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Due to the complicated transport and reactive behavior of organic contamination
in groundwater, the development ofmathematical models to aid field remediation
planning and implementation attracts increasing attentions. In this study, the
approach coupling response surface methodology (RSM), artificial neural
networks (ANN), and kinetic models was implemented to model the
degradation effects of nano-zero-valent iron (nZVI) activated persulfate (PS)
systems on benzene, a common organic pollutant in groundwater. The
proposed model was applied to optimize the process parameters in order to
help predict the effects of multiple factors on benzene degradation rate.
Meanwhile, the chemical oxidation kinetics was developed based on batch
experiments under the optimized reaction conditions to predict the temporal
degradation of benzene. The results indicated that benzene (0.25 mmol) would be
theoretically completely oxidized in 1.45 mM PS with the PS/nZVI molar ratio of 4:
1 at pH 3.9°C and 21.9 C. The RSM model predicted well the effects of the four
factors on benzene degradation rate (R2 = 0.948), and the ANNwith a hidden layer
structure of [8-8] performed better compared to the RSM (R2 = 0.980). In addition,
the involved benzene degradation systems fit well with the Type-2 and Type-3
pseudo-second order (PSO) kinetic models with R2 > 0.999. It suggested that the
proposed statistical and kinetic-based modeling approach is promising support
for predicting the chemical oxidation performance of organic contaminants in
groundwater under the influence of multiple factors.
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1 Introduction

The widespread use of organics in industrial production and the
lack of management of organic wastewater leakage and discharge
have led to an increasing threat of organic contaminants to the
public safety of subsurface ecosystems (Padhi and Gokhale, 2017).
Benzene, as an important aromatic compound existing in pesticide
intermediates and petroleum products, is widely used as an organic
solvent in the industry (Liu et al., 2010; Zhao et al., 2020). Benzene
has the potential to readily infiltrate the subsurface milieu during
various stages of its lifecycle, encompassing production, storage, and
transportation. Its inclusion in the U.S. EPA’s National Priorities
List is attributed to its well-documented carcinogenic, teratogenic,
and mutagenic properties, which are observed in both its liquid and
gaseous states (Xu Q. et al., 2021; Agency, 2023). Subsurface
environmental exposure to benzene has become a global
environmental problem (Singh and Fulekar, 2010; Padhi and
Gokhale, 2014). Therefore, the rapid and precise remediation of
benzene-contaminated groundwater to reduce public risk has
become a widespread concern.

Among the many remediation strategies for organic compound
contaminated groundwater, in situ chemical oxidation (ISCO) has
attracted much attention for its advantages of economy and high
efficiency (Matzek and Carter, 2016). At present, the sulfate radical-
based advanced oxidation processes (SO·−

4 − AOPs) have been
widely used in the remediation of organic contamination in
groundwater. Persulfate (PS) is considered to be a promising
oxidant, which degrades organic contaminants by producing
sulfate free radicals. PS is often used in conjunction with
activators to form highly active species during ISCO (Liang et al.,
2008). Nano-zero-valent iron (nZVI) is an activator with strong
reactivity, high catalytic activity, and reducing ability (Lominchar
et al., 2018; Cabrera-Reina et al., 2020). The successful applications
of nZVI in the remediation of organic compound contaminated
groundwater have been reported. Zhu et al. (Zhu et al., 2016) found
that PS/nZVI system effectively alleviated the SO·−

4 quenched by Fe2+

in the traditional ISCO process. Song et al. (Song et al., 2019)
indicated that PS/nZVI oxidized up to 80% of benzene-based
contamination in a pilot scale field study. Nevertheless, the
prevailing researches on PS/nZVI oxidation technology revolved
in the refinement and optimization of individual parameters such as
oxidant dose, activator dose, pH and temperature (Srivastava et al.,
2021b). Owing to the heterogeneity and the complexity of
subsurface surroundings, the outcomes attained were not
universally generalizable. Consequently, it is necessary to develop
a predictive approach that holistically incorporates the impacts of
multiple process parameters and environmental factors on the
oxidation effectiveness in a simpler and more flexible way to
support the determination of the optimal process parameter
combination for a specific scenario.

The traditional one-factor-at-a-time (OFAT) approach for
process parameter optimization necessitates an excessive amount
of time and runs to ensure precision in effect estimation, and its
ability to determine the interaction between input variables and the
optimal levels of various factors is limited (Sachaniya et al., 2020).
The process-centered, statistics-based response surface
methodology (RSM) overcomes these disadvantages. RSM is a
statistical modeling method that uses multiple quadratic

regression equations to fit the global functional relationship
between the factors and the response values through reasonable
experimental design (Amiri et al., 2019; Bahrami et al., 2019). By
analyzing the response surface contour plot, the interactions among
the process parameters and contaminant degradation rate in the PS/
nZVI oxidation system of organic contamination in groundwater
would be determined, and the optimal factor value could be
predicted by regression equation (Kasiri et al., 2008). The
commonly used RSM design methods include Box-Benkhen
design (BBD) and Center Composite Design (CCD). It is
generally believed that CCD was suitable for situations with
multi-factor and continuous variables, and when the number of
variables is small (three to seven variables), and BBD could reveal the
interaction of multiple factors affecting the remediation effect by
using fewer experimental groups than CCD (Ray et al., 2009).

However, the quadratic regression modeling, frequently
employed in RSM, may prove inadequate for capturing the
intricate relationships between these factors and the responses.
Integrating Artificial neural network (ANN) as a modeling tool
alongside RSM may further enrich our understanding of the
intricate connections between inputs (characteristic factors) and
outputs (degradation rate). ANN has garnered extensive utilization
in diverse scientific and engineering domains for simulation and
prediction purposes (Aycan DÜMencİ et al., 2021). Its ability to
adapt, learn, identify, verify, and reproduce associations enables
ANN to effectively interpret the interaction of highly complex
factors in the remediation process of contaminated groundwater,
and to simulate and predict degradation data through the analysis of
characteristic parameters (Zafar et al., 2012). Currently, ANN has
demonstrated its efficacy in tackling numerous challenging issues
within the realm of environmental remediation, such as the
prediction of the elimination of hazardous compounds from
industrial wastewater and the precise management of diverse
degradation processes associated with organic contaminants
(Lenzi et al., 2016; Srivastava et al., 2021a).

Chemical degradation kinetic models play a vital role in
providing insight into transient degradation rates and
comprehending the chemical oxidation process, thereby
furnishing crucial information for simulating site-specific
contaminant degradation on a larger scale (Lominchar et al.,
2018). At present, the pseudo-first-order kinetic model (PFO),
pseudo-second-order kinetic model (PSO), and intraparticle
diffusion kinetic model (IPD, W-M equation) have been
demonstrated as the simplified mathematical models for
simulating advanced oxidation process (Zulfiqar et al., 2019).
Therefore, combining the chemical degradation kinetic model
with the RSM-ANN approach may provide a deeper insight into
the transient degradation processes within the system, thus
furnishing a more realistic framework to guide practical
applications. Currently, the RSM-ANN-kinetic approach has been
successfully applied in the areas such as optimizing wastewater
treatment processes (Nayak and Pal, 2020; Igwegbe et al., 2023)
and evaluating catalyst performance (Fattahi et al., 2014; Kassahun
et al., 2021).

Many studies have been carried out in modeling and optimizing
the degradation of organic contaminants through activated PS
oxidation techniques using kinetic models based on OFAT
(Cabrera-Reina et al., 2020; Heidari et al., 2022; Conte et al.,
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2023). Other studies focused on modeling and optimizing the
pollutant degradation process via activated PS using the
combined approach of RSM and ANN (Zhang et al., 2018;
Asgari et al., 2020; Qiu et al., 2021). However, few studies have
systematically explored the effectiveness of the coupled RSM-ANN-
kinetic approach in predicting the oxidation of organic
contaminants in groundwater by activated PS.

In this study, the modeling approach coupling two optimization
systems namely, RSM-BDD and ANN with kinetic model was
innovatively implemented to optimize the benzene degradation
process parameters and predict the effect of PS/nZVI oxidation
system with benzene. The RSM models of four independent
parameters, including PS dosage, nZVI dosage, pH, and
temperature were established based on batch experiments. The
simulation accuracy of the RSM models was optimized using
ANN to enhance the prediction accuracy of the advanced
oxidation degradation models based on statistical data. In
addition, the kinetic models suitable for predicting the
degradation process of benzene-contaminated groundwater by
the PS/nZVI oxidation system were developed.

2 Materials and methods

2.1 Field sample

The soil and groundwater samples used in this study were
collected from an abandoned pesticide factory in Jiangsu
Province, China. Benzene, toluene, ethylbenzene, and xylene
(BTEX) was found to contaminate the core area of the site. The
soils used in this work were taken from the non-polluted area at the
edge of the site, and the uncontaminated groundwater was obtained
from the upstream of the contaminated site. The soil samples were
dried (for a week) in a greenhouse before being screened, and
collected with a particle size of less than 2 mm for later use.

2.2 Microcosm experiment setup

Benzene was added to the collected uncontaminated
groundwater to a final concentration of 0.25 mM (equivalent to
20 mg/L). The groundwater was then aliquoted to the standard
40 mL threaded vials filled with the pre-prepared soil and capped
with a Teflon/silicone gasket to prevent the volatilization of
contaminants. PS (purity >98%, Sinopharm Chemical Reagent
Co., Ltd., China) and nZVI (Sinopharm Chemical Reagent Co.,
Ltd., China) were added to the above vials according to
experimentally designed concentrations of RSM-BBD and sodium

hydroxide solution (0.1 M) and hydrochloric acid solution (0.1 M)
were used for pH adjustment. All the microcosmic vials were kept
for 12 h at the design temperature after uniform oscillation. Then
the sample were filtered through a 0.45 μm membranes before
analysis. The residual benzene concentration analysis was
conducted using a gas chromatography-mass spectrometrometry
system (GC-MS, 7890A/5975C, Agilent, United States) equipped
with a capillary column (J&W Scientific DB-624 60 m × 0.25 mm ×
1.4 μm, Agilent) after a purge and trap concentrator (Eclipse
4,552and4,660, OI Analytical, United States). Three parallel
experiments were set in each group to eliminate experimental
errors and determine the reproducibility of the results, and one
blank control group was set without degradant to eliminate
interference caused by adsorption. The removal rate of benzene
was calculated by the following formula:

Benzene removal efficiency � C0 − C
C0

× 100% (1)

C0 and C were the concentrations of benzene in the system at the
beginning and the end of the reaction.

2.3 Experimental designs with RSM method

Design Expert software (DES, Version 11.0) was used to analyze
the influence of different environmental parameters on the
degradation rate of benzene (response) in contaminated
groundwater. A four-variable with three-level BBD experiments
with three central points were designed to investigate the
degradation trend of benzene in contaminated groundwater in
the PS/nZVI oxidation system. Four independent variables were
selected, including 1) oxidant (PS) dose, 2) activator (nZVI) dose, 3)
pH, and 4) temperature, with three levels designed for each
independent variable (coded values + 1, 0, and −1, see Table 1).
The BBD-RSM method was used to design 29 sets of experiments
under different process conditions (Table 2). These 4 independent
factors were presented as X1, X2, X3, and X4, respectively for
statistical computations. A quadratic model was established to fit
the experimental results and show the relationship between all
involved environmental variables. The quadratic model is as follows:

Y � b0 + b1X1 + b2X2 + b3X3 + b4X4 + b12X1X2 + b13X1X3 + b14X1X4

+ b23X2X3 + b24X2X4 + b34X3X4 + b11X
2
1 + b22X

2
2 + b33X

2
3 + b44X

2
4 + ε
(2)

In the formula, Y is the response factor predicting the
degradation efficiency of benzene, b0 is the fixed response value
at the design centre point, bi (i = 1, 2, 3, 4) represents the linear
coefficient, bii (ii = 1, 2, 3, 4) is the quadratic coefficient, bij (i = 1, 2, 3,

TABLE 1 Variables and levels used in factorial design.

Levels Variables Low level (−1) Medium level (0) High level (+1)

1 Oxidizer dose (X1) (mM) 0.25 0.75 1.25

2 Activator dose (X2) 2 4 6

3 pH (X3) 5 7 9

4 Temperature (X4) (°C) 15 20 25

Frontiers in Chemistry frontiersin.org03

Luo et al. 10.3389/fchem.2023.1270730

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1270730


4, j = 2, 3, 4) represents the effective coefficient of interactive
regression, Xi, Xj represent independent variables, Xij represents
the effect of interaction between independent variables, X2

i and X2
j

represent the secondary effects of each independent variable, ε is the
statistical error. Analysis of variance (ANOVA) was used to analyse
the established model. The significance of each coefficient in the
equation was determined by the F test and p-value, and the
prediction ability of the model was evaluated through graphical
analysis and numerical analysis.

2.4 ANN design

The learning network used in this research was a hierarchical
feedforward neural network with a back-propagation method, also
known as an improved BP learning algorithm. Levenberg-
Marquardt (LM) algorithm was selected for supervised learning
functions to train the network because of its advantages of fast
convergence and high computational accuracy (Srivastava et al.,
2021a). The four variables determined by the response surface

TABLE 2 BBD matrix for experimental variables and response at four factor levels.

Std Factors Response

Oxidizer dose
(X1) (mM)

Activator dose (X2) pH (X3) Temperature (X4) (°C) Benzene
degradation (%)

Actual Coded Actual Coded Actual Coded Actual Coded Actual Predicted

1 0.25 −1 2 −1 7 0 20 0 57.40 58.06

2 1.25 +1 2 −1 7 0 20 0 90.13 90.67

3 0.25 −1 6 +1 7 0 20 0 72.11 70.61

4 1.25 +1 6 +1 7 0 20 0 96.25 89.66

5 0.75 0 4 0 5 −1 15 −1 83.05 83.69

6 0.75 0 4 0 9 +1 15 −1 58.82 59.75

7 0.75 0 4 0 5 −1 25 +1 84.27 85.70

8 0.75 0 4 0 9 +1 25 +1 68.26 64.13

9 0.25 −1 4 0 7 0 15 −1 70.59 69.26

10 1.25 +1 4 0 7 0 15 −1 92.18 97.18

11 0.25 −1 4 0 7 0 25 +1 69.04 63.74

12 1.25 +1 4 0 7 0 25 +1 94.68 96.53

13 0.75 0 2 −1 5 −1 20 0 78.40 79.77

14 0.75 0 6 +1 5 −1 20 0 87.36 88.74

15 0.75 0 2 −1 9 +1 20 0 63.45 67.70

16 0.75 0 6 +1 9 +1 20 0 77.06 74.66

17 0.25 −1 4 0 5 −1 20 0 69.02 70.31

18 1.25 +1 4 0 5 −1 20 0 98.29 96.92

19 0.25 −1 4 0 9 +1 20 0 53.52 54.26

20 1.25 +1 4 0 9 +1 20 0 80.17 83.82

21 0.75 0 2 −1 7 0 15 −1 66.18 66.36

22 0.75 0 6 +1 7 0 15 −1 72.65 67.62

23 0.75 0 2 −1 7 0 25 +1 77.56 81.52

24 0.75 0 6 +1 7 0 25 +1 85.43 83.58

25 0.75 0 4 0 7 0 20 0 81.84 80.92

26 0.75 0 4 0 7 0 20 0 81.93 78.93

27 0.75 0 4 0 7 0 20 0 81.48 78.80

28 0.75 0 4 0 7 0 20 0 83.08 84.25

29 0.75 0 4 0 7 0 20 0 83.69 85.75
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method were used as input layer neurons (04), and output layer
neuron (01) was set as the response of benzene degradation rate.
This research adopted the double-layer structure network with
better generalization ability than the single-hidden layer structure
which optimized the network structure of the hidden layer
(Figure 1). Estimation of the number of hidden layers and the
number of neurons in each layer was the main difficulties in
optimizing the structure of the neural network, this problem was
solved by applying the thumb rule (Gazzaz et al., 2012). In all sample
datasets, 70% were used for training the network learning, 15% were
used for forming the verification set, and the other 15%were used for
forming the network test set (Taqvi et al., 2017), to cross-validate the
ANN model for benzene degradation by the PS/nZVI oxidation
system. The specific model parameters in the ANN were shown in
Table 3. The scenario settings used to optimize the hidden layer
structure of the ANN model were shown in Table 4. The
development of the ANN model was completed by MATLAB
9.8.0.1323502 (R2020A).

The prediction performance of the models was evaluated via
error functions that include the coefficient of determination (R2),
root mean square error (RMSE), mean absolute deviation (MAD),
and mean absolute percentage error (MAPE), expressed as:

R2 � 1 − ∑N
I�1 At − Ft( )2∑N
I�1 Am − Ft( )2 (3)

MAD � ∑n
i�1 At − Ft| |

n
(4)

RMSE �
������������∑n

i�1 At − Ft( )2
n

√
(5)

MAPE � ∑n
i�1

At−Ft
At

∣∣∣∣∣ ∣∣∣∣∣
n

× 100 (6)

Where At is the predicted value obtained by ANN or RSM, Ft is the
experimental/observed value, Am is the average of the predicted
value, and n is the number of samples.

2.5 Kinetic model study

Under the optimum conditions given by RSM and ANN, the
degradation kinetics of benzene with different concentrations
(0.0625–1.25 mM) by the PS/nZVI oxidation system was studied.
Degradation experiments were carried out on benzene solutions
of specified concentrations based on optimized process
parameters, and samples were collected at 20-min intervals to
measure the residual benzene concentration in the system. The
degradation results of benzene in the optimized experiment were
modeled using the Pseudo-first order (PFO) and Pseudo-second
order (PSO) kinetic models, which were widely used in the
analysis of the degradation mechanism (Chowdhury et al.,
2016). The diffusion mechanism of the degradation system

FIGURE 1
Schematic representation of neural network architecture with dual hidden layers.

TABLE 3 ANN model parameters.

Parameters Value

Input layer neuron 04 (Oxidizer, Activator, pH, Temperature)

Output layer neuron 01 (Degradation rate)

Hidden layers 2

Transfer Function TANSIG

Number of learning cycles 500 epochs

Performance function MSE

Data division 70%–15% - 15% (Training -Test -Validation)

Learning function Levenberg-Marquardt (LM)
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was studied by the intraparticle diffusion (IPD) kinetic model
(Zulfiqar et al., 2019).

i. PFO kinetic model

PFO kinetic model is an extensively adopted model to simulate
the degradation process, which could be represented as follows:

log qe − q( ) � log qe( ) − K1t/2.303 (7)
In the formula, K1 (L/min) represents the degradation rate constant,

qe (mg/g) represents the degradation amount of benzene when the
system reaches equilibrium, q (mg/g) represents the degradation amount
of benzene at any time point in the reaction process, and t represents the
time (min). The Curve Fitting Tool of MATLAB 9.8.0.1323502
(R2020A) was used to obtain the parameter values.

ii. PSO kinetic model

Five different forms of PSO kinetic models were used to fit the
degradation rate results of benzene, namely,: Type-1 PSO, Type-2
PSO, Type-3 PSO, Type-4 PSO and Type-5 PSO. These Lagergren
equations are extensively used for the degradation of liquid-solid
phase based on solid capacity, and these PSO kinetic formulas could
be expressed as following equations (Zulfiqar et al., 2018):

t
q
� 1
K2q2e

+ 1
qe

t Type − 1 PSO (8)

1
q
� 1

K2q2e
( ) 1

t
+ 1
qe

Type − 2 PSO (9)

1
t
� K2q2e

q
− K2q2e

qe
Type − 3 PSO (10)

q
t
� K2q

2
e −

K2q2eq
qe

Type − 4 PSO (11)

1
qe − q

� 1
qe

( ) + K2t Type − 5 PSO (12)

Where qe (mg/g) and q (mg/g) respectively represent the amount
of benzene removed by the oxidant per unit weight under equilibrium
and at any time in the reaction process. K2 (g/mg min) represents the
PSO chemical degradation rate constants. Using Type-1 PSO, the

graph against t versus t/q was plotted. The slope and intercept were
used to achieve the values of constant factors. In term of Type-2 PSO
kinetic model, the slope and intercept were used to receive the values
of constant factors after plotting the graph against 1/t versus 1/q. In the
case of Type-3 PSO kinetic equation, the graph between 1/q versus 1/t
was plotted and obtained the constant values using slope and
intercept. By using a Type-4 kinetic model, the graph plotted
against q/t versus q for obtaining the values of constant factors
from slope and intercept. Similarly, by employing the Type-5 PSO
kinetic equation, the graph was plotted against t versus 1/(qe-q) and
calculate the values of K2 and qe by using the slope and intercept.

iii. IPD kinetic model

Another kinetic theory considered the controlling factor of the
reaction rate of the PS/nZVI oxidation system from the perspective
of solid-liquidmass transfer. The degradation process of the benzene
molecules in the system could be summarized into three steps: 1) the
mass transfer of the pollutant through the outer boundary layer at
the solid-liquid interface; 2) the diffusion of the liquid through the
solid-phase particle channels; and 3) the oxidative degradation of the
SO·−

4 on the surface of the activator (Ocampo-Perez et al., 2011). The
mass transfer rate or particle diffusion rate, or the coupling effect of
the two mechanisms affected the overall degradation rate of nZVI-
activated PS. The IPD kinetic model obtained the prediction of the
reaction process through the correlation between t0.5 and qt, which
was given by the following equation:

qt � Kidt
0.5 + Ci (13)

Where Kid (mg/g min 0.5) and Ci refer to the rate constant of IPD
and the boundary layer thickness of solid particles in the system,
respectively.

3 Results and discussion

3.1 Statistical analysis for BBD-RSM

The BBD-RSM successfully simulated and predicted the PS/
nZVI oxidation of benzene in synthetic contaminated groundwater
at each design level of the four factors. The benzene degradation rate

TABLE 4 Performance of ANN models with different structure of hidden layer (Bold values represent the optimal hidden layer structure).

Model id Structure of hidden layer R2 MSE RMSE MAD MAPE

BP1 1,1 0.8887 80.1415 8.9522 12.4607 0.3697

BP2 1,4 0.9221 76.6661 8.7559 13.464 0.3802

BP3 4,4 0.914 29.655 5.4456 13.3865 0.2768

BP4 4,8 0.9202 9.655 3.1072 8.6489 0.1712

BP5 8,8 0.9801 0.8243 0.9079 3.0614 0.1564

BP6 8,16 0.9172 4.0153 2.003 6.958 0.1748

BP7 16,16 0.9093 18.8257 4.3388 4.081 0.2582

BP8 16,32 0.8542 60.3357 7.7676 5.8504 0.1701

BP9 32,32 0.8341 92.1841 9.6012 13.7703 0.2858
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was between 53.52% and 98.29% in the batch experiments (Table 2).
The ANOVA of BBD-RSM for benzene degradation with the PS/
nZVI technology showed that the predicted degradation rate of the
quadratic model was highly consistent (p < 0.0001) with the actual
degradation rate (Supplementary Table S1).

The value of determination coefficient R2 (0.948) indicated
that the suggested quadratic equation was useful for predicting
the benzene degradation rate in the PS/nZVI oxidation system
within the range of experimental conditions. The R2-adj value

(0.895) of the RSM model was close enough to the R2 value
(0.948), indicating that the precision of the suggested response
model was only slightly affected by the insignificant model terms.
In general, R2 values would increase by adding an item which has
insignificant effects (p-value>0.05) to the proposed model, but
the adjusted R2 (R2-adj) representing significant effects would not
increase (Salarian et al., 2016). In addition, the predicted R2

(0.792) also has favorable anastomose with the R2-adj (0.895)
(a difference of less than 0.2 was considered acceptable), further

FIGURE 2
The response surface plot of benzene degradation as the function of (A) oxidizer and activator dosage, (B) pH and oxidizer dosage, (C) oxidizer
dosage and temperature, (D) activator dosage and pH, (E) activator dosage and temperature, and (F) temperature and pH.
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indicating that the constructed BBD-RSM model had acceptable
reproducibility.

According to the screening principle of the significance of RSM
model variables (p-value <0.05 and F value >5), independent
variables X1, X2, X3, X4, and X2

3 were believed to have the most
significant contributions to the accuracy of the suggested model and
played the most important role in the simulation results. X1 had the
largest F value (146.20), indicating that its influence on the model
was dominant compared with other factors. The measured results
were fitted using a quadratic model, to achieve the following
regression equations:

Y � 9.08 + 0.758X1 + 0.280X2 − 0.481X3 + 0.174X4 − 0.150X1X2

+ 0.008X1X3 + 0.056X1X4 + 0.080X2X3 − 0.012X2X4

+ 0.132X3X4 − 0.041X2
1 − 0.152X2

2 − 0.322X2
3 − 0.158X2

4

(14)
The prediction accuracy of the proposed model for the

degradation of benzene by the PS/nZVI oxidation system was
verified using four different evaluation methods. The measured
value and predicted value of the degradation rate of benzene
showed a high degree of consistency (Supplementary Figure S1A),
which provided the most direct evidence for the great performance of

the prediction model. The externally studentized residual analysis
showed that the error values were normally distributed along a
mathematical expectation value μ) close to zero and a constant
variance (σ2), which confirmed the adequacy of the proposed
model (Supplementary Figure S1B). In addition, the residuals of
the experimental values and predicted values were uniformly
distributed within a rectangular region centered at zero, indicating
that the random error distribution of the proposed model was
uniform and reasonable, which indirectly proved the stability of
the RSM model (Supplementary Figure S1C,D).

The factor interaction analysis of the response surface
methodology showed that the interaction between the PS and
nZVI dosages exerted the dominant effects on the benzene
degradation in synthetic contaminated groundwater (Figure 2A).
In the response surface of the interaction between PS and nZVI
dosages, the degradation rate of benzene showed a drastic increase
with the dosage of PS increasing from 0.25 mM to 1.25 mM (53.52%–
98.29%), while the effect of the activator on the reaction result was
more moderate. However, when the amount of activator alone was
controlled to increase from a 2:1 M ratio to 6:1, a 15% increase in
benzene degradation rate was also observed (Figure 2A). This may
owe to the SO·−

4 played a major role in benzene degradation, and the
interaction between oxidants and activators directly determined the

FIGURE 3
R2 values of (A) training, (B) validation (C) testing, and (D) all data sets of ANN for benzene degradation (%) by PS/nZVI process.
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rate of the SO·−
4 generation (Lominchar et al., 2018). Whereas, the

effect of the activator on benzene degradation was much weaker,
probably due to the activation potential not fully released at the set
ratio with the oxidizer (Xu Z. et al., 2021). In conclusion, the PS and
nZVI dosages were positively correlated with the benzene degradation
rate, although PS dosage showed the more crucial role.

The response surface of the interaction between the PS dosage
and pH showed that the degradation rate of benzene decreased with
the transition from the acidic to the alkaline solution at a constant PS
dosage (Figure 2B). Although both H+ and OH− have an activating
effect on PS, alkaline conditions inhibited the transformation of
nZVI to the activating Fe2+, which suppressed the activation
capacity of nZVI in the system. In addition, OH− in the system
would coordinate with Fe2+ and Fe3+ to form compounds with no
activation efficiency, and reduce the activation ability (Rodriguez
et al., 2014). Therefore, under acidic conditions and high PS dosage,
the PS/nZVI oxidation system was more efficient for the benzene
degradation. The response surface under the interaction between the
PS dosage and temperature (Figure 2C), nZVI dosage and
pH (Figure 2D), nZVI dosage and temperature (Figure 2E), and
temperature and pH (Figure 2F) were relatively flat or behaved as the
waterfall, which indicated that the interaction of these dependent
variables had no significant effect, or was mainly caused by a single
factor on the benzene degradation rate in synthetic contaminated
groundwater.

3.2 Development of ANN model

The optimization results of the topological structure of the ANN
model showed that when both hidden layers contain eight neurons,
the evaluation function MSE, RMSE, MAD, and MAPE have the

smallest values (Table 4, Scenario BP5), which represents a perfect
match between the predicted value and the actual value. However, if
the number of neurons in any hidden layer exceeds 8, the error of the
ANN model increased instead. It was speculated that too many
neurons in the hidden layer may lead to overfitting, increase the
error of the test set and further increase the overall error function
(Mutasa et al., 2020). Therefore, the optimal topology structure of
the ANNmodel for the PS/nZVI oxidation of benzene was [4-8-8-1],
in which case the lowest performance evaluation functions value and
the highest R2 value (0.9801) were obtained.

The simulation of benzene degradation rates using the ANN
model structured in scenario BP5 showed high goodness of fit for
training, validation, and test subset (Figures 3A–C), with the R2

values of 0.9995, 0.9791, and 0.9725, respectively. In the overall
model, the ANN model fits well with the “perfect fit line”
(Figure 3D), and the R2 value (0.9801) was slightly improved
compared with that of the RSM model (0.948). Therefore, the
developed cascade forward ANN model can be successfully used
to simulate and predict the PS/nZVI oxidation of benzene in
contaminated groundwater.

3.3 Comprehensive evaluation comparison
between RSM and ANN models

The empirical modeling tool ANN displayed better prediction
ability than RSM in the simulation and prediction of the PS/nZVI
oxidation process of benzene in contaminated groundwater
(Figure 4). We compared the observed values with the predicted
values of the quadratic model obtained by RSM and the trained
ANN model, respectively. Their predicted performance parameters
were analyzed and the deviation of the calculated values from the

FIGURE 4
Comparison of experimental results with ANN/RSM predicted results.
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actual values of the two models was plotted. Compared with the
RSM, the predicted value distribution of ANN was closer to the
actual value. The evaluation function values for ANN were lower,
and the values of the R2 were closer to 1, which were signs of a well-
fitted model (Supplementary Table S2). The highly predictive
performance of the ANN was due to its ability to extract the
basic interaction between dependent variables and independent
variables with high accuracy without considering the degree of
nonlinearity between variables, whereas the RSM only allowed
fitting data based on mathematical equations (Lopez et al., 2017).
It is generally accepted that RSM is usually used for the whole
process of industrial system design starting from the experimental
design. Its advantage reflects in putting forward more credible
suggestions on the optimization of process parameters (Jiang
et al., 2020). By contrast, ANN may be more suitable for
processing massive experimental data, and focus on providing
and establishing more detailed interrelationships between
independent variables and dependent variables (Kasiri et al.,
2008). Therefore, ANN may be a more powerful and flexible
empirical modelling tool for remediation simulations of
groundwater contaminated by organic compounds.

3.4 External validation of the model

Three groups of process parameters recommended by the
proposed models that should completely degrade benzene in
synthetic contaminated groundwater were selected and the
predictive ability of the proposed models was externally
validated by replicated experiments (Supplementary Table S3).
The results showed that under the condition of complete
degradation of benzene predicted by the RSM model, the
measured degradation rates of the three experimental groups
were 100%, 99.87%, and 98.79%, respectively, and the predicted
benzene degradation rates by the trained ANN (BP5, which with
the best predictive performance) were 99.86%, 99.98%, and
99.10%, respectively. The agreement between the experimental
and predicted values indicated that it was feasible to use the
proposed model to simulate the actual degradation situation.
The MSE between the predicted and measured values of the
two models were 0.4937 (RSM) and 0.0426 (ANN), respectively,
which indicated that the simulation errors of both models were
acceptable in the external validation phase, but ANN still
outperformed RSM.

TABLE 5 PFO, Type-1 PSO, Type-2 PSO, Type-3 PSO, Type-4 PSO, Type-5 PSO, and IPD kinetic parameters for benzene in groundwater degradation onto PS/nZVI
process.

Kinetic models Parameters Benzene concentrations

5 mg/L 10 mg/L 20 mg/L 50 mg/L 100 mg/L

PFO K1(min−1 ) 0.07630 0.06455 0.05910 0.04733 0.4525

qe (mg/g) 2.665 1.975 1.195 1.355 0.9437

R2 0.7632 0.9084 0.995 0.9286 0.9759

Type-1 PSO K2(min−1 ) 5.08E-05 1.27E-05 4.56E-04 5.13E-04 1.13E-04

qe(mg/g) 3.4321 6.2069 21.3873 40.3136 74.6969

R2 0.8385 0.5034 0.9827 0.9895 0.9699

Type-2 PSO K2(min−1 ) 7.43E-05 3.95E-06 3.31E-04 4.00E-04 6.53E-04

qe(mg/g) 25.3872 150.3307 35.1989 64.4745 175.5618

R2 0.9995 0.9978 0.9964 0.9927 0.9886

Type-3 PSO K2(min−1 ) 7.35E-05 4.69E-08 3.26E-04 3.93E-04 6.19E-04

qe.(mg/g) 25.5277 137.0321 35.4286 64.8468 179.1892

R2 0.9995 0.9978 0.9964 0.9927 0.9886

Type-4 PSO K2(min−1 ) 4.94E-05 9.92E-06 3.76E-04 4.05E-04 8.12E-04

qe(mg/g) 30.8333 97.2306 33.5975 64.272 161.9772

R2 0.821 0.398 0.9441 0.9489 0.8721

Type-5 PSO K2(min−1 ) 2.33E-05 5.55E-05 0.000267 0.000478 0.000124

qe (mg/g) 44.03 43.48 52.69 61.56 141.2

R2 0.9965 0.9975 0.9436 0.9777 0.9796

IPD Kid(mg/gmin 0.5) 0.6002 1.242 1.995 3.851 9.334

Ci −1.937 −3.97 −1.389 7.607 −3.024

R2 0.9866 0.9979 0.9632 0.9085 0.9373
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3.5 Reaction kinetic studies

The kinetic parameters (qe, K1 and K2) and correlation coefficients
(R2) of benzene degradation in synthetic contaminated groundwater by
the PS/nZVI oxidation system were determined by linear regression
method (Table 5). The R2 values of different types of kinetic models were
distributed between 0.3982 and 0.9995, and all types of kinetic models fit
the experimental data well except for very few scenarios (e.g., Type-1 and
Type-4 PSO at 10mg/L benzene). The linear fitting diagramof the kinetic
model showed that the fitting curve of the PFO deviated significantly
from the experimental results (Figure 5A), and the parameter values of
the PFO model also showed no significant regularity during the increase
of benzene concentration from 0.0625 mM to 1.25 mM (Table 5),
indicating that the PFO kinetic model may not be a reasonable model
to explain the benzene degradation process. Type-2 and Type-3 PSO
kinetic models showed the best fitting with the observed data of benzene
degradation within the focused benzene concentration range of
0.0625–1.25mM (Figures 5B,C), with R2 values exceeding 0.99. The
relationship between benzene degradation concentration versus time was
more appropriately explained using these two types of PSO kinetic
models, and they were fitted using 1/t versus 1/q or 1/q versus 1/t as
the independent and dependent variables, respectively. Meanwhile, the

instantaneous reaction rate models for different benzene initial
concentrations can be selected from the Type-2 and Type-3 PSO
kinetic models in Table 5. In addition, the results showed that the
equilibrium benzene degradation amount (qe) in PSO kinetic models
were positively correlated with benzene concentration, and the rate
constant K showed a trend of gradual increase with the pollutant
concentration. The trend of the K value was opposite to the
phenomenon observed by Zulfiqar et al. (Zulfiqar et al., 2019). This
may be attributed to the increase in benzene concentration, which leads to
higher collision probability between free radical particles and benzene
molecules in the system, resulting in improved reaction rate (Shuchi et al.,
2021).

In the IPDkineticmodel, as the initial benzene concentration increased
from 0.0625 mM, the value of diffusivity constant Kid increased from
0.6002 to 9.334mg/g min 0.5 (Table 5). This may be due to the stronger
reaction driving force induced by the higher benzene concentration and
thus affected the mass transfer rate in the reaction process (Cheung et al.,
2007). However, it has been reported that the linear curves of negative
boundary layer thickness (Ci) and the linear curve of qt versus t

0.5 would
not exceed zero at all concentrations (Abdelwahab and Amin, 2013). The
IPD model was considered to be unable to reasonably explain the
mechanism of the PS/nZVI oxidation technology due to abnormality in

FIGURE 5
(A) PFO, (B) Type-2 PSO, (C) Type-3 PSO and (4) IPD kinetic models for benzene removal at optimized conditions given by suggested model.
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the fitted Ci values (Figure 5D). Therefore, type II and type III PSOmaybe
the reasonable models to explain the benzene degradation process by the
PS/nZVI oxidation system.

4 Conclusion

In this work, the modeling approach coupling BBD-RSM and
modified ANN with kinetic model was implemented to optimize the
benzene degradation process parameters and predict the effect of PS/
nZVI oxidation system. The results indicated that the modeled
optimum levels of variables were 1.45 mM PS with a Na+/nZVI
molar ratio of 4:1 at pH 3.9°C and 21.9°C, under which 0.25 mM
of benzene would theoretically be completely removed. The ANN
model had better prediction performance compared with RSM, due to
its strong nonlinear fitting ability. The structure of the hidden layer
and the number of neurons contained in each layer significantly
affected the predictive performance of the ANN. By employing the
thumb rule during the test, we found that when the structure of
hidden layers was [8-8], the evaluation indices of the ANN reached the
optimal level. Furthermore, the developed degradation reaction
kinetics showed that Type-2 and Type-3 PSO kinetic models were
more suitable to explain the benzene degradation process by the PS/
nZVI oxidation system. Our study is expected to provide a new
approach for modeling and optimization of chemical oxidative
remediation of organic contamination in groundwater.
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