeling using cheminformatics and AI
tools has contributed, among others, to the discovery of spinosyns,
and in particular, to the development of the semi-synthetic product,
Spinetoram, with improved insecticidal efficacy and expanded
spectra (Sparks et al., 2008; Sparks et al., 2021), which is
considered a new milestone in the age of natural product-based
insecticide discovery and crop protection research.

5 Current challenges, and future
perspectives

As discussed throughout this review, cheminformatics and
artificial intelligence can significantly enhance the design and
development of novel and more sustainable crop protection agents.
Yet, several factors still limit the wider adoption of in silico tools
throughout the process. The scarcity of standardized, high-quality
agrochemical datasets remains a challenge that hampers several
processes, including but not limited to knowledge extraction (e.g.:
via semantic-based querying), and predictive modeling.

A rising concern in agrochemical research is the environmental
impact of pesticides. This has led to a renewed interest in natural
products as pesticides. Besides the methods presented here,
metagenomics-based approaches have been developed that
provide a means to mine and link the metabolome and genome
of species of interest. These techniques can be especially useful in the
identification of natural agrochemicals and species-specific target
genes. Moreover, the study of gene/protein mutations in resistant
pests can be investigated to identify the underlying mechanism and
suggest actions for the design of more potent agrochemicals or
propose newmodes of action. Validation of the proposed hypothesis
can only be achieved if protein structures are available for large and
diverse sets of ag-relevant species (e.g., pests, pollinators). This is,
however, a bottleneck in agchem research that impedes the
discovery of novel protein targets and modes of action, as well as
the generation and optimization of molecules. In 2021, significant
milestones were achieved in the prediction of protein structures
based on sequence information with the publication of AlphaFold
(Jumper et al., 2021) and RoseTTAFold (Baek et al., 2021). These
predictive models could be used, along with other in silico solutions,
to develop theoretical models and annotate protein-ligand
complexes (Simonovsky and Meyers, 2020; Agaarwal et al., 2021;
Hekkelman et al., 2023), which could be deposited in public
databases (Varadi et al., 2022). For specific discovery projects,
relevant models can then be probed using solutions described
throughout the paper for hit/active identification, target selection,
mode-of-action detection, and the design of in vitro protein assays.
Furthermore, molecules selected through virtual screening or
(generative) de novo design, can be synthesized efficiently, and
tested in vitro to provide data for further (QSAR) analysis.

The rapid development and efficient use of cheminformatics and
ML tools requires capabilities to generate, process, store, and
transfer data between various environments. Moreover,
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developing the best tools usually requires probing larger spaces with
respect to data, algorithms, and parameters. Fortunately,
frameworks for distributed storage and processing (Dask, 2023;
Spark, 2023), containerization (Docker, 2023), and orchestration
(Kubernetes, 2023), among others, can be used for the development
of scalable cheminformatics and ML solutions, and seamless
integration with diverse pipelines. Ideally, deployed tools should
be coupled with user interfaces providing capabilities for
visualization, data manipulation, and better user experience for
chemists and biologists. Moreover, efficient means for feedback
loops and timely updates of software tools are needed to further
engage users (Volkamer et al., 2023). Platform-as-a-service (PaaS),
and Model-as-a-service (MaaS) cloud computing solutions can
enhance the monitoring, use, and automated release of in silico
solutions. However, such platforms cannot be designed and used
efficiently without significant expertise and close collaborations
between all parties involved (scientists and engineers). To alleviate
these challenges, chemistry aware in silico tools such Torx® (Torx
Software Ltd, 2023) and LiveDesign® (Schrödinger, 2023a) have been
developed to help manage the complex workflows of compound
synthesis, hypotheses tracking, assay cascades, computational
analyses, and compound genealogy in a collaborative way.

Whilemajor developments have occurred in both experimental and
predictive discovery procedures, it is clear that a paradigm shift towards
a more AI-involved approach requires a gradual implementation of
inter-connected automated software and hardware solutions capable of
generating, prioritizing, and validating explainable hypotheses (with or
without human biases) upon integrative data analysis for better decision
making. This is a fairly complex task, which cannot be achieved
independently, and requires cross-collaborations, not only within but
between institutions. Several public private consortia have been created
over the last 5 years with the aim of developing comprehensive
computational discovery and synthesis platforms. Examples include
the MLPDS (MLPDS, 2023), the MELLODDY (MELLODDY, 2023),
and the ATOM consortia (ATOM, 2023). While these alliances have
predominant membership from pharmaceutical companies, we
strongly believe that the agrochemical industry would benefit from
joining.
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