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The use of organocatalysts and a pot economy has strengthened recent organic
syntheses. Synthetic methodologies may be applicable in laboratory preparation
or in the industrial production of valuable organic compounds. In most cases,
synthetic challenges are overcome by highly efficient and environmentally benign
organocatalysts in a pot-economical manner. This is exemplified by the recent
synthesis of tetrahydropyridine-containing (−)-quinine.
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In the last several decades, great progress has been made in organic synthesis. However,
we are still quite far away from the ideal goal. In particular, synthetic reactions should be
environmentally benign and should remove costly purification procedures derived from the
step-by-step procedures used in a myriad of protecting and deprotecting protocols. In recent
years, great success was achieved in overcoming these drawbacks by using several techniques,
including fluorous catalysis (DeWolf et al., 1999; Mika and Horvath, 2018), solid-supported
catalysis (Nafiu et al., 2023), biocatalysis (Pyser et al., 2021), and organocatalysis with green
chemistry metrics (Martínez J. et al., 2022). Various trials with solvent-free and aqueous
reactions (Ruiz-Lopez et al., 2020) or ionic liquids (Earle and Seddon, 2000) also succeeded
in organic synthesis, with certain limitations. In addition, multicomponent reactions (Boukis
et al., 2018; Cimarelli, 2019) were also applied based on pot-economical synthesis (Grondal
C. et al., 2010). In recent years, great success has been achieved using a combination of
organocatalysis and pot-economical synthesis. The one-pot synthesis of a target molecule in
the same reaction vessel is widely considered to be an efficient approach in synthetic organic
chemistry.

Although catalytic reactions have been known for a long time (List, 2010; Vogel et al.,
2016), including various metallic compounds and a few organic molecules, no systematic
investigation has been performed (Hajos and Parrish, 1974; Bernhard and Wolfgang, 1978).
The concept and the term “organocatalyst” were established in earnest by the novel laurates
B. List (List, 2007) and D. MacMillan (MacMillan, 2008) in 2007. They carried out various
reactions, such as the addition of electron-deficient olefins like aldol and even Diels-Alder
reactions (Chen et al., 2022). The advantages of organocatalysts include their lack of
sensitivity to moisture and oxygen, making them easy to handle. In addition, most of
them are readily available at low cost, with relatively low toxicity compared with metal
catalysts (Albrecht et al., 2022). Diverse organocatalysts were developed as chiral catalysts to
warrant the streamlined synthesis of optically active and/or pure products needed in many
areas, including pharmaceutical industries (Hughes, 2018; Han, et al., 2021).

In terms of the great synthetic challenges of any organic compounds requiring many
steps, all the necessary reactions should proceed in a highly efficient manner, including a pot-
economy. A minimum reaction vessel required for the reaction to complete is an economical
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approach, such as in a pot economy. (Grondal C. et al., 2010).
Reactions utilizing step-by-step protocols under different conditions
require costly work-up and purification procedures. For example,
the following flowchart shows three different reactions needed to get
D as a product from three different reactions I, II, and III, yielding B
and C as synthetic intermediate molecules. However, when we want
to get D from the starting material A through several reactions,
without isolating B and C, we are able to save laborious costly work-
up and purification.

A ��������������→ReactionI
B ���������������→ReactionII

C ����������������→ReactionIII
D

The best way to perform the different reactions in an efficient
and easy way is to carry out all necessary reactions I to III in one pot
under the same condition with the same reagents in the same
solvent. For example, the synthesis of substituted 2,6-
disubstituted piperidine from 3-alkynyl-2-(N-α-
methylbenzylaziridine) was successfully achieved in the same way
as shown in Scheme 1 by using a one-pot reaction under catalytic
hydrogenation, without isolating any synthetic intermediate (Yadav
et al., 2016). Under this condition, four different reactions, entailing
the hydrogenation of alkyne, aziridine ring opening, reductive
cyclization, and deprotection of the α-methylbenzyl group at the
nitrogen ring occurred, without changing anything else throughout
the whole reaction sequences.

This is quite an exceptional case. In most cases, a preparative
amount of product is accessible from reactions with different
reagents under very specific conditions. Obtaining a decent
amount of the final product in an efficient and handy protocol
is possible with a one-pot synthesis. One-pot synthesis involves
successive chemical reactions in just one reactor, from which
sufficient purity is secured further in the sequence, without any
purification. To carry out this synthesis properly, a decent reaction
yield should be provided, with different reagents for the reaction to
proceed to the specific position and functional group, even under
different solvents. The reagents used for the previous reactions
should not harm the subsequent reactions. For example, reactions
II and III should be carried out by selecting proper reagents after
killing the reactivity from the previous reactions to avoid harming
the next reaction, i.e., reaction II from I and reaction III from both
I and II. For this purpose, the synthetic intermediates in most cases
are not stable for the next reaction, or they are in equilibrium for
the next reaction. Selecting solvents is also a crucial factor for the
specific reaction. In most cases, changing the solvents should be
simple after one reaction, owing to the relatively low boiling points
for them to be removed via simple evaporation.

For an efficient and environmentally benign synthesis, a pot-
economical method is better for use in conjunction with
organocatalysts. For example, the Michael reactions of
nitroalkenes shown in Scheme 2 were investigated intensively,
taking advantage of their superior reactivity toward the
nucleophile and its practicability. Proper selection of
organocatalysts derived from proline makes this transformation
asymmetric, with high yields, and these are used in many cases.
Though various organocatalysts were developed and utilized to
make these reactions possible, diarylprolinol silyl ethers (Cat) are
the most widely used as simple and very efficient catalysts. They
carry out the reactions, including Michael reactions of nitroalkanes
between 2 and 3, in a highly efficient manner to yield products 4
with high optically purities (Y. Hayashi et al., 2005; Jensen et al.,
2012; Reyes-Rodríguez et al., 2019) (Scheme 2). Once the key bond
has been made, the others are followed by stereoselective reactions,
with carbocyclic or heterocyclic ring transformations. The newly
constructed bonds formed from organocatalysts are green, with
specific examples indicated by the green-colored bonds in Scheme 2.
In this manner, there are many reports showing that the
organocatalytic reactions were very efficient ways of making the
bonds needed in biologically important molecules, including
pharmaceuticals and natural products such as acyclic and cyclic
molecules. Some representative examples of organocatalyst proline
derivatives, including diarylprolinol silyl ethers (Cat) are gabapentin
(Gotoh et al., 2007), sacubitril (Hughes, 2018), prostaglandin PGF2α
(Coulthard et al., 2012; Scheffler and Mahrwald, 2013), oseltamivir
(Ishikawa et al., 2009; Ishikawa et al., 2010; Hayashi and Ogasawara,
2016), (+)-(α)-lycorane (Meng et al., 2014), (+)-microminutinin
(Huang et al., 2017), and pyrrolysine (Han et al., 2013).

Recently, one outstanding publication that is worth looking into
in detail deals with the two important aspects, pot-economical and
organocatalytic synthesis, and was carried out by Professor Y.
Hayashi’s lab. They performed a very impressive synthesis of a
(−)-quinine (1) natural product consisting of core azaheterocycle
tetrahydropyridine (Terunuma and Hayashi, 2022). The synthesis,
with a piperidine ring needed for the preparation of unnatural
enantiomer, was previously published with an organocatalyst via (3
+ 3) cyclization and Strecker-type cyanation (Shiomi, et al., 2019).
However, a strategically different method was used to obtain
azaheterocycle tetrahydropyridine as a core ring of the natural
enantiomer (−)-quinine. The addition of aldehyde 5 to 2-
phenylnitroalkene (6) for an aza-Henry reaction was initiated in
the presence of 20 mol% of diphenyl prolinol trimethylsilyl ether as a
catalyst (Scheme 3). Moreover, their synthesis was in conjunction
with the pot-economical manner, leading to several reactions in the
same vessel without any extra procedures or work-up (Hayashi,
2016). The imine needed to make a tetrahydropiperidine ring from
the initial adduct between 5 and 6 would enhance the synthesis of 9
in the same vessel for a reaction completed in one pot.

The initial acyclic adduct 7, as a Niro-Michael product, was reacted
with imine generated from the corresponding sulfonyl precursor DBU
(1,8-diazabicyclo [5.4.0]undec-7-ene, 3.0 equiv) in a single pot manner.
This synthetic intermediate was converted, with the elimination of
HNO2 in the presence of DBU as a base, to yield the cyclic product 9 in
high yield (66%) and high e. e. (98%), with 1:1 at C2 d.e. The hydroxy
substituent at C2 is eventually eliminated. All the reactions starting from
5, 6, and the iminocarboxylate to 9 proceed sequentially in the one-pot

SCHEME 1
Synthesis of piperidine from multi-reactions of the starting
material 3-alkynyl-2-(N-α-methylbenzyl)aziridine.
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protocol. To succeed in this reaction sequence, all synthetic
intermediates were kinetically and thermodynamically favorable to
afford the next product without any hindrance from the previous
reagents, as shown in Scheme 3. The best way to perform this synthetic
strategy is for all necessary reactions to succeed in a single operation
without changing the reagents and solvents. However, this is very rare,
with the assumption that the same reagents under the same solvent can
carry out different reactions in a certain direction. Except for rare cases,
almost all the reactions require different reagents under different
solvents. Therefore, the reaction should be well designed to perform
the steps in a pot-economical manner. As a diastereomeric mixture, the
initial crude cyclic compound 9 from Pot 1 proceeded further for
dehydroxylative reduction by CF3CO2H and Et3SiH. Then, the
reduction of enamine to amine was followed by the reducing agent
NaBH(OAc)3. All the excessive reductive reagents were destroyed by
the reaction with additional acetaldehyde. This second one-pot reaction
(Pot 2) afforded the azaheterocycle 10 as an almost single stereoisomer,
with the correct stereochemistry. In Pot 3, it is relatively straightforward
to obtain olefin 11with the release of aryl thiol according to theMatsuo
protocol (Matsuo et al., 2006) with 2,4,6-trimethylphenylsulfonylamide.

The substituent carboxy ester was then reduced by DIBAL under low
temperatures to give rise to aldehyde 11. Then, 2-bromo-6-
methoxyquinoline was added to this aldehyde, generating a
diastereomeric mixture of hydroxy carbon without much
stereoselectivity between re- or si face addition. However, this
problem was overcome by oxidation of the alcohol adduct to ketone
by DMP (Dess-Martin Periodinane), followed by the stereoselective
reduction by LDBBA (lithium diisobutyl-tert-butoxyaluminum
hydride), leading to the right isomer 12 needed for target 1 with
more than 80% yield (Pot 4). The next steps in Pot 5 are the removal of
bromine in the aryl ring and deprotecting the TBDPS and Boc groups
from the free hydroxy group by treatment with Zn and AcCl. This
primary hydroxy group was mesylated for the final cyclization with
nitrogen to give quinuclidine under mild conditions using NaI and
K2CO3. These four reactions are performed in a one-pot sequence with
77% yield. All these reactions are highly stereospecific, as seen in the
synthesis of the expected (−)-quinine (1) in a pot economical manner.
This report brings up two important and challenging synthetic
methodologies in organic chemistry, i.e., the use of environmentally
benign organocatalysts and pot economy.

SCHEME 2
General synthetic scheme of bond formation and stereochemistry shown in green in adduct 4 based on organocatalytic nitro-Michael reactions
from 2 and 3. The catalyst used was proline or its diarylprolinol silyl ethers (Cat) derivatives. The specific cases of initial organocatalytic reactions with
starting materials and catalysts are shown in parenthesis on the right side of the examples, with the construction of green-colored bonds.
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This perspective focuses on the use of organocatalysts in a pot-
economical manner for the recent synthesis of tetrahydropyridine-
containing (−)-quinine. These synthetic methodologies may be
applicable in laboratory preparation or in the industrial
production of valuable organic compounds (Bernardi, et al.,
2021). Most synthetic challenges are highly efficient and
environmentally benign with organocatalysts in a pot-economical
manner.
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SCHEME 3
(−)-Quinine (1) synthesis reported by Professor Y. Hayashi’s lab (Terunuma and Hayashi, 2022) using an organocatalyst in a pot-economical manner
as a key step in constructing the initial important bonds, highlighted in blue, followed by stereoselective reduction and aryl Grignard addition, as shown by
the yellow and red bonds.
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