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The design and synthesis of a type of [1 + 4 + 2] four-layer framework have been
conducted by taking advantage of Suzuki–Miyaura cross-coupling and group-
assisted purification (GAP) chemistry. The optimized coupling of double-layer
diboronic esters with 1-bromo-naphth-2-yl phosphine oxides resulted in a series
ofmultilayer folding targets, showing a broad scope of substrates andmoderate to
excellent yields. The final products were purified using group-assisted purification
chemistry/technology, achieved simply by washing crude products with 95%
EtOH without the use of chromatography and recrystallization. The structures
were fully characterized and assigned by performing X-ray crystallographic
analysis. UV–vis absorption, photoluminescence (PL), and aggregation-induced
emission (AIE) were studied for the resulting multilayer folding products.
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1 Introduction

The layered organic structures, including chiral structures, play an important role in
biological and material sciences (Moser et al., 1987; Gellman, 1998; Oh et al., 2001; Nakano,
2010; Knouse et al., 2018). The design of these targets is highly demanded to search for
desired chemical, physical, and biological properties. This is particularly applicable to the
research on multilayer monomers, oligomers, and polymers, which exhibit photoelectronic
properties (Wu et al., 2019; Tang et al., 2022a; Tang et al., 2022b; Wang et al., 2022; Xia et al.,
2023). For example, a through-space transfer through singlet fission (SF) was proven to
involve the absorption of photons by two electronically interacting chromophores to
generate a singlet exciton state, which is followed by the rapid formation of two triplet
excitons (Chen et al., 2018). Meanwhile, charge-transfer pathways for hybridizing σ and π,
and through-space interactions have been proven to be feasible by designing monomeric
structures for poly- or copolymerizations (Shen and Chen, 2012; Chen and Shen, 2016;
Kawashima et al., 2020; Stará and Starý, 2020; Fujise et al., 2021).

On the other hand, organophosphorus compounds, such as phosphine oxides, are
widely applied in a wide range of fields, including medicinal chemistry (Alexandre et al.,
2011; Dang et al., 2011), natural products (Kumar et al., 2010), biochemistry (George and
Veis, 2008; Chen et al., 2012), catalysis (as catalysts and ligands) (Ackermann et al., 2005;
Wang and Wan, 2011), and functional materials (Baumgartner and Réau, 2006;
Kirumakki et al., 2009; Baumgartner, 2014). Considering these diverse applications,
various methods have been developed for synthesizing these phosphorus-containing
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compounds (Yin and Buchwald, 2000; Murray et al., 2014; Zhou
et al., 2014; Ji et al., 2020; Qian et al., 2020). Innovations in
producing organophosphorus compounds, especially those
associated with phosphine-containing axial skeletons, have
become an attractive topic in chemical synthesis and industry.

In the past several years, our group has reported newmulti-layer
folding chirality of a series of molecules, including oligomers and
polymers with structural flexibility, displaying physical properties
on UV/Vis absorption, fluorescence, electrochemical performance,
aggregation-induced emission (AIE) (Wu et al., 2019; Wu et al.,
2019; Liu et al., 2020; Wu et al., 2020; Wu et al., 2021a; Jin et al.,
2022a; Tang et al., 2022a; Tang et al., 2022b; Wang et al., 2022), and
aggregation-induced polarization (AIP) (Tang et al., 2022c; Tang
et al., 2022d). Among them are three-layer compounds (Scheme 1),
in which electron-rich (Tang et al., 2022b) and electron-deficient
(Jin et al., 2022a) bridges showed distinct impacts on UV–vis
absorption and fluorescence behaviors. It is worth noting that
many of these compounds showed fluorescence not only in
solutions but also in solid states. Very recently, we have
established the asymmetric catalytic approach to a [1 + 3+1] type
of multi-layer 3D chirality containing the phosphine oxide moiety
(Wu et al., 2021a) via chiral amide-phosphine ligands for
Suzuki–Miyaura cross-couplings, in which a single asymmetric
C–C bond formation led to the efficient control of three-layer
chirality.

After achieving the synthesis of three-layer folding chiral
targets, our attention is now focused on the design and assembly

of four-layered compounds, starting from their racemic
counterparts. In the new molecular framework, there are three
planar units, including one naphthyl ring, four packed phenyl
rings, and two parallel naphthyl rings, which are categorized as a
type of [1 + 4 + 2] framework. This is inspired by our early work
on the [1 + 3 + 1] framework, in which one packed plane is
provided by the (P=O)Ph2 group (Wu et al., 2021a). Herein, we
report our preliminary results on this endeavor based on new
designs and modifications to reaction conditions (Scheme 1).

2 Results and discussion

2.1 Retro-synthetic analysis (RSA)

Retro-synthetic analysis (Corey and Cheng, 2009) revealed
that there are several strategies to assemble the four-layer 3D
molecular framework. These strategies are mainly based on
utilizing dual Suzuki–Miyaura cross-couplings (Miyaura and
Suzuki, 1995) as the key steps, as represented by the case of
target 8a, in which two fragments (diboronic ester 1aa and
bromide 1a) would be joined (Figure 1). In our previous
synthesis, boronic esters proved to be more effective than
boronic acids in multilayer synthesis via Suzuki–Miyaura
couplings. Therefore, they were selected for the present
assembly. We made many efforts to synthesizing diboronic
ester 1aa for this purpose, but we failed. Similarly, low

SCHEME 1
(A–C) Multilayer folding frameworks and their assembly.
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chemical yields were encountered during the synthesis of
diphenyl(1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)
phenyl)naphthalen-2-yl)phosphine oxide 8a. For this reason,
they are excluded from our RSA design. Two key precursors,
1,8-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2- yl)phenyl)
naphthalene 6a and (1-bromonaphthalen-2-yl)
diphenylphosphine oxide 7a, can be conveniently obtained,
making us choose it as the major route (the top part of
Figure 1) for this work. The precursor 6a was readily derived
from the carbon–boron coupling of naphthalene-1,8-diylbis

(4,1-phenylene) bis(trifluoromethanesulfonate) 5a, which
originated from the dual Suzuki–Miyaura cross-couplings of
1,8-dibromonaphthalene 1a with (4-methoxyphenyl)boronic
acid 2, both of which are commercially available.

2.2 Synthesis of four-layer targets

The assembly was represented by the synthesis of targets 6a and 6b,
in which different conditions are explored for two steps to achieve

FIGURE 1
Retro-synthetic analysis of the four-layer framework 8a.

FIGURE 2
ORTEP drawing of 8a (CCDC 2245941).
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higher efficiencies (Scheme 2). The synthesis of the building block 6a
was started from Suzuki–Miyaura coupling of 1,8-dibromonaphthalene
1a with (4-methoxyphenyl)boronic acid 2 by employing Pd(OAc)2 as a
catalyst and K2CO3 as a base in the DMF/H2O co-solvent at 100°C,
leading to the formation of 1,8-bis(4-methoxyphenyl)naphthalene 3a in
an 85% yield. The precursor 3a was transformed into 4,4’-(naphthalene-
1,8-diyl)diphenol 4a via demethylation in the presence of BBr3 in DCM
by changing the temperature from−10°C to room temperature to afford
an 88% yield. The precursor 4a was allowed to react with excess
trifluoromethanesulfonic anhydride (Tf2O) by using pyridine and 4-
dimethylaminopyridine (DMAP) as bases to yield naphthalene-1,8-
diylbis (4,1-phenylene) bis(trifluoromethanesulfonate) 5a in a 96%
yield. The reaction between 5a and bis(pinacolato)diboron (B2Pin2)
in in situ catalytic systems involve using KOAc as a base additive and
(1,1-bis(diphenylphosphino)ferrocene) dichloropalladium (II) as a
catalyst in 1,4-dioxane at 80°C to afford 1,8-bis(4-(4,4,5,5-
tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)naphthalene 6a as
double-layer reactants (Scheme 2A). The synthesis of the building
block of 5,6-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)
phenyl)-1,2-dihydroacenaphthylene 6b was also started from
Suzuki–Miyaura coupling by treating 5,6-dibromo-1,2-
dihydroacenaphthylene 1b with (4-methoxyphenyl)boronic acid 2 by
using Pd(PPh3)4 as the catalyst andNa2CO3 as the base inDMF/H2O as
a mixed solvent at 100°C, to yield 5,6-bis(4-methoxyphenyl)-1,2-
dihydroacenaphthylene 3b in a 57% yield. The precursor 3b was
converted into 4,4’-(1,2-dihydroacenaphthylene-5,6-diyl)diphenol 4b
via demethylation in the presence of BBr3 in DCM by gradually
changing temperature from −78°C to room temperature to afford an

86% yield. The two steps shown in Scheme 2B were performed under
the same conditions as the aforementioned synthetic route to yield (1,2-
dihydroacenaphthylene-5,6-diyl)bis (4,1-phenylene)
bis(trifluoromethanesulfonate) 5b and 5,6-bis(4-(4,4,5,5-tetramethyl-
1,3,2-dioxaborolan-2-yl)phenyl)-1,2-dihydroacenaphthylene 6b
chemical yields of 92% and 87%, respectively.

The synthesis of another key precursor is represented by the
generation of (1-bromonaphthalen-2-yl)diarylphosphine oxides 7
by the following literature procedures (Wu et al., 2021a). It was
started with the protection of 1-bromo-2-naphthol with Tf2O to
yield 1-bromonaphthalen-2-yl trifluoromethanesulfonate in the
presence of pyridine. The second step was conducted through the
C-P coupling with diaryl phosphine oxide by taking advantage of
Pd2 (dba)3 and 1,3-bis(diphenylphosphino)propane (DPPP) as the
catalytic combination (Ji et al., 2020). In addition, substrates 7b–7o
were synthesized starting with the nucleophilic substitution of
diethyl phosphite with arylmagnesium bromide to yield bisaryl
phosphine oxides, followed by subjecting to the catalytic coupling
with 1-bromonaphthalen-2-yl trifluoromethanesulfonate.

The final step was to assemble the four-layer targets by treating
1,8-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)
naphthalene 6a with (1-bromonaphthalen-2-yl)diarylphosphine
oxides 7a in the presence of a Pd(PPh3)4 catalyst as the key step,
delivering various four-layered folding phosphine oxides 8a in good
yields (Scheme 1). At this step, it is necessary to optimize the
conditions since Suzuki–Miyaura coupling between the double-
layer diboronic ester 6a and bromide 7a did not result in ideal
yields under the aforementioned catalytic systems. Different

SCHEME 2
Synthesis of double-layer precursors 6a and 6b.
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catalysts, solvents, and bases were screened, and the results are
shown in Table 1 (entries 1–9). In the beginning, the reaction of 6a
and 7a in a 1:2.5 mol ratio was carried out in the presence of 10 mol
% Pd(PPh3)4 and 3.0 equiv of K2CO3 in THF/H2O (5:1, v/v) at 90 °C
for 48 h, and the desired [1 + 4+1] multilayered 3D product 8a was
obtained in 86% yield through dual Suzuki–Miyaura couplings
(entry 1). Other Pd catalysts, including Pd2 (dba)3, PdCl2, and
Pd(OAc)2, were then examined together with K2CO3 in this
transformation, but all yielded unsatisfactory results (entries 2–4).
Similarly, experimentation with various solvent systems, such as
toluene/H2O, DME/H2O, and 1,4-dioxane/H2O did not produce
satisfactory results either (entries 5–7). We next attempted to
optimize conditions by exploiting K3PO4 and Cs2CO3 as bases
and found that both attempts did not show poor chemical yields
of 37% and 40%, respectively (entries 8 and 9).

Since there are two polar -POPh2 groups existing in the
products, the purification of resulting crude products at this step
can be readily obtained through the group-assisted purification
(GAP) (Kaur et al., 2010; Kaur et al., 2011; An et al., 2015)
chemistry/technology, eliminating the need for chromatography
and recrystallization. The pure product 8a and its derivatives
8b—8p were conveniently obtained by simply washing the crude
products with 95% EtOH, making this synthesis much greener and
environmentally friendly.

Having established the optimal reaction conditions, we next
investigated the scope of the double Suzuki–Miyaura cross-coupling
reaction by using a variety of preformed 2-diarylphosphinyl-1-naphthyl
bromide 7. As shown in Scheme 3, the influence of substituents in the
aryl moiety of 7 was first evaluated. The reactions of 2-
diarylphosphinyl-1-naphthyl bromide 7 with either electron-rich
groups (Me 7b, OMe 7c, Ph 7d, SMe 7e, and NMe2 7f) or
electron-poor groups (F 7g, Cl 7h, and OCF3 7i) at the para
position of the aryl moiety of 7 could tolerate this reaction system,
leading to the corresponding products 8b–8i in 54%–91% yield.
Similarly, the meta-substituent of the aryl unit of 7 (Me 7j, OMe
7k, and F 7l) still showed a high reactivity profile, providing access to the
corresponding multilayered 3D products 7j–7l in 62%–93% yield. It is
noteworthy that the ortho-methyl substituted analog 7m was a suitable
surrogate for this coupling reaction, which could work smoothly to

deliver the product 8m in 52% yield. To our delight, both 3,5-dimethyl-
substituted arylphosphine oxide 7n and 1-naphthyl-substituted
phosphine oxide 7o were adopted to demonstrate the compatibility
of this protocol and furnished the target products 8n–8o in 88% and
64% yields, respectively. Furthermore, the dihydroacenaphthylene-
derived double-layer diboronic ester 6b was then allowed to react
with 2-diphenylphosphinyl-1-naphthyl bromide 7a under standard
conditions. As anticipated, the reactions proceeded smoothly,
enabling the Pd-catalyzed coupling to yield the corresponding
product 8p in 87% yield. The structures of all products were fully
characterized by carbon and proton NMR spectroscopic and HRMS
analyses.

Furthermore, the resulting multilayer framework has been
unambiguously assigned by X-ray structural analysis of one of
the products, 8a (Figure 2). This structure clearly presents two
groups of nearly parallel units: four phenyl rings in the middle and
two naphthyl rings at one end. These two planar units plus a single
naphthyl ring anchor consist of a [1 + 4+2] multilayer framework,
which added one more layer in the middle, as compared with our
previous [1 + 3+1] type of multi-layer counterparts in the middle
columns of their structures. It should be noted that our preliminary
results on assembling a maximum of five-layer counterparts show
promising results, leading to a [2 + 5+2] multilayer framework.

2.3 UV-vis absorption, PL, and AIE
determinations

Among the products listed in Figure 3 and Figure 4, several
representatives, 8a, 8c, 8g, 8i, and 8n, were examined for their
behaviors on UV–vis absorption, photoluminescence (PL), and
aggregation-induced emission (AIE). As shown in Figure 3A,
UV-vis absorption spectra were recorded for these compounds
with the same concentration in THF (Figure 3A). The highest
absorptions of four samples (8a, 8g, 8i, and 8n) displayed wide
absorption between 280 nm and 360 nm, except for molecule 8c.
The wide absorption of 8c was observed to be between 260 and
210 nm; the highest position appeared at 280 nm, and the second
highest position was around 340 nm.

TABLE 1 Optimization of the reaction conditionsa.

Entry [Pd] cat Base Solvent Product (%)b

1 Pd(PPh3)4 K2CO3 THF/H2O 86

2 Pd2 (dba)3 K2CO3 THF/H2O 51

3 PdCl2 K2CO3 THF/H2O 60

4 Pd(OAc)2 K2CO3 THF/H2O 67

5 Pd(PPh3)4 K2CO3 Toluene/H2O ND

6 Pd(PPh3)4 K2CO3 DME/H2O NR

7 Pd(PPh3)4 K2CO3 1,4-Dioxane/H2O 23

8 Pd(PPh3)4 K3PO4 THF/H2O 37

9 Pd(PPh3)4 Cs2CO3 THF/H2O 40

aReaction conditions: 6a (0.1 mmol), 7a (0.25 mmol), [Pd] cat. (10 mol%) and base (6.0 equiv), solvent/H2O = 5 mL/1 mL, 48 h, under Ar conditions.
bIsolated yield based on 6a.
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The photoluminescence spectra of these compounds upon
excitation exhibit bands at slightly different curves with regard to
emission strengths and wavelengths (Figure 3B). Excitation
wavelengths at 344 nm for 8a, 8c, 8i, and 8g and at 352 nm for
8n were utilized for measuring their photoluminescence. As shown
in the spectrum, 8c displays its maximum emission at 400 nm. As
compared with 8c, 8a displays its maximum emission at 430 nm
shifted downfield and 8a, 8g, and 8i at 344 nm shifted upfield,
respectively. The PL performance seems complicated, being
attributed to solvent–target interactions and electronic and
conformational steric effects of aromatic rings attached to the
phosphorus center. Compared with 8a, which has no functional

group on its two phenyl rings of the P=O center, the presence of both
the electron-donating (OMe in 8c) and electron-withdrawing
groups (CF3O and F in 8g and 8i, respectively) and the steric
effect (two methyl groups in 8n) all resulted in upfield emission.

Fluorescence spectroscopic analysis was conducted using 8n as a
representative for aggregation-induced emission (AIE). As shown in
Figure X, the water fractions (fw) were increased from 0% to 60%,
resulting in a steady emission enhancement from 352 nm to 555 nm.
This emission change is attributed to the intermolecular packing of
the molecular matrix, indicating the existence of aggregation-
induced emission (AIE) by this four-layer compound. Although
an obvious GAP exists between emission in fw = 0% (in pure THF)

SCHEME 3
Substrate scope for forming products 8.
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and the other four fw slots, the emission at the later four curves
(10%–60%) does not display obvious differences.

As usual, the intermolecular aggregation largely suppresses the
rotational motions of aromatic rings so that the exciton energy cannot
be depleted by the radiation-less decay, thus making the present AIE
observation possible. The intermolecular packing process would have an
impact on the intramolecularly layered framework, but in a diluted
environment, the movements between molecules would diminish as
the poor solvent (water) became more prevalent. The intramolecular
stacking would become more regular and predominantly controlled by
suppressing the whole framework while water was added to the solvent

mixture as soon as the acceptable saturation value of fw=60%was reached.
The partial AIE activities could also exist because of this compressed
packingmodel’s contribution tomore efficient through-space interactions.
This result is in accordance with our earlier research on multilayer
molecules (Wu et al., 2021a; Wu et al., 2021b; Wang et al., 2022).

An interesting shape of emission appeared in pure and
transparent THF, which indicates some degrees of molecular
aggregation exist in this system. This observation would benefit
organic synthesis during condition modifications by taking
advantage of aggregates. It should be noted that THF is among
the most common solvents in organic synthesis, particularly in
asymmetric synthesis and catalysis. Our laboratory has recently
proven that chiral aggregates can enhance asymmetric control and
can even switch the stereo configuration of resulting chiral products
(Rouh et al., 2022; Tang et al., 2023). Chiral aggregates were directly
confirmed by AIE, AIP (aggregation-induced polarization) (Tang
et al., 2022c; Tang et al., 2022d), and dynamic light scattering (DLS)
experiments in THF-water and THF-ethanol co-solvents. Both
stoichiometric and catalytic asymmetric reactions have been
carried out successfully, defined as aggregation-induced
asymmetric synthesis (AIAS) (Tang et al., 2023) and aggregation-
induced asymmetric catalysis (AIAC) (Jin et al., 2022b).

3 Summary

In summary, a new [1 + 4+2] framework of multilayer targets
has been successfully designed and synthesized. Starting from
commercial starting materials, more than 40 steps were
performed for generating 16 multilayer folding products bearing
various phosphine oxides. The synthesis takes advantage of modified
dual Suzuki–Miyaura cross-couplings and GAP chemistry/
technology simply by washing with 95% EtOH without the use
of chromatography and recrystallization. The structures were fully
characterized by spectroscopic analysis and assigned by X-ray
crystallographic determination. The physical properties of UV–vis
absorption, photoluminescence (PL), and aggregation-induced
emission (AIE) were studied for the resulting multilayer folding
products. Further research on the asymmetric synthesis and catalysis
for generating the chiral [1 + 4+2] framework of four-layer
counterparts and its attachment onto orientational chirality (Jin
et al., 2022b; Jin et al., 2022c) is currently being conducted in our
laboratories, and the results will be reported in due course.
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FIGURE 3
(A) UV–vis absorbance of 8a, 8c, 8g, 8i, and 8n (0.1 mM) in THF;
c = 0.1 mM. (B) Photoluminescence (PL) spectra of aforementioned
five samples in THF; c = 0.1 mM; λex (8a, 8c, 8i, and 8g) = 344 nm; λex
(8n) = 352 nm.

FIGURE 4
Photoluminescence (PL) spectra of 8n in cosolvents of THF/H2O
with different fractions (fw); c = 0.1 mM; λex (8n) = 352 nm; inset:
fluorescence photographs of 8n in the THF/water system.
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