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In this study, we report a highly sensitive electrochemical immunosensor for
carcinoembryonic antigen (CEA) detection based on the electrodeposited
platinum nanoparticles (Pt NPs) confined in the ultrasmall nanochannels of
vertically ordered mesoporous silica film (VMSF). VMSF bearing amine groups
(NH2-VMSF) can be prepared on the indium tin oxide electrode surface via a one-
step co-condensation route using an electrochemically assisted self-assembly
method, which renders a strong electrostatic effect for [PtCl6]

2- and leads to the
spatial confinement of Pt NPs inside the silica nanochannels after
electrodeposition. The external surface of NH2-VMSF is functionalized with
CEA antibodies using glutaraldehyde as a coupling agent, resulting in an
electrochemical immunosensing interface with good specificity for CEA
detection. Under optimal experimental conditions, high affinity between the
CEA antibody and CEA produces a steric hindrance effect for the accessibility
of the electrochemical probe ([Fe(CN)6]

3-) in the bulk solution to the underlying
indium tin oxide surface, eventually resulting in the attenuated electrochemical
signal and enabling the detection of the CEA with a wide linear range of 0.01 pg/
mL~10 ng/mL and a pretty low limit of detection of 0.30 fg/mL. Owing to the
signal amplification ability of Pt NPs and the anti-biofouling property of NH2-
VMSF, the as-prepared electrochemical immunosensor based on the Pt NPs@
NH2-VMSF displays an accurate analysis of the CEA in human serum samples,
holding significant promise for health monitoring and clinical diagnosis.
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1 Introduction

Nanomaterials usually exhibit a large specific surface area and unique magnetic/optical/
electrochemical properties that can improve the sensitivity and selectivity of various chemo/
biosensors (Mao et al., 2019; Xi et al., 2019; Qiu et al., 2021; Zheng et al., 2021; Huang Y. et al.,
2023; Xu et al., 2023; Zhu et al., 2023). Among them, noble metal nanoparticles (NPs) with
nanosized structures have garnered significant attention due to their unique physicochemical
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properties and large specific surface area compared to their bulk
materials, which have been widely used in electroanalytical
applications (Lin et al., 2020; Zhao et al., 2020). Platinum (Pt)
NPs are a kind of commonly used noble metal NP but unstable and
will aggregate because of their high surface energy, resulting in the
disappearance of specific desired features at the ultrasmall
nanoscale. To control Pt NPs at the nanoscale, organic ligands or
particular supported materials are introduced in the preparation
procedure (White et al., 2009).

Recently, nanoporous materials have gained significant
attention due to their high specific surface area, adjustable
structure, and pore size and have exhibited considerable potential
in applications such as adsorption/separation, sensing, catalysis, and
energy storage applications (Cui et al., 2020; 2021; Zhao et al., 2020;
Gong et al., 2022a; Liu et al., 2022). Vertically ordered mesoporous
silica films (VMSFs) are a kind of solid nanoporous materials
composed of highly ordered and uniform silica nanochannels
(2–3 nm in diameter and tens to a hundred nanometers in
length) and high porosity (Walcarius, 2021; Huang J. et al., 2023;
Deng et al., 2023). In the past decades, an increasing number of
electrochemical and electrochemiluminescence sensors have been
designed using VMSF as the electrode-modified material (Liang
et al., 2021; Su et al., 2022; Wei et al., 2022; Zhou et al., 2022).
Although VMSF has unique insulating properties, it has been
extensively utilized as an electrode protective layer for the direct
and highly sensitive anti-biofouling analysis of complicated media
(Wang et al., 2022; Zheng et al., 2022; Zhu et al., 2022). On the one
hand, VMSFs bearing a large amount of silanol groups (pKa = 2–3)
display pronounced permselective effects toward targets or probes
and simultaneously have excellent molecular sieving capability for
them (Luo et al., 2022; Lv et al., 2022). On the other hand, they offer
a lot of tiny confined spaces for the synthesis of metal NPs (e.g., gold
(Ding et al., 2014a; Huang L. et al., 2023), Pt (Ding and Su, 2015; Li
et al., 2020), and nickel (Ding et al., 2020)), polymers (Ding et al.,
2014b), and graphene quantum dots (Zhang C. et al., 2023). The Su
group employed two methods (namely, direct electrodeposition and
chemical reduction) to achieve Pt NPs in silica nanochannels (Ding
and Su, 2015; Li et al., 2020). The latter one needs first confinement
of polyaniline polymer inside the nanochannels, generating the
secondary and tertiary imines for easy complex with PtCl6

2– and
subsequently suffering from chemical reduction in situ. To the best
of our knowledge, simple modification of VMSF with functional
groups for adequate incorporation of PtCl6

2– and further
electrodeposited growth of Pt NPs has not yet been reported.
Moreover, VMSF with functional groups renders the binding site
for immobilization of specific recognition elements, exhibiting
promising ability for the development of various sensitive and
selective electrochemical sensors (Gong et al., 2022b; Ma et al.,
2022b; Zhang T. et al., 2023; Chen et al., 2023).

Screening of tumormarkers in human serum, especially the level
of the carcinoembryonic antigen (CEA), is particularly valuable for
the early auxiliary diagnosis and prognosis of various cancers
(Zhang et al., 2022; Zhou et al., 2023). CEA concentration in the
blood serum of healthy individuals is generally below 5 ng/mL,
whereas cancer patients may exhibit levels exceeding 20 ng/mL (Lin
et al., 2021). Several strategies have been developed for CEA
detection, such as the enzyme-linked immunosorbent assay (Song
et al., 2017), electrochemiluminescence method (Zhang et al., 2017),

immunohistochemical method (Zeng et al., 1993),
radioimmunoassay (Edgington et al., 1976), fluoroimmunoassay
(Huang et al., 2018), and electrochemical immunoassay (Tang
et al., 2007; Yan et al., 2023). Among them, electrochemical
immunoassay has many advantages because of its low cost, rapid
response, high selectivity, easy operation, and portability. Therefore,
the development of electrochemical sensors with high sensitivity and
anti-fouling capacity for direct detection of the CEA in human
serum is highly desirable.

In this work, we demonstrate the use of amino group-
functionalized VMSF (NH2-VMSF) for the confined synthesis of
Pt NPs and the design of a highly sensitive electrochemical
immunosensor for the CEA. NH2-VMSF-carrying amino groups
provide a strong electrostatic effect for [PtCl6]

2− and lead to the well
confinement of Pt NPs after electrodeposition. Such obtained Pt NPs
confined in ultrasmall nanochannels of NH2-VMSF (termed as Pt
NPs@NH2-VMSF) can be obtained in several seconds using a simple
and controllable electrochemical method. The external surface of
NH2-VMSF is immobilized with CEA antibodies using
glutaraldehyde as a coupling agent, giving rise to an
electrochemical immunosensing interface with good specificity
for CEA detection. Due to the high affinity between the CEA
antibody and CEA on the sensing interface, the steric hindrance
effect is enhanced for the accessibility of the electrochemical probe
([Fe(CN)6]

3−) in the bulk solution to the underlying ITO surface,
ultimately yielding the relationship between the attenuated
electrochemical signal and CEA concentration. Benefiting from
the signal amplification ability of Pt NPs and the anti-biofouling
property of NH2-VMSF, the developed electrochemical
immunosensor based on Pt NPs@NH2-VMSF can be applied to
sensitively and selectively detect CEA in human serum.

2 Materials and methods

2.1 Chemicals and materials

The CEA antigen and anti-CEA antibody, prostate-specific
antigen (PSA), and alpha-fetoprotein (AFP) were purchased from
Beijing Key-Bio Biotech Co., Ltd. (Beijing, China). S100 calcium-
binding protein β was bought from Proteintech (Wuhan, China).
C-reactive protein (CRP) was ordered from Nanjing Okay
Biotechnology Co., Ltd. (Nanjing, China). Hexadecyl trimethyl
ammonium bromide (CTAB), silicon tetraacetate (TEOS),
potassium ferricyanide (K3[Fe(CN)6], 99.5%), potassium
ferrocyanide (K4[Fe(CN)6], 99.5%), sodium dihydrogen
phosphate dihydrate (NaH2PO4·2H2O), sodium phosphate
dibasic dodecahydrate (Na2HPO4·12H2O), glutaraldehyde (GA),
and chloroplatinic acid hexahydrate (H2PtCl6·6H2O) were
received from Aladdin Biochemical Technology Co., Ltd.
(Shanghai, China). 3-Aminopropyltriethoxysilane (APTES) and
potassium hydrogen phthalate (KHP) were purchased from
Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China).
Sodium nitrate (NaNO3), sodium hydroxide (NaOH), and
ethanol (99.8%) were purchased from Hangzhou Gaojing Fine
Chemical Co., Ltd. (Hangzhou, China). Concentrated
hydrochloric acid (HCl) and concentrated sulfuric acid (H2SO4)
were obtained from Shuanglin Inorganic Chemical Plant
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(Hangzhou, China). Phosphate buffer solution (PBS) was prepared
by mixing Na2HPO4 and NaH2PO4.

ITO-coated glasses (<17Ω/square, thickness: 100 ± 20 nm) were
purchased from Zhuhai Kaivo Optoelectronic Technology Co., Ltd.
(China). To get a clean surface, the ITO electrode was immersed in
1 M NaOH solution overnight and then successively sonicated in
acetone, ethanol, and ultrapure water. Ultrapure water
(18.2 MΩ cm) used in the experiments was prepared by using the
Milli-Q system (Millipore Company).

2.2 Measurements and instrumentations

Transmission electron microscopy (TEM) images were captured
using a transmission electron microscope (JEM-2100, JEOL, Japan).
Field-emission scanning electron microscopy (SEM) images and
energy dispersive X-ray mapping spectroscopy (EDS mapping) data
were analyzed using a scanning electron microscope (Sigma500,
Zeiss, Germany). The X-ray photoelectron spectroscopy (XPS) data
were collected on a PHI5300 electron spectrometer using 250 W,
14 kV, and Mg Kα radiation (PE Ltd., United States). All
electrochemical measurements, including cyclic voltammetry
(CV), electrochemical impedance spectroscopy (EIS), and
differential pulse voltammetry (DPV), were conducted on a
conventional three-compartment electrochemical cell by Autolab
(PGSTAT302N) electrochemical workstation (Metrohm,
Switzerland), with the modified ITO electrode, an Ag/AgCl
electrode, and a platinum wire electrode as the working,
reference, and counter electrodes, respectively. The scan rate for
CV tests was 50 mV/s. The parameters for DPV measurements
included step potential (0.005 V), pulse amplitude (0.05 V), pulse
time (0.05 s), and interval time (0.2 s).

2.3 Preparation of SM@NH2-VMSF/ITO and
GA/Pt NPs@NH2-VMSF/ITO electrodes

The NH2-VMSF/ITO could be grown on the bare ITO
electrode (1 cm × 0.5 cm) by the electrochemically assisted self-
assembly (EASA) method within 10 s (Etienne et al., 2009; Ma
et al., 2022a; Ma N. et al., 2022). In brief, CTAB (1.585 g) was first
dissolved in a mixture solution consisting of 0.1 M NaNO3

aqueous solution (20 mL, pH 2.6) and ethanol (20 mL). After
the addition of APTES (0.318 mL), the pH of the mixed
solution was adjusted to 2.97 using 6 M HCl. Subsequently,
TEOS (2.372 mL) was added, and the obtained precursor
solution was stirred at room temperature for 2.5 h. VMSF-
bearing amino groups (NH2-VMSF) were prepared on the bare
ITO electrode surface by immersing the clean ITO electrode in the
aforementioned aged solution and applying a constant current
density (−0.70 mA·cm−2) for 10 s. Then, the finally obtained
electrode was rapidly washed with ultrapure water and aged for
12 h at 120°C. As for the directly as-prepared modified electrode,
surfactant micelles (SMs) made up of CTAB were positioned inside
the nanospace of silica nanochannels, designated as SM@NH2-
VMSF/ITO.

GA-functionalized SM@NH2-VMSF/ITO, termed GA/SM@
NH2-VMSF/ITO, was obtained using a simple drop-casting

procedure, which could act as a cross-linking agent for further
covalent immobilization of specifically recognized antibodies.
Specifically, 5% GA (50 μL) was dropped onto the SM@NH2-
VMSF/ITO electrode surface and incubated at 37°C for 30 min in
a dark place. Then, the GA/SM@NH2-VMSF/ITO electrode was
placed into a 0.1 M HCl/ethanol solution under stirring for 5 min to
remove the SM, generating open channels for mass transport. Such
resulting electrode was denoted as GA/NH2-VMSF/ITO. Pt
nanoparticles were electrodeposited inside NH2-VMSF using
chronoamperometry, and the growth of Pt NPs can be well
controlled when applying a constant potential of −0.2 V for
different durations. 3.86 mM of H2PtCl6·6H2O electrodeposition
solution was composed of 100 mg/mL H2PtCl6·6H2O (1 mL) and
0.1 M H2SO4 (49 mL). In short, the GA/NH2-VMSF/ITO electrode
was immersed in the aforementioned electrodeposition solution and
applied a constant potential of −0.2 V for 2 s, finally achieving the Pt
NPs confined into the nanochannels of NH2-VMSF, designated as
GA/Pt NPs@NH2-VMSF/ITO.

2.4 Preparation of the electrochemical
immunosensor based on the GA/Pt NPs@
NH2-VMSF/ITO electrode and
electrochemical determination of CEA

An electrochemical immunosensor for CEA detection was
prepared by immersing the GA/Pt NPs@NH2-VMSF/ITO
electrode in a 10 μg/mL antibody-CEA (50 μL) solution and
incubating at 4°C for 1 h. After being rinsed with the residual
antibody-CEA with 0.01 M PBS (pH 7.4), the immunosensing
interface was eventually obtained, named the Ab/GA/Pt NPs@
NH2-VMSF/ITO electrode.

CEA solution (50 μL) with various concentrations was
dropped onto the Ab/GA/Pt NPs@NH2-VMSF/ITO
electrochemical immunosensor and incubated at 4°C for 1 h.
Then, the residual CEA solution was washed off using 0.01 M
PBS (pH 7.4). DPV was utilized to measure the electrochemical
signal of [Fe(CN)6]

3− before and after the interaction between Ab/
GA/Pt NPs@NH2-VMSF/ITO and CEA. Moreover, the standard
addition method was used for the determination of CEA in
fetal bovine serum to prove the reliability of the constructed
Ab/GA/Pt NPs@NH2-VMSF/ITO immunosensor in real
samples. The fetal bovine serum was diluted by a factor of
50 using 0.01 M PBS (pH 7.4), and the CEA with a known
concentration was added to the serum sample. Finally, the
same detection procedure was conducted on the CEA detection
in the serum sample using the Ab/GA/Pt NPs@NH2-VMSF/ITO
electrochemical immunosensor.

3 Results and discussion

3.1 Preparation of a Pt NPs@NH2-VMSF/ITO-
based immunosensor and its sensing
mechanism for CEA

Scheme 1 reveals the fabrication process of the ITO electrode
decorated with NH2-VMSF, containing Pt nanostructures inside
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the inner nanochannels, while simultaneously modifying the anti-
CEA antibody on the outmost surface using a convenient and
controllable electrochemical method. The resulting electrode is
termed as Ab/GA/Pt NPs@NH2-VMSF/ITO, combining the
electrocatalyst effect of Pt NPs and the specific recognition
capacity of the anti-CEA antibody. The growth of NH2-VMSF
on the ITO electrode surface is accomplished by the EASA
approach. Due to the presence of amine groups on both the
inner silica walls and external surface, NH2-VMSF-encased
surfactant micelles inside the nanochannels are used to
functionalize with a linker agent (glutaraldehyde, GA) (denoted
as GA/SM@NH2-VMSF/ITO, as shown in Scheme 1B), which can
guarantee further modification of the anti-CEA antibody on the
external surface of NH2-VMSF. After exclusion of SMs, NH2-
VMSF possesses opened nanochannels and protonated amino
groups on the silica walls, designated as GA/NH2-VMSF/ITO
(Scheme 1C), which renders the active sites for electrosynthesis
of Pt NPs in situ to obtain GA/Pt NPs@NH2-VMSF/ITO (Scheme
1D). Finally, the anti-CEA antibody is anchored to the external
surface of NH2-VMSF through GA, achieving the Ab/GA/Pt NPs@
NH2-VMSF/ITO sensor (Scheme 1E). The target CEA can be
specially recognized on the Ab/GA/Pt NPs@NH2-VMSF/ITO
sensing interface, resulting in the hampered mass transport of
the [Fe(CN)6]

3– probe in the bulk solution to the underlying ITO
electrode surface through the silica nanochannels of NH2-VMSF
(Scheme 1F). Therefore, the decreased electrochemical current
signal of [Fe(CN)6]

3– is associated with the CEA concentration,

leading to the quantitative analytical method of detection of
the CEA.

3.2 Characterization of NH2-VMSF/ITO and
Pt NPs@NH2-VMSF/ITO electrodes

Figure 1 depicts the transmission electron microscopy and
electrochemical characterization of NH2-VMSF. A top-view TEM
image of NH2-VMSF displays a crack-free structure with numerous
uniform pores of nanometer-sized diameter (ca. 2–3 nm)
(Figure 1A). As shown in Figure 1B, the nanochannel of the
NH2-VMSF is homogeneous and its length is 79 nm. Figure 1C
shows the CV curves of ITO, SM@NH2-VMSF/ITO, and NH2-
VMSF/ITO electrodes in 0.05 M KHP containing 0.5 mM K3

[Fe(CN)6]. The ITO electrode exhibits obvious redox peaks
originating from the redox reaction of [Fe(CN)6]

3–. However, the
CV curve measured by the SM@NH2-VMSF/ITO electrode shows
no obvious redox peak, which is attributed to the hydrophobic
environment consisting of CTAB SM and leads to the obstructed
transport of hydrophilic [Fe(CN)6]

3– within nanochannels. The
NH2-VMSF/ITO electrode without SM inside the nanochannels
not only has an open channel for free diffusion of [Fe(CN)6]

3– but
also displays electrostatic attraction for negatively charged
[Fe(CN)6]

3–, eventually giving rise to amplified redox signals
compared to those at the ITO. These results indicate that NH2-
VMSF on the ITO electrode is intact without cracks, and the

SCHEME 1
Schematic illustration of the preparation of the Ab/GA/Pt NPs@NH2-VMSF/ITO electrode (A–E) and its sensing mechanism for the CEA (A–F).
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electrochemical response of [Fe(CN)6]
3– at the NH2-VMSF/ITO

electrode can be enlarged, showing the significant potential of NH2-
VMSF/ITO for the design of gated-controlled electrochemical
sensors.

Top-view SEM images in Figures 2A, B show the surface of the
NH2-VMSF/ITO electrode before and after the electrodeposition
of Pt NPs. Both surfaces appear relatively smooth without obvious
differences between NH2-VMSF/ITO and Pt NPs@NH2-VMSF/
ITO, indicating that Pt NPs are confined inside the nanochannels.
Figures 2C, D display the top-view SEM image and EDS elemental
mapping of Pt NPs after dissolution of NH2-VMSF by 0.1 M
NaOH (50 μL). As seen, Pt NPs distributed on the surface of
the electrode have sizes ranging from 160 to 260 nm, which is

probably due to the aggregation of Pt NPs after losing the
protection of NH2-VMSF and also confirms the successful
electrodeposition of Pt NPs within the nanochannels of NH2-
VMSF.

To further verify the successful electrodeposition of Pt NPs
into the nanochannels of NH2-VMSF, XPS analysis was
conducted, as shown in Figure 3. As demonstrated, the
presence of N and Pt in XPS data is derived from amino
groups of NH2-VMSF and electrodeposited Pt NPs,
respectively. In addition, C, O, and Si elements are from the
NH2-VMSF structure. All the aforementioned results confirm
the successful preparation of the Pt NPs@NH2-VMSF/ITO
electrode.

FIGURE 1
(A) Top-view TEM image of NH2-VMSF. (B) Cross-sectional TEM image of NH2-VMSF. (C) CV curves of the ITO, SM@NH2-VMSF/ITO, and NH2-
VMSF/ITO electrodes in 0.05 M KHP containing 0.5 mM K3[Fe(CN)6].

FIGURE 2
Top-view SEM images of NH2-VMSF/ITO (A) and Pt NPs@NH2-VMSF/ITO before (B) and after (C) the dissolution of NH2-VMSF. (D) EDS elemental
mapping of Pt NPs at the Pt NPs@NH2-VMSF/ITO electrode after the dissolution of NH2-VMSF.
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3.3 Characterization of the Pt NPs@NH2-
VMSF/ITO-based electrochemical
immunosensor

CV and EIS were used as electrochemical methods to investigate
the interfacial state changes during the construction of the Ab/GA/
Pt NPs@NH2-VMSF/ITO sensor. Figure 4 displays the CV (A) and
EIS (B) curves of NH2-VMSF/ITO, GA/NH2-VMSF/ITO, Pt NPs@
NH2-VMSF/ITO, GA/Pt NPs@NH2-VMSF/ITO, Ab/GA/Pt NPs@
NH2-VMSF/ITO, and Ag/Ab/GA/Pt NPs@NH2-VMSF/ITO
electrodes in 50 mM KHP containing 0.5 mM [Fe(CN)6]

3–. The
cross-linking of GA with amino groups at the entrance of the silica
nanochannels causes a decrease in redox peak current values of
[Fe(CN)6]

3– at the GA/NH2-VMSF/ITO and GA/Pt NPs@NH2-
VMSF/ITO, in comparison with those obtained at the NH2-
VMSF/ITO and Pt NPs@NH2-VMSF/ITO (Figure 4A). After the
successful electrodeposition of Pt NPs into the nanochannels of

NH2-VMSF, the magnitude of redox peak currents significantly
increased due to the signal amplification capacity of Pt NPs. The
redox peak currents further decrease after covalently attaching Ab to
the GA/Pt NPs@NH2-VMSF/ITO surface, which is attributed to the
insulating property of proteins hindering the mass transfer of
electrons on the electrode surface. Upon immobilization of CEA,
the redox current values remarkably decrease, confirming the
successful formation of the antibody–antigen immunocomplex at
the sensing interface. EIS plots shown in Figure 4B consist of a
semicircle part in the high-frequency region and a linear part in the
low-frequency region, which are associated with the electron
transfer and diffusion processes, respectively. Electron transfer
resistance (Rct) can be extracted from the magnitude of the
semicircle diameter, showing the electron transfer variation
between different electrodes. EIS measurements in Figure 4B
reveal Rct of the same electrodes shown in Figure 4A. Similar
variation is observed, and GA/Pt NPs@NH2-VMSF/ITO exhibits
lower Rct compared to GA/NH2-VMSF/ITO, indicating that Pt NPs,
as a kind of excellent electronic conductivity material, improve
electron transfer ability on the electrode interface. Moreover, Rct

significantly increases after immobilization of the anti-CEA
antibody and target CEA, demonstrating that the formed
antibody–antigen immunocomplex indeed obstructs the diffusion
of electrons and further proving the feasible detection capacity of the
developed Ab/GA/Pt NPs@NH2-VMSF/ITO.

3.4 Optimization of experimental conditions

There are several factors that affect the analytical performance of
the Ab/GA/Pt NPs@NH2-VMSF/ITO sensor, including the
electrodeposition time of Pt NPs and the incubation time of the
anti-CEA antibody or CEA. First, we studied the performance of the
developed sensor with various electrodeposition times of Pt NPs
ranging from 1 s to 10 s (Figure 5A). When the electrodeposition
time increases from 1 s to 2 s, the obtained DPV signal for CEA
increases due to the increased amount of Pt NPs and reaches its

FIGURE 3
XPS survey spectra of Pt NPs@NH2-VMSF/ITO.

FIGURE 4
(A) CV curves of different electrodes in 50 mM KHP containing 0.5 mM K3[Fe(CN)6] and (B) EIS curves of different electrodes in 0.1 M KCl containing
2.5 mM [Fe(CN)6]

3–/[Fe(CN)6]
4–.
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maximum when the deposition time is set to 2 s. When the
electrodeposition time further increases from 2 s to 10 s, the
signal gradually decreases. This decrease can be attributed to the
reduced effective space of NH2-VMSF’s nanochannels for accessible
transport of the [Fe(CN)6]

3– probe in the bulk solution.
Subsequently, we investigated the incubation time of the anti-
CEA antibody. As displayed in Figure 5B, it could be found that
the peak current intensity decreases as the incubation time increases
up to 60 min. This is because the amount of anti-CEA immobilized
on the electrode is approaching saturation. Similarly, the effect of
incubation time for the CEA on the electrochemical response is
shown in Figure 5C. It is evident that as the incubation time
increases, the peak current signal gradually decreases. After
incubation for more than 60 min, the signal changes become
minimal, indicating that the immunocomplex formed between
the CEA and anti-CEA antibody has reached saturation.
Therefore, 60 min is determined to be the optimal incubation time.

3.5 Quantitative determination of CEA using
the fabricated Ab/GA/Pt NPs@NH2-VMSF/
ITO immunosensor

To evaluate the analytical performance of the Ab/GA/Pt NPs@
NH2-VMSF/ITO sensor, we tested it in detecting the CEA with
various concentrations under optimized conditions using the DPV
technique. As shown in Figure 6A, the cathodic peak current
decreased progressively with the increase in the concentration of
the CEA due to the continuous formation of the antibody–antigen
complex at the sensing interface. A good linear relationship is
displayed between the DPV signal (IDPV) and the logarithm of the
CEA concentration (CCEA) in the range of 0.01 pg/mL to 10 ng/mL
(Figure 6B), yielding a linear regression equation of IDPV (μA) =
0.796 logCCEA-7.02 (R

2 = 0.996). Furthermore, the limit of detection
(LOD) calculated is 0.3 fg/mL at the signal-to-noise ratio of 3 (S/N =
3). We compare the related analytical parameters and construction

FIGURE 5
(A) Cathodic peak currents measured at the GA/Pt NPs@NH2-VMSF/ITO in 50 mM KHP containing 0.5 mM K3[Fe(CN)6] at different deposition times
of Pt NPs. The inset shows its corresponding DPV curves. (B) Cathodic peak currents measured at the Ab/GA/Pt NPs@NH2-VMSF/ITO in 50 mM KHP
containing 0.5 mM K3[Fe(CN)6] at different incubation times for the anti-CEA antibody. The inset shows its corresponding DPV curves. (C) Cathodic peak
currentsmeasured at the Ag/Ab/GA/Pt NPs@NH2-VMSF/ITO in 50 mMKHP containing 0.5 mMK3[Fe(CN)6] at different incubation times for the CEA.
The inset shows its corresponding DPV curves.

FIGURE 6
(A) DPV responses of the Ag/Ab/GA/Pt NPs@NH2-VMSF electrode to various concentrations of CEA in 0.01 M PBS (pH 7.4). (B) Corresponding
calibration curves. Error bars refer to the standard deviations of three measurements.
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strategy of the Ab/GA/Pt NPs@NH2-VMSF/ITO sensor with the
other reported sensors. As shown in Table 1, our fabricated Ab/
GA/Pt NPs@NH2-VMSF/ITO strategy has a low LOD and simple
preparation steps. Moreover, the developed sensor not only achieves
dual signal amplification through the electrocatalysis ability of Pt NPs
and the electrostatic enrichment effect of VMSF at the electrode
interface but also has the advantage of a shorter construction time.

3.6 Selectivity of the fabricated Ab/GA/Pt
NPs@NH2-VMSF/ITO immunosensor

The selectivity of the fabricated Ab/GA/Pt NPs@NH2-VMSF/
ITO sensor were studied by multiple potential interfering

substances, including the PSA, S100 calcium-binding protein β,
AFP, and CRP. As shown in Figure 7, the Ab/GA/Pt NPs@NH2-
VMSF/ITO immunosensor demonstrates excellent signal response
to the CEA and a mixture of the aforementioned substances
containing the CEA while showing almost no response to other
interfering substances. This indicates that our sensing platform has
high selectivity to the CEA, resulting from the specific binding of the
anti-CEA antibody and CEA complex.

3.7 Detection of CEA in real samples

To validate the reliability and accuracy of the developed Ab/GA/
Pt NPs@NH2-VMSF/ITO sensor, we conducted real sample testing
by detecting the CEA amount in fetal bovine serum using the
standard addition method. After diluting the fetal bovine serum
by a factor of 50 using 0.01 M PBS (pH 7.4), we added 0.1 pg/mL,
10 pg/mL, and 1000 pg/mL of CEA and measured the
electrochemical signals by DPV. The added known and tested
concentrations of the CEA are designated as “Cadded” and
“Cfound”. In addition, the recovery is defined as the concentration
ratio ((Cadded/Cfound)×100%), which is used to evaluate the detection
performance of the fabricated Ab/GA/Pt NPs@NH2-VMSF/ITO in
real samples. Generally, recovery ranging from 90.0% to 110% is
considered for high accuracy. The relative standard deviation (RSD)
value represents the deviation of three measurements disseminated
around the average value, which is expressed as the ratio of the
standard deviation to the average value. The lower the RSD, the
closer the measured values are to the average value, indicating good
precision. As shown in Table 2, the recoveries of the CEA obtained
in the aforementioned fetal bovine serum samples range from
104.5% to 107.4% with low RSD values (<5.7%). These results
demonstrate the promising potential of the proposed Ab/GA/Pt
NPs@NH2-VMSF/ITO sensor for sensitive detection of the CEA in
clinical applications.

TABLE 1 Comparison of the analytical performances of different methods for the determination of the CEA.

Sensing platform Method Detection range
(ng/mL)

LOD
(pg/mL)

Step Construction
time (h)

Reference

BSA/Ab/Pd@Pt/MoS2-Gr/GCE EC 0.00001–100 0.005 13 39 Lin et al. (2021)

CuO NPs/Ag/BSA/Ab/MB Colorimetry 0.05–100 26 8 5 Li et al. (2017)

PdCu-Ab2/Ag/Ab1/BSA/AuNPs/GCE EC 0.0001–10 0.08 7 16 Jiao et al. (2017)

GO-PEI-Ru-AuNPs-Ab2/Ag/Ab1/AuNFs/pL-
Cys/GCE

ECL 0.0001–80 0.045 12 37 Yuan et al. (2018)

CEA aptamer/ZnS-CdS/MoS2/GCE ECL 0.05–20 30 8 60 Wang et al.
(2016)

Ab/AuNPs@nafion/FC@CHIT/GCE EC 0.03–100 10 9 8 Shi and Ma
(2011)

Ab/GA/Pt NPs@NH2-VMSF/ITO EC 0.0001–10 0.0003 7 5 This work

BSA, bovine serum albumin; Ab, the antibody of the CEA; MoS2, molybdenum disulfide; Gr, graphene; GCE, glassy carbon electrode; CuO NPs, copper oxide nanoparticle; Ag,

carcinoembryonic antigen; MB, magnetic bead; PdCu, porous PdCu nanoparticles; AuNPs, gold nanoparticles; GO, graphene oxide; PEI, polyethylenimine; Ru, the luminophor tris (4,40-

dicarboxylicacid-2, 20-bipyridyl) ruthenium (II) dichloride (Ru(dcbpy)32+); AuNFs, flower-like gold nanoparticles; pL-Cys, polyamino acid L-cysteine; ZnS–CdS, ZnS–CdS nanoparticle; FC: K3

[Fe(CN)6]; CHIT, chitosan.

FIGURE 7
DPV current ratio obtained from Ab/GA/Pt NPs@NH2-VMSF/ITO
in the absence (I0) or presence (I) of different species with the same
concentration (10 ng/mL). Error bars refer to the standard deviations
of three measurements.
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4 Conclusion

In summary, Pt NPs confined in the silica nanochannels of NH2-
VMSF without any protecting ligands have been successfully
synthesized on the ITO electrode surface using a simple
electrochemical method. The CEA antibody covalently modified on
the external surface of NH2-VMSF endows the sensor with good
specificity for CEA detection. With the help of the [Fe(CN)6]

3− probe
in the bulk solution, the high affinity between the CEA antibody and
CEA on the sensing interface forms the steric hindrance effect for the
accessibility of [Fe(CN)6]

3− to the underlying ITO surface, resulting in
an attenuated electrochemical signal and allowing the detection of the
CEA with a wide linear range of 0.01 pg/mL~10 ng/mL and a pretty
low limit of detection of 0.30 fg/mL. Combining the signal
amplification ability of Pt NPs and the anti-biofouling property of
NH2-VMSF, the presented sensing strategy can be directly applied in
detecting the CEA in human serum samples, which is helpful for the
analysis of tumor-related biomarkers in clinical diagnosis.
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