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Supramolecular containers have long been applied to regulate organic reactions
with distinct selectivity, owing to their diverse functions such as the ability to pose
a guest molecule(s) with a certain orientation and conformation. In this review, we
try to illustrate how self-assembled coordination cages could achieve this goal.
Two representative cage hosts, namely, self-assembled Pd(II)-ligand octahedral
coordination cages ([Pd6L4]

12+) and self-assembled Ga(III)-ligand tetrahedral
coordination cages ([Ga4L6]

12−) are selected as the pilot hosts that this mini
review covers. Representative works in this area are presented here in brief.
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1 Introduction

Ever since its establishment, supramolecular chemistry has received enormous attention
and has rapidly become one of the most important fields in modern chemistry (Lehn, 1993;
Lehn, 1995; Housecroft, 2021). Depending on various non-covalent interactions,
supramolecular chemistry has been thoroughly studied and applied to various research
areas, including molecular recognition, molecular devices, nanochemistry, and catalysis, etc.
(Vriezema et al., 2005; Ariga and Kunitake, 2006; van Leeuwen, 2008; Kolesnichenko and
Anslyn, 2017). Within the field of supramolecular chemistry, molecular container
compounds are large hollow molecules with inner cavities that can accommodate
various guest molecules. The inner cavity (inner phase) of a molecular container
provides an elegantly isolated hydrophobic microenvironment, resembling active enzyme
receptor sites, which can pose a guest molecule(s) with a certain fixed orientation and
conformation. Logically, chemists have tried to simulate the function of natural enzymes by
developing various synthetic supramolecular containers in recent decades to tackle problems
in traditional organic chemistry, including improving reactivity and reaction rate, inducing
new reaction selectivity, and even producing new reaction pathways (Purse and Rebek, 2005;
Koblenz and WassenaarReek, 2008; Hooley and Rebek, 2009; Murase and Fujita, 2010; Yu
and Rebek, 2018; Morimoto et al., 2020; Olivo et al., 2021). Selectivity is a crucial factor in
conducting a certain organic reaction, but still remains one of the most significant challenges
in organic synthetic chemistry (Ward, 1999). Poor reaction selectivity always results in
complicated and even unachievable separation and purification procedures, which degrade
the economy and efficiency of the synthetic methodology. It is rather difficult to regulate and
control the reaction selectivity because the difference between transition state free energies
regarding electronic, steric, and stereoelectronic influence of related reaction pathways,
which give rise to isomeric products, is small (Chao et al., 1991; Balcells et al., 2016). Organic
chemists have long made great efforts trying to regulate reaction selectivity (Neufeldt and
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Sanford, 2012; Davis and Phipps, 2017), and supramolecular
chemistry and containers have come into their sights. Completely
different from a bulk solution, the inner microenvironment of a
supramolecular container can isolate and protect the guest
substrates from the outside media, with certain fixed orientation
and configuration achieved through various noncovalent
interactions This certainly affects and controls the emergence of
different or new selectivity as well as products that are not the major
outcome or that even cannot be detected in regular conditions by
altering the corresponding transition state free energies and reaction
processes (Purse and Rebek, 2005; Koblenz and WassenaarReek,
2008; Hooley and Rebek, 2009; Murase and Fujita, 2010; Yu and
Rebek, 2018; Morimoto et al., 2020; Olivo et al., 2021). Self-
assembled coordination cage is a very important category of
supramolecular containers, and, different from covalently

constructed macrocycle hosts, they are readily self-assembled
from ligands and metal ions through noncovalent coordination
interactions (Murase and Fujita, 2010; García-Simón et al., 2014;
García-Simón et al., 2015; Cullen et al., 2016; Howlader et al., 2016;
Guo et al., 2017; Ueda et al., 2017; Hong et al., 2018; Martí-Centelles
et al., 2018; Yu et al., 2018). The ionic property of self-assembled
coordination cages provides them with two main advantages: (1)
water solubility, which facilitates them in achieving molecular
recognition and catalysis in water and (2) the ability to preferably
accommodate and catalyze ionic guests and reactions. The Fujita group
(Murase and Fujita, 2010) and the Toste, Raymond, and Bergman
groups (García-Simón et al., 2014) have done a lot of pioneering and
seminal works in this research area and have produced various fruitful
achievements. In this mini review, we focus on summarizing
representative examples of organic reactions inside self-assembled

FIGURE 1
Examples of [Pd6L4]

12+ cage mediated organic reactions with distinct selectivity: (A) structure of the representative self-assembled Pd(II)-ligand
octahedral coordination cage; (B) cage host-mediated Diels-Alder reaction with distinct selectivity; (C) cage host-mediated nucleophilic substitution
reaction of allylic chlorides with preferable terminal site selectivity; (D) cage host-mediated electrophilic spirocyclization of a 2-biphenylacetylene with
distinct selectivity.
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coordination cages that show distinct selectivity from that of the outside
bulk solution conditions. Two representative types of self-assembled
coordination cages were selected, namely, self-assembled Pd(II)-ligand
octahedral coordination cages and self-assembled Ga(III)-ligand
tetrahedral coordination cages, and this mini review is classified
according to them.

2 Mini review

2.1 Self-assembled Pd(II)-ligand octahedral
coordination cage ([Pd6L4]

12+)

The self-assembled Pd(II)-ligand octahedral coordination cage
was initially developed by the Fujita group (Fujita et al., 1995) and
has been applied to various molecular recognition study and
reaction catalysis research since then (Murase and Fujita, 2010).
As shown in Figure 1A, it is a hollow octahedral framework self-
assembled from six Pd(II) ions and four organic ligands, with a
triazine core and three substituted 4-pyridyl groups. This cage host
possesses 12 positive charges, which renders it very water soluble.
The electron-deficient nature of the aromatic panel ligands endows
it with a better ability to recognize electron-rich guest molecules and
a significant role as a photosensitizer to facilitate guest-to-host
photoinduced electron transfer (PET) (Yoshizawa et al., 2004;
Furutani et al., 2009; Murase et al., 2011; Murase et al., 2012;
Cullen et al., 2019). The Fujita group has reported plenty of
organic reaction regulation works utilizing this distinguished
supramolecular cage host (Murase and Fujita, 2010).

In 2006, Fujita and co-workers reported a seminal work on the
Diels–Alder reaction between anthracene and phthalimide inside
the [Pd6L4]

12+ cage host with distinct site selectivity (Yoshizawa
et al., 2006) (Figure 1B). Owing to its high localization of π-electron
density at the center ring (Cheng and Li, 2003), the Diels–Alder
cyclization reaction of anthracene generally occurs at this site and
gives rise to a 9,10-adduct that bridges the center ring of the
anthracene framework (Breslow, 1991; Fringuelli and Taticchi,
2002; Stuhlmann and Jäschke, 2002). However, when the
corresponding reaction of 9-hydroxymethylanthrancen (1) and
N-cyclohexylphthalimide (2) was moved into the cavity of the
[Pd6L4]

12+ cage host A in Fujita’s report, the site selectivity of
this Diels–Alder reaction was altered to the 1,4-position of
anthracene, producing a syn-isomer of 1,4-adduct 3. X-ray
crystallographic analysis further confirmed the structure of the
product together with its orientation and conformation inside the
cage host, revealing that the naphthalene ring of the product
interacts closely with one of the triazine ligand of A through π-π
stacking. In the following control experiment without A, only the
conventional 9,10-adduct 4 was detected without any 3. The fixed
orientation of the substrates inside the cage host was responsible for
this distinct site selectivity of the 1,4-position. In the force-field
calculation study, 2 was shown to be parallel to 1, with its double
bond in close contact with the 1,4- but not the 9,10-position of 1,
owing to the steric effect inside the cage host. In another comparable
example, when a less sterically demanding N-propylphthalimide
substrate was applied, only the 9,10-adduct was formed, indicating
the crucial role of the steric bulkiness of the N-substituent on the
dienophile inside the cage host. This pioneering work perfectly

validated the ability of supramolecular containers to
accommodate guest substrates inside and to lend them certain
fixed orientations and conformations, which give rise to a
distinct reaction selectivity that is not seen in traditional bulk
solution conditions. In following research, the Fujita group
further provided a series of novel pericyclic reactions inside a
similar cage host with distinct and controllable selectivity
(Murase and Fujita, 2010).

In 2012, another nucleophilic substitution reaction of allylic
chlorides inside a cage host with preferable terminal site selectivity
was reported by Fujita and co-workers (Kohyama et al., 2012)
(Figure 1C). Generally, the reaction of allylic chlorides with
nucleophiles takes place at both the α- and γ-positions, and the
steric and electronic effects of substrates together with the polarity of
the solvent collectively influence the ratio of α- and γ-products
(DeWolfe and Young, 1956). The cage host A9 also proved to be
effective in recognizing the allylic chloride substrate (5) inside its
hydrophobic cavity. In this mode, the α-position was buried inside
the cavity, with the γ-position pointed out of the inner phase of A’.
In this reaction, the solvent D2O acted as the nucleophile, and the
hydrophobic pocket of A9 prevented its entering and protected the
buried α-reactive position from contacting the incoming water
nucleophile. On the other hand, the pointed-out terminal γ-
position was exposed to the outside aqueous solution and was
attacked by D2O, producing a terminal-induced product (6). In
the control experiment without A’, the internal α-product (7) was
major. Even though the ratio between terminal/internal products
was not significant in this work, it represents an early example of the
noncovalent protecting group function of supramolecular
containers. Protecting groups are very famous in organic
chemistry for their powerful function of preventing certain
selected functional groups from reacting with other reagents
(Schelhaas and Waldmann, 1996; Isidro-Llobet et al., 2009; Klán
et al., 2013). Generally, they are covalently attached to the target
moieties through pre-functionalization prior to the formal reaction
and are deprotected after. However, just like the above example,
supramolecular containers have offered a very promising alternative
way of protecting and shielding certain reactive groups through the
in situ recognition of the target moieties in the inner pocket via
noncovalent interactions. The protecting manner of supramolecular
containers has two main advantages: (1) the noncovalent mode of
this concept requires no additional pre-functionalization procedures
and it is weak enough to allow the substrate to easily dissociate from
the protective host template, without further complicated
deprotection procedures and (2) incompatible functional groups
in traditional covalent protecting procedures can be tolerated in the
noncovalent protecting system provided by supramolecular
containers because no covalent bond formation is required. The
[Pd6L4]

12+ cage host was further applied to another reaction acting as
this kind of noncovalent protecting groups to achieve site selective
control (Takezawa et al., 2019).

Very recently, the same group have provided the electrophilic
spirocyclization of a 2-biphenylacetylene in the presence of an
electrophile through the fixing of conformation confined to the
cavity of the cage host (Takezawa et al., 2022) (Figure 1D). When
treated with electrophiles, 2-biphenylacetylene (8) underwent two
different cyclization pathways: (1) one at the ortho position via 6-
endo-dig cyclization to produce phenanthrene derivatives (9)
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(Goldfinger et al., 1997; Yamaguchi and Swager, 2001; Li et al., 2007;
Dou et al., 2013) and (2) one at the ipso position via 5-endo-dig
cyclization to produce benzospiro (Vriezema et al., 2005; Ariga and
Kunitake, 2006)decane derivatives (10) (Appel et al., 2003; Zhang and
Larock, 2005; Yu et al., 2008; Dohi et al., 2011a; Dohi et al., 2011b; Tang
et al., 2012). In normal solution conditions, the former pathway and the
corresponding phenanthrene products are often observed, and, only
when the electron density at the ipso position is much higher than that
at the ortho position, will the latter be major (Appel et al., 2003; Zhang
and Larock, 2005; Yu et al., 2008; Dohi et al., 2011a; Dohi et al., 2011b;
Tang et al., 2012). To achieve distinct selectivity of the latter, the authors
naturally introduced the [Pd6L4]

12+ cage host A into this reaction
system. 8 was readily accommodated into the hollow pocket of A,
and, according to 1H NMR, UV/Vis, and X-ray crystallographic
analysis, the confined guest molecule was tightly packed with a
folded conformation inside the host. The electron-rich aromatic
rings of 8 interacted with the electron-deficient panel ligand of the
host through π-π stacking. On the other hand, the ortho reactive

positions were posed significantly away from the acetylene carbons,
indicating the abovementioned 6-endo-dig cyclization may be
suppressed. Indeed, treating the host-guest complex with electrophile
NBS produced the spiro product 10 quantitatively, with single syn-
diastereoselectivity. A control experiment revealed that 9 was formed
through 6-endo-dig cyclization without the cage host. This recent
example again showed how the [Pd6L4]

12+ cage host could perfectly
pose the guest molecule with a certain fixed orientation and
conformation to induce distinct selectivity.

2.2 Self-assembled Ga(III)-ligand tetrahedral
coordination cage ([Ga4L6]

12−)

The self-assembled metal-ligand tetrahedral coordination cage
(Figure 2A) was first reported by Raymond and co-workers
(Caulder et al., 1998). It exhibits a tetrahedral shape and is
spontaneously assembled from four metal ions, for example, Ga(III),

FIGURE 2
Examples of [Ga4L6]

12- cage mediated organic reactions with distinct selectivity: (A) representative structures of [Ga4L6]
12− cages; (B) cage mediated

intramolecular Prins cyclization with distinct selectivity; (C) [Ga4L6]
12− cage mediated aza-Prins cyclization with distinct selectivity; (D) [Ga4L6]

12− cage
mediated hydrogenation of olefins with distinct selectivity at the more terminal positions.
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Al(III), In(III), Fe(III), Ti(IV), Ge(IV), and six bis-bidentate catechol
amide–containing ligands. Among them, the [Ga4L6]

12− cage has been
widely used for mediating organic reactions. Similar to the [Pd6L4]

12+

cage host, the ionic property also generates good water solubility for the
[Ga4L6]

12− cage. On the other hand, the [Ga4L6]
12− cage host is excellent

at recognizing cationic guest molecules because of its negative charge
nature. The electron-rich character also renders the [Ga4L6]

12− cage host
photosensitizer functionality and the ability to further induce host-to-
guest photoinduced electron transfer (PET) (Dalton et al., 2015).
Various seminal organic reaction regulation works involving this
[Ga4L6]

12− cage host have been provided by the collaboration
between the Toste, Raymond, and Bergman groups (Hong et al., 2018).

In 2012, Toste, Raymond, Bergman, and co-workers reported the
catalytic intramolecular Prins cyclization of citronellal and its derivatives
with distinct selectivity, which resembled the active sites of many terpene
synthases (Hart-Cooper et al., 2012) (Figure 2B). When treated with
buffered acidic solution, the citronellal derivative substrate (11)
underwent cyclization to produce two main types of products, with
the diol product (12) being major (Clark et al., 1984; Yuasa et al., 2000;
Cheng et al., 2009). The authors then applied the [Ga4L6]

12− cage host B
to this reactive system to investigate the possibility of selectivity
regulation. Not surprisingly, the product distribution was shifted,
with the isopulegol-like product (13) being the major through
deprotonation instead of nucleophilic capture by water of the cationic
intermediate. As illustrated above, the negative charge–containing cage
host [Ga4L6]

12− can preferably recognize and stabilize cationic species on
the one hand,while on the other, the inner space ofB is hydrophobic and
can prevent water from entering its interior to contact the encapsuled 11.
The former factor stabilized and extended the lifetime of the cationic
Prins cyclization intermediate; the latter hindered the nucleophilic attack
of water that gave rise to the formation of the hydroxyl group. This work
demonstrated the selectivity regulation ability of the [Ga4L6]

12− cage host.
Later, the authors also reported another catalytic bimolecular aza-

Prins cyclization inside the same cage host with new reactivity and
selectivity (Kaphan et al., 2015) (Figure 2C). The reaction between the
unsaturated amine substrate (14) and formaldehyde in formic acid bulk
solution under reflux produced the alcohol product (15). In the reaction
process, the amine group first condensedwith formaldehyde to yield the
iminium ion intermediate, which underwent aza-Prins cyclization and
hydration.WhenBwas incorporated into this system, however, a totally
new pathway and product (16) arose under mild condition. The
condensed iminium ion intermediate was subsequently encapsuled
into the interior of the cage host with a constrictive spherical
transition state, where the double bond was placed to an axial
position owing to the steric inner microenvironment of the cavity.
The iminium ion intermediate then cyclized to form the carbocation
intermediate, followed by an unexpected transannular 1,5-hydride
transfer process, which gave rise to 16 after hydrolysis. The
subsequent systematic mechanism investigation revealed that the
rate-limiting step of this special reaction was the encapsulation of
the iminium ion intermediate and the unusual 1,5-hydride transfer
process was supported through kinetic analysis and isotopic labeling
studies. This unconventional reactivity and selectivity were due to the
hydrophobic interior of the cage host, which prevents water from
entering its inner space to attack the resulting carbocation, as well as the
steric effect inside the cavity that poses the carbocation group to the
axial position, close to the hydrogen of the carbon adjacent to the
nitrogen, which favors the 1,5-hydride transfer process. This

extraordinary example, in the authors’ words, “represents a rare
example of such an extreme divergence of product selectivity
observed within a catalytic metal-ligand supramolecular enzyme
mimic” and “represents the most pronounced deviation in reactivity
within a supramolecular catalyst to date.”

Recently, in 2019, the same collaboration groups reported the
catalytic hydrogenation of olefins with distinct selectivity at the
more terminal positions with the help of the [Ga4L6]

12− cage host
(Bender et al., 2019) (Figure 2D). In this work, host B was first mixed
with a rhodium complex to produce the rhodium-encapsulated
supramolecular catalyst B’. To illustrate the distinct selectivity of this
catalyst, a mixture of methyl- and ethyl-substituted alkene substrates
(17 and 18, respectively) were added to the catalyst aqueous solution
under a H2 atmosphere at room temperature. After 20 h, only 17 was
reduced, with nearly full retention of 18. However, with just the
rhodium catalyst free in the bulk solution, both 17 and 18 were
reduced to 19 within just 1 h. In this function mode, the reactive
center of the catalyst was accommodated and buried inside the cavity,
and only sterically accessible reactive sites (methyl substituted one)
could enter the interior of the host to contact the rhodium catalyst
center. In other words, the supramolecular container acted as a reaction
flask for the catalyst and the reacting moiety, while the outside parts
were “protected” from the reagent, which is in complete contrast to the
abovementioned cases, where the supramolecular host functions as the
noncovalent protecting groups. This beautiful example showed the
diverse function of the promising supramolecular container for
regulating distinct selectivity in various organic reactions.

2.3 Conclusion

To summarize, we have reviewed representative examples of how
supramolecular containers, especially self-assembled coordination
cages, could induce distinct selectivity in various organic reactions,
different from that in the bulk solutions. The cage host is spontaneously
assembled by metal ions and suitable ligands, with no need to form
covalent bonds. It is water soluble, but its interior is highly hydrophobic
and does not allow water into its cavity, which can generally alter the
mechanism of water-associated processes and gives rise to distinct
selectivity in these cases. On the other hand, the cage host can pose the
encapsulated guest molecule(s) with certain fixed orientations and
conformations to induce different site selectivity and even new
reactivity. In some cases, the cage host acts as a noncovalent
protecting group that shields certain parts of the substrate from the
outside reagents, giving rise to distinct site selective products. In
addition, the cage host could also function as a reaction vessel, and
only the sterically accessible sites of the substrate could come inside the
host to react with the catalyst center while the outside moieties could be
“protected”. All the examples illustrated above demonstrate the
powerful ability of self-assembled coordination cages in regulating
reaction selectivity.
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