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TheCOVID-19 pandemicwas declared due to the spread of the novel coronavirus,
SARS-CoV-2. Viral infection is caused by the interaction between the SARS-CoV-
2 receptor binding domain (RBD) and the human ACE2 receptor (hACE2). Previous
computational studies have identified repurposed small molecules that target the
RBD, but very few have screened drugs in the RBD–hACE2 interface.When studies
focus solely on the binding affinity between the drug and the RBD, they ignore the
effect of hACE2, resulting in an incomplete analysis. We screened ACE inhibitors
and previously identified SARS-CoV-2 inhibitors for binding to the
RBD—hACE2 interface, and then conducted 500 ns of unrestrained molecular
dynamics (MD) simulations of fosinopril, fosinoprilat, lisinopril, emodin, diquafosol,
and physcion bound to the interface to assess the binding characteristics of these
ligands. Based on MM-GBSA analysis, all six ligands bind favorably in the interface
and inhibit the RBD–hACE2 interaction. However, when we repeat our simulation
by first binding the drug to the RBD before interacting with hACE2, we find that
fosinopril, fosinoprilat, and lisinopril result in a strongly interacting trimeric
complex (RBD-drug-hACE2). Hydrogen bonding and pairwise decomposition
analyses further suggest that fosinopril is the best RBD inhibitor. However,
when lisinopril is bound, it stabilizes the trimeric complex and, therefore, is not
an ideal potential drug candidate. Overall, these results reveal important atomistic
interactions critical to the binding of the RBD to hACE2 and highlight the
significance of including all protein partners in the evaluation of a potential
drug candidate.
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Introduction

In December 2019, a novel coronavirus, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), was identified in Wuhan, China (Wang et al., 2020a).
The spread of the virus caused a global outbreak of the infectious disease, coronavirus
disease 2019 (COVID-19), which the World Health Organization declared the COVID-
19 pandemic (Pascarella et al., 2020). Currently, more than 1 million people in the
United States (US) have died from SARS-CoV-2 infection, and about 104 million cases
have been confirmed in the US. Viral infection of SARS-CoV-2 is due to the interaction
between the SARS-CoV-2 spike protein and the human angiotensin-converting enzyme
2 (hACE2) receptor (Wu et al., 2020).
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The hACE2 receptor, located on the surface of human throat
and lung epithelial cells, is the target for SARS-CoV-2 (Mittal et al.,
2020). In a healthy human, hACE2 is responsible for regulating heart
function and the renin-angiotensin system (RAS).
hACE2 hydrolyzes angiotensin II to its active form, angiotensin
1–7, which counterbalances the adverse effects of the RAS (Burrell
et al., 2004; Jiang et al., 2014; Cruz-Diaz et al., 2017; Wang et al.,
2020b). SARS-CoV-2 contains spike-like projections of
glycoproteins on its surface that are responsible for host cell
infection. Specifically, the ectodomain of the SARS-CoV-2 virus
consists of a receptor binding subunit (S1) which contains the
receptor binding domain (RBD), residues 331–528, and a
membrane-fusion subunit (S2) (Zhang et al., 2021). The SARS-
CoV-2 RBD consists of a section of amino acids, residues 438–506,
referred to as the receptor binding motif (RBM), that interact
directly with hACE2 (Yi et al., 2020).

To prevent SARS-CoV-2 infection or lessen the symptoms of
COVID-19, researchers have developed vaccines, antivirals, and
other therapeutics. The US Food and Drug Administration
(FDA) approved the bivalent mRNA vaccines developed by
Pfizer-BioNTech and Moderna and issued emergency use
authorization (EUA) for the adjuvanted subunit vaccine
developed by Novavax (Creech et al., 2021; U. S. Food and Drug
Administration, 2023). The antibodies produced as a result of these
vaccines can target the RBD and are capable of prohibiting the virus
from interfering with hACE2 (Krammer, 2020; Mascellino et al.,
2021). Additionally, over the past few years, effective SARS-CoV-
2 antiviral therapies have been produced and are continuing to be
developed. These antivirals inhibit SARS-CoV-2 enzymes, such as
the SARS-CoV-2 polymerase or protease, or inhibit SARS-CoV-
2 viral entry into host cells. Inhibitors such as remdesivir,
tocilizumab, and baricitinib are FDA approved (Kalil et al., 2021;
Kulanthaivel et al., 2021). Previously developed vaccines and
antivirals are extremely effective in reducing hospitalizations and
deaths among vaccinated individuals (Shang et al., 2020; Tenforde
et al., 2021). Despite these advances, there is a continued need to
explore the molecular nature of this virus and identify a drug capable
of disrupting the RBD - hACE2 interface.

Previous works have studied the behavior of novel and
repurposed drugs as SARS-CoV-2 inhibitors targeting the spike
protein (Br et al., 2020; Jaiswal and Kumar, 2020; Wang et al., 2022),
RNA polymerase (El Hassab et al., 2020; Parvez et al., 2020; Elkarhat
et al., 2022), or the main protease enzyme (Alnajjar et al., 2020; Teli
et al., 2021; Airas et al., 2022). The RBD of the spike protein is an
often-used target in order to inhibit its interaction with
hACE2 receptors, thereby preventing viral infection. Many
studies have identified potential inhibitors using molecular
docking and/or molecular dynamics (MD) simulations against
solely the RBD (Faheem et al., 2020; Prajapat et al., 2020; Trezza
et al., 2020; Kumar et al., 2021; Hu et al., 2022; Wu et al., 2022) or
solely the hACE2 receptor (Benítez-Cardoza and Vique-Sánchez,
2020; Kabir et al., 2021). Very few studies have analyzed the
interaction of small drug-like molecules with the
RBD–hACE2 interface. Al-Karmalawy et al. screened
angiotensin-converting enzyme (ACE) inhibitors against the RBD
- hACE2 interface and found lisinopril and alacepril to be a
promising inhibitor candidates (Al-Karmalawy et al., 2021). The
work of Issac-Lam screened ACE inhibitors in addition to

ACE2 blockers, blood thinning agents, cholesterol-lowering
medications, repurposed drugs, and remdesivir against the RBD,
hACE2, and the interface. Only nine ligands were successfully
docked at the interface, including three ACE inhibitors:
benazepril, captopril, and fosinopril. However, each ACE
inhibitor was found to have a relatively low docking score for the
interface and preferred to bind to hACE2 (except benazepril) (Isaac-
Lam, 2021).

Molecular simulations to evaluate repurposed small molecules
as effective SARS-CoV-2 therapeutics are a significant area of
research. Ideally, repurposed drug-like ligands should bind well
to the interface between the RBD and hACE2. The protein
interaction with the drug should be specific and favorable so that
the drug can inhibit the dimeric complex and not dissociate from the
binding site. Much of the previous work in this area has focused
solely on the ability of the drug to bind to the RBD. However,
studying only this binding affinity ignores the effects hACE2 has on
that interaction. Additionally, small molecules that favorably
interact with the dimer complex can also stabilize the RBD -
hACE2 interaction instead of inhibiting it, forming a stable
trimeric complex.

We were interested in evaluating whether repurposed ACE
inhibitors could be used as SARS-CoV-2 RBD inhibitors and to
better understand if, under those conditions, the RBD -
hACE2 molecular interactions could be disrupted. ACE inhibitors
are used to treat cardiovascular and renal disease and are known to
reduce hypertension and congestive heart failure (Brown and
Vaughan, 1998). They function by inhibiting the ability of the
angiotensin-converting enzyme (ACE) to make angiotensin II, a
blood vessel constricting agent. Inhibition of the ACE enzyme
results in widened blood vessels, less pulmonary effort and lower
blood pressure (Zisman, 2005). Experimental studies suggest they do
not inhibit ACE2 function and were chosen in this study as a proof-
of-concept for understanding how small ligands interact with the
RBD - hACE2 interface (Coates, 2003; Ferrario et al., 2005). In
addition to studying ACE inhibitors binding to the interface, we also
compared the binding ability of small molecule SARS-CoV-2 drugs
identified by LSBio (Yi et al., 2020) and additional reports (Hijikata
et al., 2020; Sternberg et al., 2020). All ligands explored in this study
are depicted in Tables 1, 2. These ligands were selected for this study
as we were seeking to find previously approved drugs that could be
quickly repurposed for use in combating COVID-19.We chose ACE
inhibitors as the ACE2 binding site is homologous to one of the ACE
active sites and we added ligands shown to be SARS-CoV-2 spike
inhibitors (Prabakaran et al., 2004). We utilized the experimental
structure (6LZG) for the wild type (WT) RBD - hACE2 interface as
that was the only structure available when we began this project. As
this project progressed, the Omicron RBD mutation has become the
dominant infectious strain, but reports suggest that other than the
mutation at position 493, RBD - hACE2 interaction is the same for
WT and Omicron (Carter et al., 2023). Based on the molecular
docking results, MD simulations were conducted of the following
ligands interacting with the RBD–hACE2 interface: diquafosol,
emodin, fosinopril, fosinoprilat, lisinopril, and physcion. After
analyzing the estimated binding free energies using the molecular
mechanics-generalized born surface area solvation (MM-GBSA)
analysis of the apo and ligand-bound complexes, we found that
all ligands bind favorably to the interface, and all but physcion
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TABLE 1 Structures of ACE inhibitors selected for analysis.

Drug structure - ACE inhibitors

Benazepril Fosinoprilat Quinapril

Captopril Lisinopril Ramipril

(Continued on following page)
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TABLE 1 (Continued) Structures of ACE inhibitors selected for analysis.

Drug structure - ACE inhibitors

Enalapril Lisinopril (−1) Trandolapril

Fosinopril Perindopril
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TABLE 2 Structure of potential SARS-CoV-2 inhibitors.

Drug structure - potential SARS-CoV-2 inhibitors

Aloe Emodin LS-H15204 Diquafosol Emodin LS-H17409

Camostat LS-H6976 Emodin LS-H11074 Physcion LS-H9395
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exhibited inhibitory or disruptive effects whereby the
RBD–hACE2 interaction was less favorable in the presence of the
ligand, i.e., a more positive binding RBD–hACE2 free energy
compared to the apo energy. Additionally, we found that
fosinopril, fosinoprilat, and lisinopril displayed the best
combination of low percent dissociation and favorable binding to
RBD–hACE2. We selected these ACE inhibitors for subsequent
hydrogen bonding and pairwise decomposition analyses to better
understand their atomistic interactions in the interface. We found
that each of these three ligands were able to significantly reduce the
number of hydrogen bonds between the RBD and hACE2, with
fosinopril acting as the best inhibitor. However, lisinopril and a
specific starting pose of fosinoprilat were able to strengthen and
stabilize the trimeric complex more so than the apo complex.
Overall, we provide a detailed atomistic evaluation of how these
specific ACE inhibitors perform as SARS-CoV-2 RBD inhibitors.

Methods

Protein retrieval and preparation

The hACE2 - SARS-CoV-2 RBD crystal structure was obtained
from the Protein Data Bank (PDB Code 6LZG) (Berman et al., 2000;
Wang et al., 2020c). Chains A (hACE2) and B (SARS-CoV-2 RBD)
were selected from 6LZG. All waters were removed. Schrödinger’s
Protein Preparation Wizard (Madhavi Sastry et al., 2013) was used
to add missing hydrogen atoms, assign bond orders according to the
Cambridge Crystallographic database (Groom et al., 2016), fill
missing side chains using Prime (Jacobson et al., 2002; Jacobson
et al., 2004), predict side chain protonation states using
Schrödinger’s Empirical pKa Prediction (Epik) with a pH range
of 7 ± 2, and optimize H-bonds using PROPKA at a pH of 7 (Olsson
et al., 2011; Søndergaard et al., 2011; Schrödinger, 2019). Restrained
minimization was performed using the OPLS3e force field and the
default settings of the Protein Preparation Wizard (Harder et al.,
2016).

SiteMap analysis and receptor grid
generation

Schrödinger’s SiteMap program was used to predict and score
potential sites for ligand binding (Halgren, 2009). These potential
sites are assigned both Site Scores (SScore) and Druggability Scores
(DScore) based on volume, hydrophilicity/hydrophobicity, and
hydrogen bonding ability. Binding sites with a SScore of at least
0.8 and a DScore of at least 0.83 are likely to favor ligand binding
(Halgren, 2007; Halgren, 2009). Predicted binding sites are ranked
based on size. SiteMap was run with default parameters on chains A
and B of 6LZG. Five binding sites were identified (Supplementary
Figure S4), three of which returned favorable scores for 6LZG. Site
#2, which was identified as a potentially favorable binding site,
occurs at the SARS-CoV-2 RBD - hACE2 complex junction.
Schrödinger’s Receptor Grid Generation program (Friesner et al.,
2006) was used to generate a 40 Å by 40 Å by 40 Å receptor grid in
the x-, y- and z-directions, respectively, with a ligand size cutoff of
20 Å centered on Site #2 (Supplementary Figure S5). All parameters

were kept at their default values. This receptor grid was used for all
subsequent ligand docking.

Ligand selection, preparation, and docking

Structures of common ACE inhibitors benazepril, captopril,
enalapril, fosinopril, fosinoprilat, lisinopril, perindopril, quinapril,
ramipril, and trandolapril were manually built and optimized
according to the GAFF force field (Wang et al., 2004) using
Avogadro 1.2 (Hanwell et al., 2012). Additionally, aloe emodin-
LS-H15204, emodin-LS-H11074 and H17409, camostat-LS-H6976,
and physcion-LS-H9395 were identified by LSBio as potential SARS-
CoV-2 spike protein inhibitors and were selected for comparison to
the ACE inhibitors (Yi et al., 2020). Diquafosol was selected due to
its distinct structure and was identified as a potential SARS-CoV-
2 inhibitor by previous studies (Hijikata et al., 2020; Sternberg et al.,
2020). These drugs were also built using the same method detailed
above.While this is not an expansive list, the goal of this study was to
demonstrate that it is possible for a repurposed ligand to bind to the
SARS-CoV-2 RBD - hACE2 interface. Additionally, we want to
explore how ACE inhibitors act as SARS-CoV-2 RBD inhibitors and
compare them to other identified small molecule drugs.

The Epik tool was used to predict the protonation states of each
ligand at a pH of 7.4 ± 0.1 (Shelley et al., 2007; Greenwood et al.,
2010; Schrödinger, 2023a). We used two different structures of
lisinopril because, based on the predicted pKa, the protonation
state at this pH was ambiguous (Tables 1, 2). The Schrödinger
Glide Docking program (Friesner et al., 2004; Halgren et al., 2004;
Friesner et al., 2006) was used to dock each ligand into the receptor
grid centered in Site #2. Glide assigns a GlideScore to each ligand
based on predicted polar and nonpolar interactions within the
receptor grid (Friesner et al., 2004; Halgren et al., 2004). Default
parameters were used with the XP docking algorithm to generate five
poses per ligand. Ligands were selected for further analyses based on
the GlideScore (Supplementary Tables S6, S7). The GlideScore
cutoff was −4.5 kcal/mol; however, fosinoprilat was advanced for
further study due to the structural similarity to fosinopril and the
significant difference in GlideScores. Absorption, distribution,
metabolism, and excretion (ADME) screenings were conducted
on all ligands using Schrödinger’s QikProp ADME Program
(Schrödinger, 2023b). Results were generated using the default
settings and properties that exceeded the 95% range of known
drugs are reported in the Supplementary Material. Additionally,
pan-assay interference compounds (PAINS) screenings were
conducted on the selected ligands using the following sources:
https://www.cbligand.org/PAINS/ and https://zinc15.docking.org/
patterns/home/. The default settings were used for both screenings.

Molecular dynamics simulations

Unrestrained molecular dynamics (MD) simulations were
conducted on the apo SARS-CoV-2 RBD - hACE2 complex and
protein-ligand complexes using the AMBER 18 suite (Case et al.,
2018). Top scoring ligands as identified from Glide were selected for
further MD analysis along with fosinoprilat to diversify the range of
binding affinities tested. The ff14SB (Maier et al., 2015) and
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Glycam06j (Kirschner et al., 2008) force fields were applied to the
hACE2 and SARS-CoV-2 RBD glycoproteins. Previous studies
support the significance of glycans to the RBD and
hACE2 interface, so we ran all MD simulations with the
N-glycosylated linkages maintained (Casalino et al., 2020;
Acharya et al., 2021; Shajahan et al., 2021). The program
antechamber was used to apply the GAFF force field and AM1-
BCC charges to all ligands (Jakalian et al., 2000; Jakalian et al., 2002;
Wang et al., 2004; Wang et al., 2006). All models were neutralized
with Na+ ions and explicitly solvated in a TIP3P truncated
octahedron using the program tleap (Jorgensen and Madura,
1983). The Na+ and hACE2 active site Zn2+ atoms were modeled
using TIP3P ion parameters. In the experimental structure, the zinc
ion interacts with residues His374, Glu375, His378, and Glu402 in
the hACE2 active site. Trajectory analysis confirmed that the ion
remained complexed to these residues throughout the simulations.
All simulations were performed using the GPU-accelerated pmemd
code of AMBER18 (Götz et al., 2012; Salomon-Ferrer et al., 2013). A
process of minimization, heating, and equilibration was performed
prior to running unrestrained MD. Minimization occurred in seven
stages of a maximum of 5000 steps each. The first 1,000 steps
consisted of the steepest descent minimization, and the remaining
4,000 steps consisted of conjugate gradient minimization. An initial
restraining force of 10.0 kcal/mol Å-2 applied to the heavy atoms of
the solute was methodically decreased over the seven stages to 5.0,
2.0, 1.0, 0.5, 0.1, and lastly, 0.0 kcal/mol Å-2. Each structure was then
heated linearly from 10 to 300 K while a restraining force of
10.0 kcal/mol Å-2 was reapplied to all heavy atoms. Equilibration
was then conducted in seven 500 ps stages, with the initial
restraining force methodically decreased to 0.0 kcal/mol Å-2

following the same procedure as that of minimization.
Completion of equilibration was followed by ten randomly
selected seeds (initial atomic velocities) of unrestrained MD for
300 ns of the apo complex or five seeds of unrestrained MD for
100 ns of the ligand-bound complexes. It is important to note that
we are using MD simulation to sample the local environment of
various low energy structures but not necessarily expecting to see
large conformational interconversions. Subsequently, simulations
were initiated from various docked poses in order to better sample
the full potential energy surface. Trajectory visualization and
imaging were conducted using UCSF Chimera and UCSF
ChimeraX (Pettersen et al., 2004; Goddard et al., 2018). All
analyses were conducted using the AMBER 20 suite (Case et al.,
2020). Root-mean-squared deviation (RMSD), root-mean square
fluctuation (RMSF), center of mass, hydrogen bonding analysis, and
backbone atom RMSD-based clustering were conducted using the
AmberTools cpptraj module (Roe and Cheatham, 2013).

MM-GBSA binding free energy and per-residue decomposition
analyses were conducted on all frames for each simulation using the
AmberTools MMPBSA. py package, with pairwise decomposition
analysis conducted on every 10th frame (Onufriev et al., 2004; Miller
et al., 2012). The GBOBC2 model (igb = 5) was used for the previously
mentioned analyses. We elected to perform MM-GBSA rather than
MM-PBSA analysis because these two methods are known to
produce comparable results, especially when estimating free
energies for similar systems, i.e., a protein-ligand complex where
only the ligand changes (Sun et al., 2014; Genheden and Ryde, 2015;
Wang et al., 2019). MM-PBSA is an order of magnitude more

computationally demanding and given the large size of the hACE2-
RBD-ligand complex, we felt thatMM-GBSAwas a sufficient level of
theory to establish a baseline level of affinity for these ligands with
the RBD-hACE2 binary complex.

Native contact analysis, as defined by Best et al. (2013), was
conducted on all trajectories between RBD and hACE2 heavy atom
pairs. MDTraj was used to calculate the native contacts in the
interface (McGibbon et al., 2015). The percentage of time a
ligand spent dissociated from the binding site was also
determined using MM-GBSA and center of mass analyses. The
average MM-GBSA value representing the binding free energy
between the ligand and the RBD - hACE2 complex of each
frame was used to determine the frames where the drug was not
interacting with any residues of the complex. And the center of mass
distance between the initial position of the ligand and every frame of
the simulation was used to determine the frames where the drug was
no longer present in the interface. Specifically, if the distance was
greater than 10 Å. The frames identified from both analyses were
used to determine the percent dissociation of each ligand selected for
MD simulations.

Results and discussion

Apo MD

Our goal was to analyze the residue interactions significant for
binding of the SARS-CoV-2 RBD with the hACE2 receptor, and to
determine whether repurposed drugs might disrupt this binding.We
performed 300 ns of unrestrained MD simulations using ten
different seeds to understand the baseline energetics of the SARS-
CoV-2 RBD - hACE2 interaction. The average MM-GBSA binding
free energy over the 3 µs trajectory was −31.23 kcal/mol with a std.
deviation and std. error of 10.55 and 0.06 kcal/mol, respectively.
MM-GBSA interaction energies for each seed are shown in
Supplementary Figure S1; Supplementary Table S1.

To confirm the structural stability of the SARS-CoV-2 RBD -
hACE2 apo complex, we analyzed the RMSD over the 3 µs trajectory
relative to the initial structure (Supplementary Figure S2). To
understand the conformational dynamics of the individual amino
acid residues in the apo structure, we calculated the RMSF of the
RBD and hACE2 residues. Figure 1 displays the RMSF for the RBD
(1A, residues 333–527) and hACE2 (1B, residues 19–614). Residues
455–490 in the receptor binding motif (RBM) of the receptor
binding domain (RBD) have been experimentally determined to
be intrinsically disordered (Quaglia et al., 2022). The RMSF values in
Figure 1A suggests that in our simulations the conformational
dynamics for residues between 455 and 475 are minor, i.e., this is
a region that is conformationally stable. We do see an increase in
residue fluctuations between 475 and 490 but even here the
excursions are less than 4Å. A comparison of this data with the
apo secondary structure plots discussed below suggest that the
region is somewhat disordered, containing mostly bend and turn
motifs and is devoid of helical structure. Residues 485 through
490 form a parallel beta sheet in both the apo and hACE2 bound
form. In Figure 1, residues involved in the SARS-CoV-2 RBD and
hACE2 interface are highlighted with green boxes. Notably, the
residues involved in the interface are stable with RMSF values
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ranging from 1 to 3 Å. In Figure 1A, there is a peak in RMSF for the
residues 384–390 of the RBD. In a previous study of the WT and
Omicron SARS-CoV-2 RBD–hACE2, we found the same increase in
fluctuation of the residues 384–390 in the WT RBD was caused by
the absence of a 3-10 helix involving these residues. (Carter et al.,
2023). Visualization of the apo MD trajectories in this study
confirms the lack of secondary structure for this range of
residues during the 3 µs simulation.

Pairwise decomposition and hydrogen bonding analyses were
used to identify residue interactions that are significant for the
interaction between the SARS-CoV-2 RBD and hACE2.
Supplementary Table S2 demonstrates residue interactions that
are significant based on pairwise decomposition energies
(below −2 kcal/mol). Notably, there are no residue interactions
with significant repulsion (above 0.5 kcal/mol). Additionally,
Supplementary Table S3 details the hydrogen bond occurrences
(above 5%) of molecular interactions. The average occurrences
shown in Supplementary Table S3 were calculated over the 3 µs
ensemble. RBD Tyr505 – hACE2 Lys353, RBD Asn501 –

hACE2 Lys353, RBD Phe486 – hACE2 Met82, RBD Asn501 –

hACE2 Tyr41, and RBD Gln493 – hACE2 His34 are interactions
that have significant pairwise decomposition energies not driven by
hydrogen-bonding, i.e., they have insignificant or no hydrogen bond
occurrences. These residue interactions are driven by favorable
electrostatic and/or van der Waals interactions (Supplementary
Table S2). Residue interactions that are driven by hydrogen
bonding are shown in Supplementary Table S4, along with their
pairwise decomposition energies. RBD Tyr505 – hACE2 Ala386,
RBD Ala475 – hACE2 Ser19, RBD Gly446 – hACE2 Gln42, and
RBD Tyr495 – hACE2 Lys353 interactions from Supplementary
Table S4 have low pairwise decomposition energies; however, this
can be explained by the relatively low percent occurrence of
hydrogen bonding. While these particular residues are not
dominating the RBD–hACE2 interaction, they will become
disrupted upon ligand binding, as described below and in the
Supplementary Material.

Previous studies have identified SARS-CoV-2 RBD residues
that are significant for RBD–hACE2 binding. Yi et al. (2020)
determined that single amino acid substitution on residues Leu455,
Phe456, Ser459, Gln474, Ala475, Phe486, Phe490, Gln493, and

Pro499 reduced binding affinity for hACE2. Our results are in
agreement with this as we found that residues Ala475, Phe486,
and Gln493 participate in notable interactions with hACE2 residues
(Supplementary Tables S2–S4). Lan et al. identified important
RBD–hACE2 interactions involving the RBD residues Lys417,
Leu455, Phe486, Gln493, and Asn501. (Lan et al., 2020). This is
consistent with our analysis as we find the following interactions
to be significant: RBD Phe486 – hACE2 Met82, RBD Gln493 -
hACE2 Lys31, His34, and Glu35, RBD Asn501 – hACE2 Tyr41,
and RBD Lys417 – hACE2 Asp30.

Based on our analysis, the most important residue interactions
in the apo structure are detailed in Table 3 and depicted in Figure 2.
Specifically, in Figure 2, the amino acids involved in the interactions
listed in Table 3 are labeled, and the corresponding side chains are
illustrated. Notably, Lys417 is the only RBD residue involved in a
significant interface interaction that is not present in the RBM.

Additionally, we ran native contact analysis using the
concatenated 3 μs ensemble compared to the initial structure
obtained after minimization of the 6LZG experimental structure.
We identified 299 native contacts in the interface between SARS-
CoV-2 and hACE2. Supplementary Figure S3 displays the fraction of
native contacts for each frame throughout the simulation with an
average of 0.94 ± 0.03 (std. deviation).

SiteMap

SiteMap was used to predict and score potential ligand
binding sites based on volume, hydrophilicity/hydrophobicity,
and hydrogen bonding ability (Halgren, 2009). Five binding sites
were identified, with three displaying favorable SScores and
DScores. Sites #1 and #3 appear to flank the ACE2 active site
(Guy et al., 2003; Guy et al., 2005). Site #2, displayed in Figure 3
(SScore 1.002, DScore 1.017), occurs at the SARS-CoV-2 RBD -
hACE2 complex junction. This site notably contains many
residues necessary for the formation of this complex (Wang
et al., 2020c). This suggests that it is possible for a ligand to
disrupt the binding of the SARS-CoV-2 RBD with hACE2 and
therefore Site #2 was the site selected for ligand docking. Two
additional smaller binding sites (Sites #4 and #5) are predicted on

FIGURE 1
RMSF of SARS-CoV-2 RBD and hACE2 structures for the 3 µs ensemble. (A) The RMSF of the RBD. (B) The RMSF of hACE2. For both graphs, the
residues of the RMSF data enclosed in green are residues involved in the interface of the SARS-CoV-2 RBD–hACE2 interaction, according to Wang et al.
(2020c).
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the surface of hACE2. All sites and their properties are detailed in
Supplementary Figure S4; Supplementary Table S5.

Epik and glide docking

To determine whether a ligand might favorably bind to Site #2, a
small sample of common ACE inhibitors, molecules identified by

LSBio as potential SARS-CoV-2 spike protein inhibitors, and
diquafosol, were screened using Glide (Friesner et al., 2004;
Halgren et al., 2004). In preparation for docking, we determined
the proper protonation states of all ligands at pH = 7.4 using Epik
(Shelley et al., 2007; Greenwood et al., 2010; Schrödinger, 2023a).
Epik predicted the backbone amine of lisinopril to be protonated
(-NH2

+-) but given its location in the backbone we also performed
calculations with the (-NH-) form of lisinopril (Table 1.) The

TABLE 3 Significant SARS-CoV-2 RBD–hACE2 interactions. Hydrogen bonding occurrences for residue interactions between the SARS-CoV-2 RBD and the
hACE2 receptor and the corresponding pairwise decomposition energy are listed. The table includes interactions with a hydrogen bond occurrence greater than
50% or a pairwise decomposition energy less than −3.00 kcal/mol.

RBD residue hACE2 residue Hydrogen bonding percent
occurrence (avg.)

Pairwise decomposition (avg. (std. error))
(kcal/mol)

Asn487 Tyr83 69.56 −2.89 (0.02)

Gly502 Lys353 66.80 −1.63 (0.006)

Tyr449 Asp38 59.72 −3.59 (0.04)

Lys417 Asp30 57.81 −6.52 (0.05)

Gln493 Glu35 52.44 −4.50 (0.03)

Lys31 36.74 −4.13 (0.04)

Thr500 Asp355 42.19 −4.70 (0.04)

Gln498 Lys353 34.90 −3.86 (0.06)

Gly496 Lys353 26.47 −3.25 (0.03)

FIGURE 2
Significant interactions for the SARS-CoV-2 RBD–hACE2 complex. Interactions detailed in Table 3 are displayed with hydrogen bonds depicted in
purple.
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receptor grid used for ligand docking is illustrated in Supplementary
Figure S5. All structures, XP GlideScores, and their relative ranking
are detailed in Supplementary Tables S6–S8.

Of the 17 ligands screened, seven ligands and their three top
scoring poses were selected for further analysis. Notably, the top five
ranked ligands consisted mostly of potential SARS-CoV-2 spike
protein inhibitors as suggested on the LSBio database and previous
studies (Hijikata et al., 2020; Sternberg et al., 2020; Yi et al., 2020).
Diquafosol produced the highest scoring poses of all ligands
investigated. Fosinopril, lisinopril, physcion, and emodin_H11074
(emodin) all produced high ranking poses. Lisinopril, with an overall
charge of −1, was ranked 15, but was selected for further analysis
because we were interested in how the protonation state affected its
binding to the interface. Also, while fosinoprilat was not a top
ranked drug based on docking results, it is a prodrug of fosinopril
and has a very similar structure. It was selected for further study for
comparison to fosinopril. For all ligands selected for further study,
we initiated MD simulations using poses that were structurally
distinct.

ADME and PAINS screening

Before beginning MD simulations, we assessed the
pharmacological properties of each ligand using the Schrödinger
QikProp ADME program (Supplementary Table S9) (Schrödinger,
2023b). All ligands selected for MD analysis are known drugs in
clinical use, so we expected favorable ADME properties. The

properties of all ligands were within the 95% range of known
drugs except for diquafosol, details of which are described in the
Supplementary Material. Additionally, PAINS screenings were
conducted on the seven ligands advanced for MD study based on
their Glide scores. Emodin and physcion did not pass PAINS
screening because of the quinone core in both structures. Also,
both compounds are known to have numerous pharmacological
properties, such as anti-cancer, anti-inflammatory, and
antimicrobial activity, which further supports the non-specific
activity of these compounds. (Dong et al., 2016; Pang et al.,
2016). All other ligands passed PAINS screening, suggesting the
propensity for binding specificity. Overall, from ADME analysis and
PAINS screenings we concluded that these seven ligands are viable
compounds for further analysis.

Ligand-bound MD simulations

Unrestrained MD simulations were conducted on SARS-CoV-
2 RBD–hACE2 complexes (6LZG) bound to either diquafosol,
emodin, fosinopril, fosinoprilat, lisinopril with both protonation
states, or physcion. For each ligand, various docked poses were used
to initiate 5 seeds of 100 ns simulations. Initiating simulations from
different starting structures allows for better potential energy surface
sampling, as we are utilizing MD to sample the local environment of
low energy structures and not necessarily expecting to see large
conformational interconversions. RMSD (Supplementary Table
S10) was used to understand the structural stability of the SARS-

FIGURE 3
SARS-CoV-2 RBD - hACE2 complex junction binding site. In the image, hACE2 is shown in gray and SARS-CoV-2 RBD is shown in cyan. Hydrogen
bond acceptor sites are colored red, hydrogen bond donating sites are colored purple, and hydrophobic sites are colored yellow. The N-linked glycan
bound to Asn90 is shown in orange. Site #2 on the 6LZG complex was predicted to have a SiteMap SScore of 1.002 and DScore of 1.017.
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CoV-2 RBD and hACE2 complex with a drug present in the
interface. For all simulations, other than physcion seeds 3 and
4 where it was visually confirmed that the ligand is moving away
from the interface, the ternary trajectories are structurally stable. For
all ligand-bound 500 ns ensembles, a variety of MM-GBSA binding
free energies were calculated in order to probe the effect of ligand
binding to the RBD–hACE2 interface (Table 4). Figure 4 depicts
how each MM-GBSA energy was calculated.

Table 4, Column A indicates the average binding free energies of
the ligands interacting in the interface of the RBD - hACE2 complex,
MM-GBSADrug-(RBD+hACE2). Figure 4A is a visual representation of
MM-GBSADrug-(RBD +hACE2). This energy represents how tightly the
ligand binds to the dimer complex. We were interested in
determining this binding to understand if it is feasible for the
ligands to inhibit the interaction between the RBD and hACE2.
The MM-GBSADrug-(RBD+hACE2) values for all ligand-bound
complexes are negative, signifying that the drug participates in
favorable interactions in the interface. Lisinopril (protonation
states -NH- and -NH2

+-), fosinoprilat, and fosinopril have the
strongest interactions. We also determined the percent
dissociation (Table 4) of the drug from the RBD -
hACE2 interface over the concatenated 500 ns simulation.
Notably, a number of simulations initiated from different poses
of diquafosol, emodin, fosinopril, fosinoprilat, and lisinopril (both
protonation states -NH- and -NH2

+-) have relatively low percent
dissociations. The percent dissociation for all physcion trajectories

indicates that the ligand is not in the binding site for more than half
of the simulation.

In order to determine the degree of inhibition caused by each
drug binding to the interface, we calculated the MM-GBSA average
binding free energies between the RBD and hACE2 while a drug is
present in the interface, MM-GBSARBD-hACE2 (Table 4, Column
B.1.). The difference between the MM-GBSARBD-hACE2 values and
the binding free energy of the apo 3 μs ensemble, −31.23 (0.06) kcal/
mol, (MM-GBSARBD-hACE2–apo) represents the drug’s effect on the
RBD - hACE2 interaction (Figure 4B). This difference is referred to
as ΔΔGBind, RBD-hACE2 and a positive value suggests that the presence
of the drug destabilizes the RBD–hACE2 interaction (Table 4,
Column B.2.). Each ligand-bound complex shows a positive,
inhibitory ΔΔGBind, RBD-hACE2 value, except for physcion pose 3.
While these positive values speak to the promise of these ligands as
RBD–hACE2 binding disruptors, we note that the some of the MM-
GBSARBD-hACE2 values are not significantly different from the apo
binding free energy (−31.23 (0.06) kcal/mol), suggesting that the
ligand effect on the interaction between the RBD and hACE2 is
small.

We also explored the energetics of a ligand-bound RBD
interacting with hACE2, i.e., binding the ligand to RBD first, and
then having that binary complex interact with hACE2. These values
are MM-GBSA(RBD+Drug)-hACE2 (Table 4, Column C.1.). The
difference between MM-GBSA(RBD+Drug)-hACE2 and the binding
free energy of the apo 3 μs ensemble [−31.23 (0.06) kcal/mol],

TABLE 4 MM-GBSA and ΔΔGBind values.

Ligand Pose A. MM-GBSADrug-

(RBD+hACE2) Avg.
(Std. Error)

Percent
dissociation

B.1. MM-
GBSARBD-hACE2

Avg. (Std. Error)

B.2.
ΔΔGBind,

RBD-hACE2

C.1. MM-
GBSA(RBD+Drug)-hACE2

Avg. (Std. Error)

C.2. ΔΔGBind,

(RBD+Drug)-

hACE2

Diquafosol 1 −14.86 (0.23) 2.70 −26.65 (0.13) 4.58 −51.52 (0.19) −20.29

3 −5.60 (0.33) 9.66 −25.01 (0.17) 6.22 −27.31 (0.21) 3.92

Emodin 1 −10.98 (0.07) 33.32 −22.93 (0.14) 8.30 −33.33 (0.14) −2.10

2 −14.94 (0.08) 4.22 −27.13 (0.14) 4.10 −41.90 (0.16) −10.67

Fosinopril 1 −24.51 (0.15) 11.60 −25.48 (0.13) 5.75 −39.40 (0.16) −8.17

Fosinoprilat 1 −18.30 (0.12) 43.46 −20.92 (0.13) 10.31 −33.47 (0.18) −2.24

2 −29.01 (0.16) 0.06 −30.04 (0.14) 1.19 −44.68 (0.16) −13.45

3 −21.13 (0.18) 2.04 −30.19 (0.14) 1.04 −43.35 (0.19) −12.12

Lisinopril
(NH2

+)
1 −35.05 (0.14) 0.26 −30.26 (0.13) 0.97 −53.72 (0.23) −22.49

Lisinopril
(NH)

1 −31.80 (0.16) 6.74 −29.78 (0.14) 1.45 −56.41 (0.20) −25.18

Physcion 1 −10.37 (0.07) 82.46 −24.94 (0.15) 6.29 −31.72 (0.17) −0.49

2 −12.02 (0.11) 72.26 −23.86 (0.14) 7.37 −32.82 (0.17) −1.59

3 −10.98 (0.09) 77.70 −34.05 (0.14) −2.82 −40.04 (0.18) −8.81

A.MM-GBSADrug-(RBD+hACE2) is the average binding free energy (kcal/mol) between the drug and the RBD - hACE2 complex. For a visual representation of MM-GBSADrug-(RBD+hACE2) refer to

Figure 4A. Additionally, the percent dissociation is reported for each ligand and the corresponding pose. Percent Dissociation was calculated using MM-GBSA values, center of mass analysis,

and visualization. More details are provided in the methods section B.1.MM-GBSARBD-hACE2 is the average binding free energy (kcal/mol) between the RBD and hACE2 while a drug is present

in the interface. For a visual representation of MM-GBSARBD-hACE2 refer to Figure 4B. B.2. Apo is the average binding free energy (kcal/mol) between the RBD and hACE2 [−31.23 (0.06) kcal/

mol for the 3 μs ensemble], which was used to calculate the ΔΔGBind, RBD-hACE2 values. ΔΔGBind, RBD-hACE2 signifies the effect the drug has on the RBD–hACE2 interaction, with positive values

signifying drug inhibition of the interaction. C.1.MM-GBSA(RBD+Drug)-hACE2 is the average binding free energy (kcal/mol) of the drug-bound RBD and hACE2. For a visual representation of

MM-GBSA(RBD+Drug)-hACE2 refer to Figure 4C.C.2.The apoMM-GBSA value was used to calculate the ΔΔGBind, (RBD+Drug)-hACE2 values (kcal/mol), which represent the effect of the drug on the

interaction between hACE2 and the RBD, after the RBD binds first with the drug.
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ΔΔGBind, (RBD+Drug)-hACE2, represents the impact the drug has on the
interaction between the RBD and hACE2, after the drug binds first to
the RBD (Figure 4C). Another way to interpret this value is whether
hACE2 prefers to bind to the drug-bound RBD or the apo RBD. A
positive or near zero value of ΔΔGBind, (RBD+Drug)-hACE2 suggests that
the binding of the drug to RBD may disrupt the
RBD–hACE2 interaction (i.e., hACE2 favors binding to apo RBD
over the drug-bound RBD). The ΔΔGBind, (RBD+Drug)-hACE2 energies
suggest that the ligand-bound RBD interacts more favorably with
hACE2, although in seven cases the change in binding is minimal,
i.e., the absolute value of the ΔΔGBind, (RBD+Drug)-hACE2 is less than
the std. dev. of the apo MM-GBSA (10.55 kcal/mol) (Table 4,

Column C.2.). For the following ligands there is a significant
difference between the MM-GBSA(RBD+Drug)-hACE2 energies and
the apo binding free energy: diquafosol pose 1, emodin pose 2,
fosinoprilat poses 2 and 3, and lisinopril (both protonation states
-NH- and -NH2

+-) pose 1. This result suggests that the RBD bound
to these ligands more readily binds to hACE2 than the RBD on its
own. This suggests that these ligands are not viable candidates for
disrupting the RBD–hACE2 interface; indeed, the presence of the
ligand stabilizes the trimeric complex more so than the apo complex.
These results underscore the importance of studying the disruption
of the RBD - hACE2 interface and not just drug binding to the RBD,
i.e., drugs that show inhibitory properties to one of the proteins
(RBD) can increase the affinity for that viral protein to bind with the
human target.

The MM-GBSA and percent dissociation analyses suggest that
all of the ligands (except physcion) can bind to the RBD -
hACE2 interface, but that the RBD and hACE2 still interact
favorably even in the presence of some of the ligands. ΔΔGBind,

(RBD+Drug)-hACE2 analysis suggest that the ligand binding to the RBD
enhances the tertiary interaction with hACE2, especially for
diquafosol, fosinoprilat and both forms of lisinopril. To better
understand these binding interactions, we explored the individual
amino acid interactions between the RBD, hACE2, and each drug to
further understand how the ligands affect the RBD -
hACE2 interaction.

To decide which ligands to explore further, we compared the
MM-GBSARBD-hACE2 and MM-GBSADrug-(RBD+hACE2) energies as
these values establish if the ligands inhibit or strengthen the
interaction between the RBD and hACE2. We decided not to
include the MM-GBSA(RBD+Drug)-hACE2 energies because these
values, for most ligands, suggest a stable trimeric complex, and
we want to focus on how these ligands act as inhibitors. Figure 5
compares these two MM-GBSA binding free energies and the
percent dissociation of each ligand (except all poses of physcion
because of its high percent dissociation). Also, the MM-GBSA
binding free energies for both lisinoprils (-NH- and -NH2

+-) are
very similar, so for further analysis we focused on the -NH- lisinopril
structure with an overall negative charge. All further reference to
lisinopril will be to this structure. For Figure 5, the circular symbols
represent the MM-GBSADrug-(RBD+hACE2) energies and the
triangular symbols represent the percent dissociation, both with
respect to the MM-GBSARBD-hACE2 energies on the x-axis.

As shown in Figure 5, more favorable MM-GBSADrug-(RBD+hACE2)

binding energies roughly correlate with low percent dissociation.
However, diquafosol poses 1 and 3, and emodin pose 2 are outliers
to this trend, i.e., in Figure 5 these complexes display percent
dissociations less than 15% (purple triangles) and MM-GBSADrug-

(RBD+hACE2) values more positive than −15 kcal/mol (purple circles).
This would suggest that diquafosol and emodin may possess inhibitory
characteristics, in that they potentially disrupt some amino acid
interactions between the RBD and hACE2, but they are not the best
RBD–hACE2 disruptor drug candidates as they do not bind well to the
interface. Fosinoprilat in poses 2 and 3, fosinopril, and lisinopril have
low percent dissociations (shown as orange triangles in Figure 5) and
both MM-GBSADrug-(RBD+hACE2) (Figure 4A) and MM-
GBSA(RBD+Drug)-hACE2 (Figure 4C) energies suggest relatively tight
binding. These molecules are better disrupter candidates as they
remain longer in the interface and the ligand binds relatively well to

FIGURE 4
A visual representation of the various MM-GBSA energies that we
used to evaluate binding. For all panels, the receptor defined for MM-
GBSA calculations is in gray, and the defined ligand is in blue. (A) For
the MM-GBSADrug-(RBD+hACE2) calculation, the RBD and
hACE2 are taken together and treated as the receptor while each drug
is treated as the ligand; therefore, the binding free energy is calculated
between the drug and the RBD–hACE2 complex. (B) MM-GBSARBD-

hACE2 is the binding free energy between the RBD and hACE2 with the
ligand bound in the interface–though the drug is excluded from the
calculation (shown in white)–it affects the conformations and
interactions of RBD and hACE2. We subtract this value from the apo
binding free energy between the RBD and hACE2, i.e., when no drug is
bound. The average value of this apo energy is −31.23 (0.06) kcal/mol
for the 3 μs ensemble. This difference is ΔΔGBind, RBD-hACE2, which tells
us how the drug impacts the binding of RBD to hACE2. A positive
ΔΔGBind, RBD-hACE2 signifies that the drug inhibited the interaction
between the RBD and hACE2. (C) MM-GBSA(RBD+Drug)-hACE2

represents the average binding free energy between hACE2 and the
RBD–drug complex. The difference between MM-GBSA(RBD+Drug)-

hACE2 and apo is ΔΔGBind, (RBD+Drug)-hACE2, which signifies the drug’s
effects on the RBD–hACE2 interaction after the drug binds first to the
RBD. Overall, ΔΔGBind, (RBD+Drug)-hACE2 represents whether
hACE2 prefers to bind to the drug-bound RBD or the apo RBD. A
negative value signifies that the interaction between the drug-bound
RBD and hACE2 is stronger than the interaction between apo RBD and
hACE2. This suggests that the trimeric complex ismore stable than the
RBD–hACE2 apo complex. All values can be found in Table 4.
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the dimer interface (negative MM-GBSADrug-(RBD+hACE2) values).
Notably, all ligands showed that the ligand-bound RBD interacts
favorably with hACE2 (negative MM-GBSA(RBD+Drug)-hACE2 values).

From our deconstruction of the different binding partners in the
RBD-drug-hACE2 trimeric complex using MM-GBSA, our results
suggest that it would be beneficial to further investigate the atomistic
interactions of ligands that appear in Figure 5 as having low percent
dissociation, with MM-GBSARBD-hACE2 energetics similar to apo
and MM-GBSADrug-(RBD+hACE2) more favorable than −20 kcal/mol.
This includes fosinopril, fosinoprilat poses 2 and 3, and lisinopril.
Specifically, to understand which individual interactions are
inhibited or disrupted between the RBD and hACE2 and which
interactions involving the ligand potentially cause the increase in
strength in the interaction between the RBD and hACE2. The
trajectories selected for further analysis are indicated in Figure 5
in yellow and are depicted in slightly larger symbols.

Analysis of drugs–amino acid interactions

Based on the energetic analyses conducted above, and
summarized in Figure 5, we performed hydrogen bonding and
pairwise decomposition analyses on fosinopril, fosinoprilat (poses

2 and 3), and lisinopril to better understand the amino acid
interactions that occur upon ligand binding. These ACE
inhibitors were selected because they consistently stayed bound
within the interface and decreased the energy of interaction
between the RBD and hACE2, based on the MM-GBSA energies
detailed in the previous section. Figure 6 shows the starting pose of
each ligand depicted in the RBD–hACE2 interface.

For all ligand-bound complexes selected for further analysis
there is a significant decrease in the number of hydrogen bonds
between the RBD and hACE2 upon ligand binding, signifying
that the drugs disrupt interfacial interactions that were present in
the apo ensemble (Table 5). For instance, in the apo complex
there are 208 hydrogen bonds whereas in all ligand-bound
complexes that number drops by almost half. Lisinopril has
the largest number of hydrogen bonds between the RBD and
the drug (52), and between hACE2 and the drug (112). It is
also the only drug to have hydrogen bonds with itself. The
formation of these hydrogen bonds stabilizes the ligand-bound
complex. This is further supported by the MM-GBSADrug-

(RBD+hACE2) [−31.80 (0.16) kcal/mol] and MM-GBSA(RBD+Drug)-

hACE2 [−56.41 (0.20) kcal/mol] energies, which indicate a highly
favorable interaction between the drug and the interface, and
between the ligand-bound RBD and hACE2. Additional

FIGURE 5
Comparison of MM-GBSA energies and percent dissociation. The x-axis represents the average MM-GBSA binding free energies between the RBD
and hACE2 with a ligand present in the interface, MM-GBSARBD-hACE2. The y-axis (left side) represents the MM-GBSA binding free energies of the ligand
interacting with the RBD–hACE2 complex, MM-GBSADrug-(RBD+hACE2). The MM-GBSADrug-(RBD+hACE2) energies with respect to the x-axis are represented
as circles. The y-axis (right side) represents the percent dissociations. These values with respect to the x-axis are triangles. The larger symbols
depicted in orange represent ligands that were selected for further analyses. All other symbols are purple. All ligands, except physcion, are included and
labeled next to each data point. Physcion was not included because it appeared to be an outlier once the data was visualized. The blue dashed line
represents the apo MM-GBSA binding free energy, −31.23 (0.06) kcal/mol, in comparison to the MM-GBSARBD-hACE2 values.
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information pertaining to the hydrogen bonds involving
lisinopril and the pairwise decomposition energies of the
RBD–hACE2 interactions in the lisinopril-bound complex are
in the Supplementary Material (Supplementary Tables S11, S12;
Supplementary Figure S6). Fosinopril and fosinoprilat form
hydrogen bonding interactions with the RBD and hACE2, but
the total possible hydrogen bonds in these ligand-bound
complexes are not greater than that for the apo, making them
more ideal drug candidates. Additional information concerning
the hydrogen bonds involving fosinopril or fosinoprilat and the
pairwise decomposition energies of the RBD–hACE2 interactions
in the ligand-bound complexes are in the Supplementary
Material (Supplementary Tables S13–18; Supplementary
Figures S7, S8). To further investigate the drugs’ effects, we
studied these individual residue interactions.

Supplementary Table S19 contains hydrogen bonds between the
RBD and hACE2 with a percent occurrence above 5% for the apo
and the ligand-bound complexes with their corresponding pairwise
decomposition energies. Notably, when the ligands are present in
the interface, some hydrogen bonding interactions are no longer
significant. For instance, the interactions RBD Tyr505 – hACE2
Ala386 and RBD Ser494 – hACE2 His34 are no longer significant
upon ligand complexation. There is a notable increase in the pairwise
decomposition energies for the interaction RBD Ser494–hACE2
His34 in each ligand bound complex.

Supplementary Tables S20–S23 contain the pairwise
decomposition energies for interactions between the ligand
and the RBD - hACE2 complex for energies more favorable
than −1 kcal/mol. Notably, in all ligand bound complexes,
except lisinopril, the ligand participates in a significant van

FIGURE 6
All ligand poses. The starting pose of each ligand selected for further analysis based on the evaluation of the MM-GBSA values are depicted in the
interface. The SARS-CoV-2 RBD is depicted in blue and hACE2 in gray. Fosinopril in pose 1 is shown in dark blue, fosinoprilat in pose 2 is shown in purple,
fosinoprilat in pose 3 is shown in pink, and lisinopril in pose 1 in light green.

TABLE 5 Total number of hydrogen bonds. The maximum number of hydrogen bonds between RBD and hACE2, RBD and the drug, hACE2 and the drug, and the
drug with itself is listed below. All refers to the total number of possible hydrogen bonds between the entire complex, and the dash signifies that there are no
hydrogen bonds present between the two structures.

Hydrogen bonds Apo Fosinopril Fosinoprilat pose 2 Fosinoprilat pose 3 Lisinopril

All 208 184 179 191 274

RBD-hACE2 208 123 113 118 119

RBD-drug - 31 40 48 52

hACE2-drug - 30 26 25 112

drug-drug - - - - 13
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der Waals interaction with the residue RBD Tyr505.
Additionally, in all ligand bound complexes, a significant van
der Waals interaction occurs between the ligand and
hACE2 Ala387. From a visual inspection of the MD
trajectories of all ligand-bound complexes we observe
hACE2 Ala387 interacting with each ligand and moving the
backbone oxygen of hACE2 Ala386 further away from RBD
Tyr505. This limits the opportunity for a hydrogen bond to
occur between that oxygen and the hydroxyl group of the
Tyr505 side chain. However, it was primarily observed that
the ligand (except lisinopril) interactions with RBD
Tyr505 are responsible for interfering with the residue
interaction. Also, all ligands participate in significant van der
Waals or electrostatic interactions with hACE2 His34, which we
observe to interfere with the hydrogen bond between RBD Ser494
- hACE2 His34 and RBD Tyr453–hACE2 His34. However, the
disruption of the interaction RBD Ser494–hACE2 His34 was
more prominent due to the orientation of
hACE2 His34 throughout the simulation. This additional data
further supports that the presence of each ligand in the interface
disrupts RBD–hACE2 interactions. Other residue interactions
were disrupted (red) or enhanced (green) depending on the drug-

bound complex and these interactions are visualized in Figure 7
and discussed in detail in the Supplementary Material. Based on
the dominant interactions shown in Figure 7, lisinopril enhances
the most RBD - hACE2 interactions, while fosinopril disrupts
the most.

Table 6 lists the sum of all pairwise decomposition energies
between the RBD and hACE2 for the apo and ligand-bound
complexes, which is another way to evaluate the binding interaction.
The sum of pairwise interaction energies of the RBD -
hACE2 interactions for the fosinopril and fosinoprilat pose 2 bound
complexes are more positive compared to the apo sum, which suggest
that these drugs inhibit RBD - hACE2 interactions. On the other hand,
the sum for the fosinoprilat pose 3 and lisinopril bound complexes are
more negative compared to the apo sum, which support that they
enhance RBD - hACE2 interactions more than inhibit them. This trend
is further supported by the previously discussed interactions mentioned
in the manuscript (Figure 7) and the Supplementary Material. Overall,
hydrogen bonding and pairwise decomposition analyses support the
idea that these ligands form favorable interactions in the interface with
the RBD and hACE2. Fosinopril and fosinoprilat pose 2 display
inhibitory properties while fosinoprilat pose 3 and lisinopril
strengthen the RBD–hACE2 complex.

FIGURE 7
Visualization of drugs’ effects on residue interactions using dominant structures determined from clustering. The SARS-CoV-2 RBD is shown in blue
and the hACE2 receptor is shown in gray. Clustering was used to determine the dominant structure of the ligand-bound complex throughout the 500 ns
simulation. The percentage of the simulation that is represented by this dominant structure is in the top left corner of each panel. Hydrogen bonds
between the drug and the RBD–hACE2 complex are depicted in pink. In all clusters, such hydrogen bonding persisted for at least 12% or more of
each trajectory. Residue interactions between the RBD and hACE2 that were enhanced are shown in green and interactions that were disrupted are
shown in red. (A) Fosinopril, depicted in beige, is bound in the interface. (B) Fosinoprilat pose 2, depicted in orange, is bound in the interface. (C)
Fosinoprilat pose 3, depicted in light pink, is bound in the interface. Hydrogen bonds that were not present in the first dominant structure were visualized
in the second dominant structure. (D) Lisinopril, depicted in brown, is bound in the interface. Hydrogen bonds that were not present in the first dominant
structure were visualized in the second dominant structure.
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As noted in the apo section above, approximately 28% of the
S1 subunit of the SARS-CoV-2 spike protein contains
experimentally determined intrinsically disordered regions
(IDRs). (Quaglia et al., 2022). Of the three IDRs previously
identified, RBD residues 455—490 occur at the interface with
hACE2. To assess the conformational behavior of these
residues, as well as the impact that ligand binding has on
protein dynamics, we conducted native coÅntact analysis on
each ligand-bound complex. Supplementary Figures S9–12
represent the fraction of native contacts (Q(X) for each frame
of the ligand-bound complex simulations. Q values remain above
90% for the bulk of each trajectory, suggesting that the ligands are
not causing significant changes in RBD—hACE2 conformation
and that the disordered region near residues 455–490 is
conformational stable. There are a few short regions where Q
decreases to ~83%, however visualization of the trajectories did not
reveal any significant conformational changes during these
periods., We were also interested in studying how the ligands
affected the SARS-CoV-2 RBD dynamics, so we conducted
secondary structure analysis on the residues in the RBM and a
range of residues that includes RBD amino acids found to have
significant hydrogen bonding interactions with each ligand.
Supplementary Tables S24–S28; Supplementary Figures S13–17
contain the secondary structure plots for the apo and ligand-bound
complexes. There were few notable differences in the secondary
structure of the apo and ligand-bound complexes, which are
further explained in detail in the Supplementary Material.

We also explored water-mediated interactions between
fosinopril, fosinoprilat (pose 2 and 3) and lisinopril with
residues in the RBD-hACE2 interface (Supplementary Tables
S29–S32). All drugs participate in such interactions with residues
RBD Glu406, hACE2 Ala387, RBD Arg403, RBD Arg408, and a
hACE2 glycan located near the interface. Notably, the water-
mediated interaction between Arg408 and each drug led to a
consistent interaction throughout the simulation, with hydrogen
bond occurrences greater than 20%. Additionally, the water-
mediated interaction between Arg403 and fosinopril or
fosinoprilat pose 2 formed a persisent hydrogen bond with
occurrences of ~55% and ~20%, respectively (Supplementary
Tables S14, 15). Lastly, each drug also participates in a limited
number of bridged interactions between multiple RBD or
hACE2 residues. However, these binary interactions have
relatively low percent occurrences in most cases.

Conclusion

The interaction between the SARS-CoV-2 RBD and the
hACE2 receptor leads to viral infection. Few studies have

screened or simulated potential RBD inhibitors in the
complex junction formed by the RBD and hACE2. While
most studies docked solely to the RBD, we found that it was
important to dock all ligands to a dimeric complex to better
understand interfacial binding of potential inhibitors.
Evaluating inhibitors based only on the estimated binding
affinity between the RBD and the inhibitor ignores the effect
of hACE2. In the present study, ACE inhibitors and previously
identified potential SARS-CoV-2 spike protein inhibitors were
docked in the RBD - hACE2 interface. As a result of the docking
analysis, molecular dynamics simulations of fosinopril,
fosinoprilat, lisinopril, emodin, diquafosol, and physcion
bound to the interface were performed. Based on the MM-
GBSA analysis, it was found that all selected ligands bind
favorably to the interface and most reduce the stability of the
RBD–hACE2 interaction. However, in addition to these
inhibitory characteristics, some ligands such as fosinopril,
fosinoprilat (in poses 2 and 3) and lisinopril strengthen the
interaction of the trimeric complex. Hydrogen bonding and
pairwise decomposition analyses were performed on these
three ligands. We found that while the maximum number of
hydrogen bonds between the RBD and hACE2 were reduced,
suggesting that all ligands are capable of inhibiting interactions,
the RBD or hACE2 interactions that formed with lisinopril or
fosinoprilat in pose 3 were able to stabilize the complex. When
either lisinopril or fosinoprilat in pose 3 were bound in the
interface, the ligands were able to strengthen the trimeric
complex, making it more stable than the apo complex.
Additionally, our results suggest that fosinopril most
effectively prevented the formation of RBD–hACE2 residue
interactions and was the best RBD inhibitor.
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pose 3
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