Skip to main content

CORRECTION article

Front. Chem., 15 August 2023
Sec. Theoretical and Computational Chemistry

Corrigendum: Coupled cluster theory on modern heterogeneous supercomputers

Hector H. CorzoHector H. Corzo1Andreas Erbs Hillers-BendtsenAndreas Erbs Hillers-Bendtsen2Ashleigh BarnesAshleigh Barnes1Abdulrahman Y. ZamaniAbdulrahman Y. Zamani3Filip Paw&#x;owskiFilip Pawłowski4Jeppe OlsenJeppe Olsen5Poul JrgensenPoul Jørgensen5Kurt V. MikkelsenKurt V. Mikkelsen2Dmytro Bykov
Dmytro Bykov1*
  • 1Oak Ridge National Laboratory, Oak Ridge, TN, United States
  • 2Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
  • 3Department of Chemistry and Biochemistry and Center for Chemical Computation and Theory, University of California, Merced, CA, United States
  • 4Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, United States
  • 5Department of Chemistry, Aarhus University, Aarhus, Denmark

A Corrigendum on
Coupled cluster theory on modern heterogeneous supercomputers

by Corzo HH, Hillers-Bendtsen AE, Barnes A, Zamani AY, Pawłowski F, Olsen J, Jørgensen P, Mikkelsen KV and Bykov D (2023). Front. Chem. 11:1154526. doi: 10.3389/fchem.2023.1154526

In the published article, the bibliography file was corrupted. As a consequence there were several inconsistencies within the citation list: titles did not match author lists or journal name or were parsed wrong and added in parts to a citation. Additionally, there were a few references included in the published version of the manuscript that were not a part of the original bibliography. The correct References list appears below.

The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Abyar, F., and Novak, I. (2022). Electronic structure analysis of riboflavin: OVGF and EOM-CCSD study. Acta A Mol. Biomol. Spectrosc. 264, 120268. doi:10.1016/j.saa.2021.120268

PubMed Abstract | CrossRef Full Text | Google Scholar

Adler, T. B., Werner, H. J., and Frederick, R. (2009). Local explicitly correlated second-order perturbation theory for the accurate treatment of large molecules. J. Chem. Phys. 130, 054106. doi:10.1063/1.3040174

PubMed Abstract | CrossRef Full Text | Google Scholar

Ali, M. F., and Khan, R. Z. (2012). The study on load balancing strategies in distributed computing system. Int. J. Comput. Sci. Eng. Surv. 3, 19–30. doi:10.5121/ijcses.2012.3203

CrossRef Full Text | Google Scholar

Altman, E., Brown, K. R., Carleo, G., Carr, L. D., Demler, E., Chin, C., et al. (2021). Quantum Simulators: architectures and Opportunities. PRX Quantum 2, 017003.

Google Scholar

Altun, A., Izsák, R., and Bistoni, G. (2021). Local energy decomposition of coupled-cluster interaction energies: interpretation, benchmarks, and comparison with symmetry-adapted perturbation theory. Int. J. Quantum Chem. 121, e26339. doi:10.1002/qua.26339

CrossRef Full Text | Google Scholar

Amos, R. D., and Rice, J. E. (1989). Implementation of analytic derivative methods in quantum chemistry. Comput. Phys. Rep. 10, 147–187. doi:10.1016/0167-7977(89)90001-4

CrossRef Full Text | Google Scholar

Andrade, X., Strubbe, D., De, G., Larsen, A. H., Oliveira, M. J. T., Alberdi-Rodriguez, J., et al. (2015). Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems. Phys. Chem. Chem. Phys. 17, 31371–31396. doi:10.1039/c5cp00351b

PubMed Abstract | CrossRef Full Text | Google Scholar

Ballesteros, F., Dunivan, S. E., and Lao, K. U. (2021). Coupled cluster benchmarks of large noncovalent complexes: the L7 dataset as well as DNA–ellipticine and buckycatcher–fullerene. J. Chem. Phys. 154, 154104. doi:10.1063/5.0042906

PubMed Abstract | CrossRef Full Text | Google Scholar

Barnes, A. L., Bykov, D., Lyakh, D. I., and Tjerk, P. (2019). Multilayer divide-expand-consolidate coupled-cluster method: demonstrative calculations of the adsorption energy of carbon dioxide in the Mg-MOF-74 metal–organic framework. J. Phys. Chem. A 123, 8734–8743. doi:10.1021/acs.jpca.9b08077

PubMed Abstract | CrossRef Full Text | Google Scholar

Bartlett, R. J. (2012). Coupled-cluster theory and its equation-of-motion extensions. Mol. Sci. 2, 126–138. doi:10.1002/wcms.76

CrossRef Full Text | Google Scholar

Bartlett, R. J., and Shavitt, I. (1977). Comparison of high-order many-body perturbation theory and configuration interaction for H2O. Phys. Lett. 50, 190–198. doi:10.1016/0009-2614(77)80161-9

CrossRef Full Text | Google Scholar

Bartlett, R. J., and Silver, D. M. (1974). Correlation energy in LiH, BH, and HF with many-body perturbation theory using slater-type atomic orbitals. Int. J. Quantum Chem. 8, 271–276. doi:10.1002/qua.560080831

CrossRef Full Text | Google Scholar

Battaglino, C., Ballard, G., and Tamara, G. (2018). A practical randomized CP tensor decomposition. SIAM J. Matrix Analysis Appl. 39, 876–901. doi:10.1137/17m1112303

CrossRef Full Text | Google Scholar

Baudin, P., Bykov, D., Liakh, D., Ettenhuber, P., and Kristensen, K. (2017). A local framework for calculating coupled cluster singles and doubles excitation energies (LoFEx-CCSD). Mol. Phys. 115, 2135–2144. doi:10.1080/00268976.2017.1290836

CrossRef Full Text | Google Scholar

Baudin, P., and Kristensen, K. (2016). LoFEx — a local framework for calculating excitation energies: illustrations using RI-CC2 linear response theory. J. Chem. Phys. 144, 224106. doi:10.1063/1.4953360

PubMed Abstract | CrossRef Full Text | Google Scholar

Baudin, P., Pawłowski, F., Bykov, D., Liakh, D., Kristensen, K., Olsen, J., et al. (2019). Cluster perturbation theory. III. Perturbation series for coupled cluster singles and doubles excitation energies. J. Chem. Phys. 150, 134110. doi:10.1063/1.5046935

PubMed Abstract | CrossRef Full Text | Google Scholar

Baumgartner, G., Auer, A., Bernholdt, D. E., Bibireata, A., Choppella, V., Cociorva, D., et al. (2005). Synthesis of high-performance parallel programs for a class of ab initio quantum chemistry models. IEEE 93, 276–292. doi:10.1109/jproc.2004.840311

CrossRef Full Text | Google Scholar

Binkley, J. S., and Pople, J. A. (1975). Møller–Plesset theory for atomic ground state energies. Int. J. Quantum Chem. 9, 229–236. doi:10.1002/qua.560090204

CrossRef Full Text | Google Scholar

Bistoni, G., Riplinger, C., Minenkov, Y., Cavallo, L., Auer, A. A., and Neese, F. (2017). Treating subvalence correlation effects in domain based pair natural orbital coupled cluster calculations: an out-of-the-box approach. J. Chem. Theory Comput. 13, 3220–3227. doi:10.1021/acs.jctc.7b00352

PubMed Abstract | CrossRef Full Text | Google Scholar

Boudehane, A., Albera, L., Tenenhaus, A., Le Brusquet, L., and Boyer, R. (2022). Parallelization scheme for canonical polyadic decomposition of large-scale high-order tensors Signal Processing 199 108610.

Google Scholar

Boys, S. F. (1960). Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another. Rev. Mod. Phys. 32, 296–299. doi:10.1103/revmodphys.32.296

CrossRef Full Text | Google Scholar

Boys, S. F., and Rajagopal, P. (1966). Quantum calculations: which are accumulative in accuracy, unrestricted in expansion functions. Econ. Comput. 2, 1–24.

CrossRef Full Text | Google Scholar

Bykov, D., and Kjaergaard, T. (2017). The GPU-enabled divide-expand-consolidate RI-MP2 method (DEC-RI-MP2). J. Comput. Chem. 38, 228–237. doi:10.1002/jcc.24678

PubMed Abstract | CrossRef Full Text | Google Scholar

Bykov, D., Kristensen, K., and Kjærgaard, T. (2016). The molecular gradient using the divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation theory: the DEC-RI-MP2 gradient. J. Chem. Phys. 145, 024106. doi:10.1063/1.4956454

PubMed Abstract | CrossRef Full Text | Google Scholar

Carroll, J. D., and Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition Psychometrika, 35, 283–319.

CrossRef Full Text | Google Scholar

Cederbaum, L. S. (2008). Born–Oppenheimer approximation and beyond for time-dependent electronic processes. J. Chem. Phys. 128, 124101. doi:10.1063/1.2895043

PubMed Abstract | CrossRef Full Text | Google Scholar

Christensen, A. S., Kubar, T., Cui, Q., and Elstner, M. (2016). Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications. Chem. Rev. 116 (9), 5301–5337. doi:10.1021/acs.chemrev.5b00584

PubMed Abstract | CrossRef Full Text | Google Scholar

Christiansen, O., Bak, K. L., Koch, H. S., and Stephan, P. A. (1998). A second-order doubles correction to excitation energies in the random-phase approximation. Phys. Lett. 284, 47–55. doi:10.1016/s0009-2614(97)01285-2

CrossRef Full Text | Google Scholar

Čížek, J. (1966). On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods. J. Chem. Phys. 45, 4256–4266. doi:10.1063/1.1727484

CrossRef Full Text | Google Scholar

Collins, J. B., Schleyer, V. R., Binkley, J. S., and Pople, J. A. (1976). Self-consistent molecular orbital methods. XVII. Geometries and binding energies of second-row molecules. A comparison of three basis sets. J. Chem. Phys. 64, 5142–5151. doi:10.1063/1.432189

CrossRef Full Text | Google Scholar

Combes, J-M., Duclos, P., and Seiler, R. (1981). The Born-Oppenheimer approximation. Rigorous At. Mol. Phys., 185–213.

CrossRef Full Text | Google Scholar

Corzo, H. H., Sehanobish, A., and Kara, O. (2021). Learning full configuration interaction electron correlations with deep learning. Mach. Learn. Phys. Sci. Neural Inf. Processing Syst., 35. doi:10.48550/ARXIV.2106.08138

CrossRef Full Text | Google Scholar

Dalgaard, E., and Monkhorst, H. J. (1983). Some aspects of the time-dependent coupled-cluster approach to dynamic response functions. Phys. Rev. A 28, 1217–1222. doi:10.1103/physreva.28.1217

CrossRef Full Text | Google Scholar

Datta, D., and Gordon, M. S. (2021). A massively parallel implementation of the CCSD(T) method using the resolution-of-the-identity approximation and a hybrid distributed/shared memory parallelization model. J. Chem. Theory Comput. 17, 4799–4822. doi:10.1021/acs.jctc.1c00389

PubMed Abstract | CrossRef Full Text | Google Scholar

Davidson, E. R. (1972). Nat. orbitals 6, 235–266.

CrossRef Full Text

Davidson, E. R., and Feller, D. (1986). Basis set selection for molecular calculations. Chem. Rev. 86, 681–696. doi:10.1021/cr00074a002

CrossRef Full Text | Google Scholar

Davidson, E. R. (1972). Properties and uses of natural orbitals. Rev. Mod. Phys. 44, 451–464. doi:10.1103/revmodphys.44.451

CrossRef Full Text | Google Scholar

Díaz-Tinoco, M., Dolgounitcheva, O., Zakrzewski, V. G., and Ortiz, J. V. (2016). Composite electron propagator methods for calculating ionization energies. J. Chem. Phys. 144, 224110. doi:10.1063/1.4953666

PubMed Abstract | CrossRef Full Text | Google Scholar

Dral, P. O., Wu, X., and Thiel, W. (2019). Semiempirical quantum-chemical methods with orthogonalization and dispersion corrections. J. Chem. Theory Comput. 15, 1743–1760. doi:10.1021/acs.jctc.8b01265

PubMed Abstract | CrossRef Full Text | Google Scholar

Dunning, T. H.. (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023. doi:10.1063/1.456153

CrossRef Full Text | Google Scholar

Edmiston, C., and Krauss, M. (1965). Configuration-interaction calculation of H3 and H2. J. Chem. Phys. 42, 1119–1120. doi:10.1063/1.1696050

CrossRef Full Text | Google Scholar

Edmiston, C., and Ruedenberg, K. (1963). Localized atomic and molecular orbitals. Rev. Mod. Phys. 35, 457–464. doi:10.1103/revmodphys.35.457

CrossRef Full Text | Google Scholar

Elstner, M., Frauenheim, T., Kaxiras, E., Seifert, G., and Suhai, S. (2000). A self-consistent charge density-functional based tight-binding scheme for large biomolecules. Phys. Status Solidi B 217, 357–376. doi:10.1002/(sici)1521-3951(200001)217:1<357::aid-pssb357>3.0.co;2-j

CrossRef Full Text | Google Scholar

Elstner, M., and Seifert, G. (2014). Density functional tight binding. Philos. Trans. A Math. Phys. Eng. Sci. 372, 20120483. doi:10.1098/rsta.2012.0483

PubMed Abstract | CrossRef Full Text | Google Scholar

Eriksen, J. J., Baudin, P., Ettenhuber, P., Kristensen, K., Kjærgaard, T., and Jørgensen, P. (2015). Linear-scaling coupled cluster with perturbative triple excitations: The divide–expand–consolidate CCSD (T) model. J. Chem. Theory Comput. 11, 2984–2993. doi:10.1021/acs.jctc.5b00086

PubMed Abstract | CrossRef Full Text | Google Scholar

Eriksen, J. J., Jørgensen, P., and Gauss, J. (2015). On the convergence of perturbative coupled cluster triples expansions: error cancellations in the CCSD (T) model and the importance of amplitude relaxation. J. Chem. Phys. 142, 014102. doi:10.1063/1.4904754

PubMed Abstract | CrossRef Full Text | Google Scholar

Eriksen, J. J., Kristensen, K., Kjærgaard, T., Jørgensen, P., and Gauss, J. (2014). A Lagrangian framework for deriving triples and quadruples corrections to the CCSD energy. J. Chem. Phys. 140, 064108. doi:10.1063/1.4862501

PubMed Abstract | CrossRef Full Text | Google Scholar

Eriksen, J. J., Matthews, D. A., Jørgensen, P., and Gauss, J. (2015). Communication: the performance of non-iterative coupled cluster quadruples models. J. Chem. Phys. 143, 041101. doi:10.1063/1.4927247

PubMed Abstract | CrossRef Full Text | Google Scholar

Ettenhuber, P., Baudin, P., Kjærgaard, T., Jørgensen, P., and Kristensen, K. (2016). Orbital spaces in the divide-expand-consolidate coupled cluster method. J. Chem. Phys. 144 (16), 164116. doi:10.1063/1.4947019

PubMed Abstract | CrossRef Full Text | Google Scholar

Ettenhuber, P. (2023). ScaTeLib - a scalable tensor library.

Google Scholar

Favier, G., and de Almeida, A. L. (2014). Overview of constrained PARAFAC models. EURASIP J. Adv. Signal Process. 142. doi:10.1186/1687-6180-2014-142

CrossRef Full Text | Google Scholar

Fedorov, D. G. (2017). The fragment molecular orbital method: theoretical development, implementation in GAMESS, and applications. WIREs Comput. Mol. Sci., 7 (6), e1322. doi:10.1002/wcms.1322

CrossRef Full Text | Google Scholar

Fedorov, D. G., and Pham, B. Q. (2023). Multi-level parallelization of quantum-chemical calculations. J. Chem. Phys. 158 (16), 164106. doi:10.1063/5.0144917

PubMed Abstract | CrossRef Full Text | Google Scholar

Foster, I. (1995). Designing and building parallel programs: Concepts and tools for parallel software engineering.

Google Scholar

Friedrich, J., and Dolg, M. (2009). Fully automated incremental evaluation of MP2 and CCSD (T) energies: application to water clusters. J. Chem. Theory Comput. 5, 287–294. doi:10.1021/ct800355e

PubMed Abstract | CrossRef Full Text | Google Scholar

Friedrich, J., and Hänchen, J. (2013). Incremental CCSD(T)(F12*)|MP2: A black box method to obtain highly accurate reaction energies. J. Chem. Theory Comput. 9, 5381–5394. doi:10.1021/ct4008074

PubMed Abstract | CrossRef Full Text | Google Scholar

Frisch, M. J., Pople, J. A., and Binkley, J. S. (1984). Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 80, 3265–3269. doi:10.1063/1.447079

CrossRef Full Text | Google Scholar

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2021). Gaussian development version revision. J 15.

Google Scholar

Fung, V., Zhang, J., Juarez, E., and Sumpter, B. G. (2021). Benchmarking graph neural networks for materials chemistry. Npj Comput. Mater. 7 (1), 1–8.

CrossRef Full Text | Google Scholar

Gonzalez-Escribano, A., Llanos, D. R., Orden, D., and Palop, B. (2006). Parallelization alternatives and their performance for the convex hull problem. Appl. Math. Model. 30, 563–577. doi:10.1016/j.apm.2005.05.022

CrossRef Full Text | Google Scholar

Götz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., and Walker, R. C. (2012). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. Gen. born J. Chem. Theory Comput. 8, 1542–1555. doi:10.1021/ct200909j

CrossRef Full Text | Google Scholar

Grimme, S., Antony, J., Ehrlich, S., and Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104. doi:10.1063/1.3382344

PubMed Abstract | CrossRef Full Text | Google Scholar

Gyevi-Nagy, L., Kállay, M., and Nagy, P. R. (2021). Accurate reduced-cost CCSD(T) energies: Parallel implementation, benchmarks, and large-scale applications. J. Chem. Theory Comput. 17, 860–878. doi:10.1021/acs.jctc.0c01077

PubMed Abstract | CrossRef Full Text | Google Scholar

Gyevi-Nagy, L., Kállay, M., and Nagy, P. R. (2019). Integral-direct and parallel implementation of the CCSD(T) method: algorithmic developments and large-scale applications. J. Chem. Theory Comput. 16, 366–384. doi:10.1021/acs.jctc.9b00957

PubMed Abstract | CrossRef Full Text | Google Scholar

Hagebaum-Reignier, D., Girardi, R., Carissan, Y., and Humbel, S. (2007). Hückel theory for Lewis structures: hückel–Lewis configuration interaction (HL-CI). J. Mol. Struct. THEOCHEM. 817, 99–109. doi:10.1016/j.theochem.2007.04.026

CrossRef Full Text | Google Scholar

Haghighatlari, M., and Hachmann, J. (2019). Advances of machine learning in molecular modeling and simulation. Curr. Opin. Chem. Eng. 23, 51–57. doi:10.1016/j.coche.2019.02.009

CrossRef Full Text | Google Scholar

Hampel, C., and Werner, H. J. (1996). Local treatment of electron correlation in coupled cluster theory. J. Chem. Phys. 104, 6286–6297. doi:10.1063/1.471289

CrossRef Full Text | Google Scholar

Harris, F. E. (1977). Coupled-cluster method for excitation energies. Int. J. Quantum Chem. 12, 403–411. doi:10.1002/qua.560120848

CrossRef Full Text | Google Scholar

Hasanein, A. A., and Evans, M. W. (1996). Computational methods in quantum chemistry, 2.

Google Scholar

Häser, M. (1993). Møller-Plesset (MP2) perturbation theory for large molecules Theor. Chim. Acta 87, 147–173.

Google Scholar

Hättig, C., Hellweg, A., and Köhn, A. (2006). Distributed memory parallel implementation of energies and gradients for second-order Møller–Plesset perturbation theory with the resolution-of-the-identity approximation. Phys. Chem. Chem. Phys. 8, 1159. doi:10.1039/b515355g

PubMed Abstract | CrossRef Full Text | Google Scholar

Hättig, C., and Weigend, F. (2000). CC2 excitation energy calculations on large molecules using the resolution of the identity approximation. J. Chem. Phys. 113, 5154–5161. doi:10.1063/1.1290013

CrossRef Full Text | Google Scholar

Head-Gordon, M. R., Rudolph, J., Oumi, M, and Lee, T. J. (1994). A doubles correction to electronic excited states from configuration interaction in the space of single substitutions. Chem. Phys. Lett. 219, 21–29. doi:10.1016/0009-2614(94)00070-0

CrossRef Full Text | Google Scholar

Hehre, W. J., Stewart, R. F., and Pople, J. A. (1969). Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals. J. Chem. Phys. 51, 2657–2664. doi:10.1063/1.1672392

CrossRef Full Text | Google Scholar

Helgaker, T., Coriani, S., Jørgensen, P., Kristensen, K., Olsen, J., and Ruud, K. (2012). Recent advances in wave function-based methods of molecular-property calculations. Chem. Rev. 112 (1), 543–631. doi:10.1021/cr2002239

PubMed Abstract | CrossRef Full Text | Google Scholar

Helgaker, T., Jørgensen, P., and Olsen, J. (2000). Molecular electronic-structure theory.

Google Scholar

Helmich, B., and Hättig, C. (2014). A pair natural orbital based implementation of ADC(2)-x: Perspectives and challenges for response methods for singly and doubly excited states in large molecules Comput. Theor. Chem. 1040, 1041 35–44.

Google Scholar

Herbert, J. M. (2019). Fantasy versus reality in fragment-based quantum chemistry. J. Chem. Phys. 151, 170901. doi:10.1063/1.5126216

PubMed Abstract | CrossRef Full Text | Google Scholar

Hillers-Bendtsen, A. E., Bykov, D., Barnes, A., Liakh, D., Corzo, H. H., Olsen, J., et al. (2023). Massively parallel GPU enabled third-order cluster perturbation excitation energies for cost-effective large scale excitation energy calculations J. Chem. Phys. 158 (14), 144111, doi:10.1063/5.0142780

PubMed Abstract | CrossRef Full Text | Google Scholar

Hillers-Bendtsen, A. E., Høyer, N. M, Kjeldal, F. Ø, Mikkelsen, K. V., Olsen, J, et al. (2022). Cluster perturbation theory. VIII. First order properties for a coupled cluster state. J. Chem. Phys. 157, 024108. doi:10.1063/5.0082585

PubMed Abstract | CrossRef Full Text | Google Scholar

Hitchcock, F. L. (1927). The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 164–189. doi:10.1002/sapm192761164

CrossRef Full Text | Google Scholar

Hoy, E P., and Mazziotti, D. A. (2015). Positive semidefinite tensor factorizations of the two-electron integral matrix for low-scaling ab initio electronic structure. J. Chem. Phys. 143, 064103. doi:10.1063/1.4928064

PubMed Abstract | CrossRef Full Text | Google Scholar

Høyer, N. M., Kjeldal, F. Ø., Hillers, B., Erbs, A, Mikkelsen, K. V., Olsen, J., et al. (2022). Cluster perturbation theory. VI. Ground-state energy series using the Lagrangian. J. Chem. Phys. 157, 024106. doi:10.1063/5.0082583

PubMed Abstract | CrossRef Full Text | Google Scholar

Høyvik, I. M., Jansik, B., and Jørgensen, P. (2012). Orbital localization using fourth central moment minimization. J. Chem. Phys. 137, 224114. doi:10.1063/1.4769866

PubMed Abstract | CrossRef Full Text | Google Scholar

Høyvik, I. M., and Jørgensen, P. (2016). Characterization and generation of local occupied and virtual Hartree–Fock orbitals. Chem. Rev. 116, 3306–3327. doi:10.1021/acs.chemrev.5b00492

PubMed Abstract | CrossRef Full Text | Google Scholar

Høyvik, I. M., Kristensen, K., Jansík, B., and Jørgensen, P. (2012). The divide-expand-consolidate family of coupled cluster methods: numerical illustrations using second order møller-Plesset perturbation theory. J. Chem. Phys. 136, 014105. doi:10.1063/1.3667266

PubMed Abstract | CrossRef Full Text | Google Scholar

Høyvik, I. M., Kristensen, K., Kjærgaard, T., and Jørgensen, P. (2014). A perspective on the localizability of Hartree–Fock orbitals. Theor. Chem. Acc. 133, 1417. doi:10.1007/s00214-013-1417-x

CrossRef Full Text | Google Scholar

Ishikawa, T., and Kuwata, K. (2012). RI-MP2 gradient calculation of large molecules using the fragment molecular orbital method. J. Phys. Chem. Lett. 3, 375–379. doi:10.1021/jz201697x

PubMed Abstract | CrossRef Full Text | Google Scholar

Jakobsen, S., Kristensen, K., and Jensen, F. (2013). Electrostatic potential of insulin: exploring the limitations of density functional theory and force field methods. J. Chem. Theory Comput. 9, 3978–3985. doi:10.1021/ct400452f

PubMed Abstract | CrossRef Full Text | Google Scholar

Jansík, B., Høst, S., Kristensen, K., and Jørgensen, P. (2011). Local orbitals by minimizing powers of the orbital variance. J. Chem. Phys. 134, 194104. doi:10.1063/1.3590361

PubMed Abstract | CrossRef Full Text | Google Scholar

Jha, A., Nottoli, M., Mikhalev, A., Quan, C., and Stamm, B. (2022). Linear scaling computation of forces for the domain-decomposition linear Poisson–Boltzmann method. J. Chem. Phys. 158 (10), 104105. doi:10.1063/5.0141025

CrossRef Full Text | Google Scholar

Kapuy, E., Csépes, Z., and Kozmutza, C. (1983). Application of the many-body perturbation theory by using localized orbitals. Int. J. Quantum Chem. 23, 981–990. doi:10.1002/qua.560230321

CrossRef Full Text | Google Scholar

Keith, J. A., Vassilev-Galindo, V., Cheng, B., Chmiela, S., Gastegger, M., Muüller, K. R., et al. (2021). Combining machine learning and computational chemistry for predictive insights into chemical systems. Chem. Rev. 121, 9816–9872. doi:10.1021/acs.chemrev.1c00107

PubMed Abstract | CrossRef Full Text | Google Scholar

Khoromskaia, V., and Khoromskij, B. N. (2015). Tensor numerical methods in quantum chemistry: from Hartree–Fock to excitation energies. Phys. Chem. Chem. Phys. 17, 31491–31509. doi:10.1039/c5cp01215e

PubMed Abstract | CrossRef Full Text | Google Scholar

Kirtman, B. (1995). Local quantum chemistry: the local space approximation for Møller–Plesset perturbation theory. Int. J. Quantum Chem. 55 (2), 103–108. doi:10.1002/qua.560550204

CrossRef Full Text | Google Scholar

Kjærgaard, T., Baudin, P., Bykov, D., Eriksen, J. J., Ettenhuber, P., Kristensen, K., et al. (2017). Massively parallel and linear-scaling algorithm for second-order Møller–Plesset perturbation theory applied to the study of supramolecular wires. Comput. Phys. Commun. 212, 152–160. doi:10.1016/j.cpc.2016.11.002

CrossRef Full Text | Google Scholar

Kjærgaard, T., Baudin, P., Bykov, D., Kristensen, K., and Jørgensen, P. (2017). The divide–expand–consolidate coupled cluster scheme Wiley Interdiscip. Rev. Comput. Mol. Sci. 7 e1319.

Google Scholar

Kjærgaard, T. (2017). The Laplace transformed divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation (DEC-LT-RIMP2) theory method. J. Chem. Phys. 146, 044103. doi:10.1063/1.4973710

PubMed Abstract | CrossRef Full Text | Google Scholar

Kleier, D. A., Halgren, T. A., Hall, J. H., and Lipscomb, W. N. (1974). Localized molecular orbitals for polyatomic molecules. I. A comparison of the Edmiston-Ruedenberg and Boys localization methods. J. Chem. Phys. 61, 3905–3919. doi:10.1063/1.1681683

CrossRef Full Text | Google Scholar

Kolda, T. G., and Bader, B. W. (2009). Tensor decompositions and applications. SIAM Rev. 51 (3), 455–500. doi:10.1137/07070111x

CrossRef Full Text | Google Scholar

Krause, C., and Werner, H. J. (2012). Comparison of explicitly correlated local coupled-cluster methods with various choices of virtual orbitals. Phys. Chem. Chem. Phys. 14, 7591–7604. doi:10.1039/c2cp40231a

PubMed Abstract | CrossRef Full Text | Google Scholar

Krishnan, R. B. J. S., Binkley, J. S., Seeger, R, and Pople, J. A. (1980). Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654. doi:10.1063/1.438955

CrossRef Full Text | Google Scholar

Krishnan, R., and Pople, J. A. (1978). Approximate fourth-order perturbation theory of the electron correlation energy. Int. J. Quantum Chem. 14, 91–100. doi:10.1002/qua.560140109

CrossRef Full Text | Google Scholar

Kristensen, K., Eriksen, J. J., Matthews, D. A., Olsen, J., and Jørgensen, P. (2016). A view on coupled cluster perturbation theory using a bivariational Lagrangian formulation. J. Chem. Phys. 144, 064103. doi:10.1063/1.4941605

PubMed Abstract | CrossRef Full Text | Google Scholar

Kristensen, K., Høyvik, I. M., Jansík, B., Jørgensen, P., Kjærgaard, T., Reine, S., et al. (2012). MP2 energy and density for large molecular systems with internal error control using the Divide-Expand-Consolidate scheme. Phys. Chem. Chem. Phys. 14, 15706–15714. doi:10.1039/c2cp41958k

PubMed Abstract | CrossRef Full Text | Google Scholar

Kristensen, K., Jørgensen, P., Jansík, B., Kjærgaard, T., and Reine, S. (2012). Molecular gradient for second-order Møller-Plesset perturbation theory using the divide-expand-consolidate (DEC) scheme. J. Chem. Phys. 137, 114102. doi:10.1063/1.4752432

PubMed Abstract | CrossRef Full Text | Google Scholar

Kristensen, K., Ziółkowski, M., Jansík, B., Kjærgaard, T., and Jørgensen, P. (2011). A locality analysis of the divide–expand–consolidate coupled cluster amplitude equations. J. Chem. Theory Comput. 7, 1677–1694. doi:10.1021/ct200114k

PubMed Abstract | CrossRef Full Text | Google Scholar

Kurashige, Y., Yang, J., Chan, G. K. L., and Manby, F. R. (2012). Optimization of orbital-specific virtuals in local Møller-Plesset perturbation theory. J. Chem. Phys. 136 (12), 124106. doi:10.1063/1.3696962

PubMed Abstract | CrossRef Full Text | Google Scholar

Kutzelnigg, W. (2007). What I like about Hückel theory. J. Comput. Chem. 28, 25–34. doi:10.1002/jcc.20470

PubMed Abstract | CrossRef Full Text | Google Scholar

Article title Frontiers in neuroscience (2013) Article title Frontiers in neuroscience 30 10127–10134.

Google Scholar

Levine, I. N., Busch, D. H., and Shull, H. (2009). Quantum chemistry, 6.

Google Scholar

Li, R. R., Liebenthal, M. D., and De Prince Eugene, A. (2021). Challenges for variational reduced-density-matrix theory with three-particle N-representability conditions. J. Chem. Phys. 155, 174110. doi:10.1063/5.0066404

PubMed Abstract | CrossRef Full Text | Google Scholar

Liakos, D. G., Sparta, M., Kesharwani, M. K., Martin, J. M. L., and Neese, F. (2015). Exploring the accuracy limits of local pair natural orbital coupled-cluster theory. J. Chem. Theory Comput. 11, 1525–1539. doi:10.1021/ct501129s

PubMed Abstract | CrossRef Full Text | Google Scholar

Lin, N., Marianetti, C. A., Millis, A. J., and Reichman, D. R. (2011). Dynamical mean-field theory for quantum chemistry. Phys. Rev. Lett. 106, 096402. doi:10.1103/physrevlett.106.096402

PubMed Abstract | CrossRef Full Text | Google Scholar

Lipparini, F., Stamm, B., Canc‘es, E., Maday, Y., and Mennucci, B. (2013). Fast domain decomposition algorithm for continuum solvation models: energy and first derivatives. J. Chem. Theory Comput. 9, 3637–3648. doi:10.1021/ct400280b

PubMed Abstract | CrossRef Full Text | Google Scholar

Liu, W. (2020). Essentials of relativistic quantum chemistry. J. Chem. Phys. 152, 180901. doi:10.1063/5.0008432

PubMed Abstract | CrossRef Full Text | Google Scholar

Löwdin, P. O. (1958). Correlation problem in many-electron quantum mechanics I. Review of different approaches and discussion of some current ideas. Adv. Chem. Phys. 207-322.

Google Scholar

Löwdin, P. O. (1955). Quantum theory of many-particle systems. II. Study of the ordinary Hartree-Fock approximation. Phys. Rev. 97, 1490–1508. doi:10.1103/physrev.97.1490

CrossRef Full Text | Google Scholar

Löwdin, P. O. (1955). Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev. 97, 1474–1489. doi:10.1103/physrev.97.1474

CrossRef Full Text | Google Scholar

Luo, L., Straatsma, T., Suarez, L. E. A, Broer, R., Bykov, D., et al. (2020). Pre-exascale accelerated application development: The ORNL Summit experience, IBM J. Res. Dev. 64, 1–11. doi:10.1147/jrd.2020.2965881

CrossRef Full Text | Google Scholar

Lyakh, D. I. (2023). TAL-SH: Tensor algebra library for shared memory computers.

Google Scholar

Ma, Y., Li, Z. Y., Chen, X., Ding, B., Li, N., Lu, T., et al. (2023). Machine-learning assisted scheduling optimization and its application in quantum chemical calculations. J. Comput. Chem. 44, 1174–1188. doi:10.1002/jcc.27075

PubMed Abstract | CrossRef Full Text | Google Scholar

Maslow, A. H. (1966). The psychology of science: A reconnaissance.

Google Scholar

Menezes, F., Kats, D., and Werner, H. J. (2016). Local complete active space second-order perturbation theory using pair natural orbitals (PNO-CASPT2). J. Chem. Phys. 145, 124115. doi:10.1063/1.4963019

PubMed Abstract | CrossRef Full Text | Google Scholar

Mester, D., Nagy, P. R., and Kállay, M. (2019). Reduced-Scaling correlation methods for the excited states of large molecules: implementation and benchmarks for the second-order algebraic-diagrammatic construction approach. J. Chem. Theory Comput. 15, 6111–6126. doi:10.1021/acs.jctc.9b00735

PubMed Abstract | CrossRef Full Text | Google Scholar

Mitxelena, I., and Piris, M. (2022). Benchmarking GNOF against FCI in challenging systems in one, two, and three dimensions. J. Chem. Phys. 156, 214102. doi:10.1063/5.0092611

PubMed Abstract | CrossRef Full Text | Google Scholar

Moawad, Y., Vanderbauwhede, W., and Steijl, R. (2022). Investigating hardware acceleration for simulation of CFD quantum circuits. Front. Mech. Eng. 8. doi:10.3389/fmech.2022.925637

CrossRef Full Text | Google Scholar

Møller, C., and Plesset, M. S. (1934). Note on an approximation treatment for many-electron systems. Phys. Rev. 46, 618–622. doi:10.1103/physrev.46.618

CrossRef Full Text | Google Scholar

Monari, A., Rivail, J. L., and Assfeld, X. (2013). Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations. Acc. Chem. Res. 46, 596–603. doi:10.1021/ar300278j

PubMed Abstract | CrossRef Full Text | Google Scholar

Nagy, B., and Jensen, F. (2017). Basis sets in quantum chemistry, 93–149.

CrossRef Full Text | Google Scholar

Nagy, P. R., and Kállay, M. (2019). Approaching the basis set limit of CCSD(T) energies for large molecules with local natural orbital coupled-cluster methods. J. Chem. Theory Comput. 15, 5275–5298. doi:10.1021/acs.jctc.9b00511

PubMed Abstract | CrossRef Full Text | Google Scholar

Neese, F., Wennmohs, F., and Hansen, A. (2009). Efficient and accurate local approximations to coupled-electron pair approaches: an attempt to revive the pair natural orbital method. J. Chem. Phys. 130, 114108. doi:10.1063/1.3086717

PubMed Abstract | CrossRef Full Text | Google Scholar

Neese, F., Wennmohs, F., Becker, U., and Riplinger, C. (2020). The ORCA quantum chemistry program package. J. Chem. Phys. 152, 224108. doi:10.1063/5.0004608

PubMed Abstract | CrossRef Full Text | Google Scholar

Nesbet, R. K. (1955). Configuration interaction in orbital theories. Proc. R. Soc. Lond. A Math. Phys. Sci. 230, 312–321.

Google Scholar

Nikodem, A., Matveev, A. V., Soini, T. M., and Rösch, N. (2014). Load balancing by work-stealing in quantum chemistry calculations: application to hybrid density functional methods. Int. J. Quantum Chem. 114, 813–822. doi:10.1002/qua.24677

CrossRef Full Text | Google Scholar

Nottoli, M., Stamm, B., Scalmani, G., and Lipparini, F. (2019). Quantum calculations in solution of energies, structures, and properties with a domain decomposition polarizable continuum model. J. Chem. Theory Comput. 15, 6061–6073. doi:10.1021/acs.jctc.9b00640

PubMed Abstract | CrossRef Full Text | Google Scholar

Olsen, J., Erbs, A., Kjeldal, F. Ø., Høyer, N. M, Mikkelsen, K. V., et al. (2022). Cluster perturbation theory. VII. The convergence of cluster perturbation expansions. J. Chem. Phys. 157, 024107. doi:10.1063/5.0082584

PubMed Abstract | CrossRef Full Text | Google Scholar

Olsen, J. M. H., List, N. H., Kristensen, K., and Kongsted, J. (2015). Accuracy of protein embedding potentials: An analysis in terms of electrostatic potentials. J. Chem. Theory Comput. 11, 1832–1842. doi:10.1021/acs.jctc.5b00078

PubMed Abstract | CrossRef Full Text | Google Scholar

Oseledets, I. V. (2011). Tensor-train decomposition. SIAM J. Sci. Comput. 33 (5), 2295–2317. doi:10.1137/090752286

CrossRef Full Text | Google Scholar

Ozog, D., Hammond, J. R., Dinan, J., Balaji, P., Shende, S., and Malony, A. (2013). “Inspector-executor load balancing algorithms for block-sparse tensor contractions,” in 2013 42nd International conference on parallel processing, 30–39. doi:10.1109/ICPP.2013.12

CrossRef Full Text

Patil, U., and Shedge, R. (2013). Improved hybrid dynamic load balancing algorithm for distributed environment. Int. J. Sci. Res. Publ. 3, 1.

Google Scholar

Paudics, A., Hessz, D., Bojtár, M., Bitter, I., Horváth, V., Kállay, M., et al. (2022). A pillararene-based indicator displacement assay for the fluorescence detection of vitamin B1. Sensors Actuators B Chem. 369, 132364. doi:10.1016/j.snb.2022.132364

CrossRef Full Text | Google Scholar

Pawłowski, F., Olsen, J., and Jørgensen, P. (2019a). Cluster perturbation theory. II. Excitation energies for a coupled cluster target state. J. Chem. Phys. 150, 134109. doi:10.1063/1.5053167

PubMed Abstract | CrossRef Full Text | Google Scholar

Pawłowski, F., Olsen, J., and Jørgensen, P. (2019b). Cluster perturbation theory. I. Theoretical foundation for a coupled cluster target state and ground-state energies. J. Chem. Phys. 150, 134108. doi:10.1063/1.5004037

PubMed Abstract | CrossRef Full Text | Google Scholar

Pawłowski, F., Olsen, J., and Jørgensen, P. (2019c). Cluster perturbation theory. IV. Convergence of cluster perturbation series for energies and molecular properties. J. Chem. Phys. 150, 134111. doi:10.1063/1.5053622

PubMed Abstract | CrossRef Full Text | Google Scholar

Pawłowski, F., Olsen, J., and Jørgensen, P. (2019d). Cluster perturbation theory. V. Theoretical foundation for cluster linear target states. J. Chem. Phys. 150, 134112. doi:10.1063/1.5053627

PubMed Abstract | CrossRef Full Text | Google Scholar

Phan, A. H., Tichavský, P., and Cichocki, A. (2013). Fast alternating LS algorithms for high order CANDECOMP/PARAFAC tensor factorizations. IEEE Trans. Signal Process. 61, 4834–4846. doi:10.1109/tsp.2013.2269903

CrossRef Full Text | Google Scholar

Pinski, P., and Neese, F. (2018). Communication: exact analytical derivatives for the domain-based local pair natural orbital MP2 method (DLPNO-MP2). J. Chem. Phys. 148, 031101. doi:10.1063/1.5011204

PubMed Abstract | CrossRef Full Text | Google Scholar

Pipek, J., and Mezey, P. G. (1989). Pair natural orbitals: a concept for simplifying Hartree–Fock and CI wavefunctions. J. Chem. Phys. 90, 4916–4926. doi:10.1063/1.456588

CrossRef Full Text | Google Scholar

Pople, J. A. (1999). Nobel lecture: Quantum chemical models. Mod. Phys. 71, 1267–1274. doi:10.1103/revmodphys.71.1267

CrossRef Full Text | Google Scholar

Pople, J. A., Binkley, J. S., and Seeger, R. (1976). Theoretical models incorporating electron correlation. Int. J. Quantum Chem. 10, 1–19. doi:10.1002/qua.560100802

CrossRef Full Text | Google Scholar

Pulay, P., and Saebø, S. (1986). Orbital-invariant formulation and second-order gradient evaluation in Mller-Plesset perturbation theory. Chem. Acc. 69, 357–368. doi:10.1007/bf00526697

CrossRef Full Text | Google Scholar

Pulay, P., and Hamilton, T. P. (1988). UHF natural orbitals for defining and starting MC-SCF calculations. J. Chem. Phys. 88, 4926–4933. doi:10.1063/1.454704

CrossRef Full Text | Google Scholar

Pulay, P. (1983). Localizability of dynamic electron correlation. Chem. Phys. Lett. 100, 151–154. doi:10.1016/0009-2614(83)80703-9

CrossRef Full Text | Google Scholar

Pyykkö, P. (2012). Relativistic effects in chemistry: more common than you thought. Annu. Rev. Phys. Chem. 63, 45–64. doi:10.1146/annurev-physchem-032511-143755

PubMed Abstract | CrossRef Full Text | Google Scholar

Qiu, J., Zhao, Z., Wu, B., Vishnu, A., and Song, S. (2017). Enabling scalability-sensitive speculative parallelization for FSM computations. Proc. Int. Conf. Supercomput., 2.

CrossRef Full Text | Google Scholar

Qiu, Y., Zhou, G., Zhang, Y., and Cichocki, A. (2021). Canonical polyadic decomposition (CPD) of big tensors with low multilinear rank. Multimed. Tools Appl. 80, 22987–23007. doi:10.1007/s11042-020-08711-1

CrossRef Full Text | Google Scholar

Raghavachari, K., Trucks, G. W., Pople, J. A., and Head-Gordon, M. (1989). A fifthorder perturbation comparison of electron correlation theories. Chem. Phys. Lett. 157 (6), 479–483. doi:10.1016/s0009-2614(89)87395-6

CrossRef Full Text | Google Scholar

Riplinger, C., and Neese, F. (2013). An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 138, 034106. doi:10.1063/1.4773581

PubMed Abstract | CrossRef Full Text | Google Scholar

Riplinger, C., Sandhoefer, B., Hansen, A., and Neese, F. (2013). Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 139, 134101. doi:10.1063/1.4821834

PubMed Abstract | CrossRef Full Text | Google Scholar

Rolik, Z., Szegedy, L., Ladjánszki, I., Ladóczki, B., and Kállay, M. (2013). An efficient linear-scaling CCSD (T) method based on local natural orbitals. J. Chem. Phys. 139, 094105. doi:10.1063/1.4819401

PubMed Abstract | CrossRef Full Text | Google Scholar

Russ, N. J., and Crawford, T. D. (2004). Local correlation in coupled cluster calculations of molecular response properties. Phys. Lett. 400, 104–111. doi:10.1016/j.cplett.2004.10.083

CrossRef Full Text | Google Scholar

Sæbø, S., and Almlöf, J. (1989). Avoiding the integral storage bottleneck in LCAO calculations of electron correlation. Chem. Phys. Lett. 154, 83–89. doi:10.1016/0009-2614(89)87442-1

CrossRef Full Text | Google Scholar

Sæbø, S., and Pulay, P. (1985). Local configuration interaction: an efficient approach for larger molecules. Chem. Phys. Lett. 113, 13–18. doi:10.1016/0009-2614(85)85003-x

CrossRef Full Text | Google Scholar

Saebø, S., and Pulay, P. (1993). Local treatment of electron correlation. Annu. Rev. Phys. Chem. 44, 213–236. doi:10.1146/annurev.pc.44.100193.001241

CrossRef Full Text | Google Scholar

Saebo, S., and Pulay, P. (1988). The local correlation treatment. II. Implementation and tests. J. Chem. Phys. 88, 1884–1890. doi:10.1063/1.454111

CrossRef Full Text | Google Scholar

Saitow, M., Uemura, K., and Yanai, T. (2022). A local pair-natural orbital-based complete-active space perturbation theory using orthogonal localized virtual molecular orbitals. J. Chem. Phys. 157, 084101. doi:10.1063/5.0094777

PubMed Abstract | CrossRef Full Text | Google Scholar

Schriber, J. B., and Evangelista, F. A. (2017). Adaptive configuration interaction for computing challenging electronic excited states with tunable accuracy. J. Chem. Theory Comput. 13, 5354–5366. doi:10.1021/acs.jctc.7b00725

PubMed Abstract | CrossRef Full Text | Google Scholar

Schütz, M., Yang, J., Frederick, R., and Werner, H. J. (2013). The orbital-specific virtual local triples correction: OSV-L (t). J. Chem. Phys. 138, 054109. doi:10.1063/1.4789415

PubMed Abstract | CrossRef Full Text | Google Scholar

Schwilk, M., Ma, Q., Köppl, C., and Werner, H. J. (2017). Scalable electron correlation methods. 3. Efficient and accurate parallel local coupled cluster with pair natural orbitals (PNO-LCCSD). J. Chem. Theory Comput. 13, 3650–3675. doi:10.1021/acs.jctc.7b00554

PubMed Abstract | CrossRef Full Text | Google Scholar

Semidalas, E., and Martin, J. M. L. (2022). The MOBH35 metal–organic barrier heights reconsidered: Performance of local-orbital coupled cluster approaches in different static correlation regimes. J. Chem. Theory Comput. 18, 883–898. doi:10.1021/acs.jctc.1c01126

PubMed Abstract | CrossRef Full Text | Google Scholar

Shang, H., Shen, L., Fan, Y., Xu, Z., Guo, C., Liu, J., et al. (2022). Large-Scale Simulation of Quantum Computational Chemistry on a New Sunway Supercomputer. SC22: Int. Conf. High Perform. Comput. Netw. Storage Anal. 1–14. doi:10.1109/SC41404.2022.00019

CrossRef Full Text | Google Scholar

Shao, Y., Gan, Z., Epifanovsky, E., Gilbert, A. T. B., Wormit, M, Kussmann, J, et al. (2015). Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 113, 184–215. doi:10.1080/00268976.2014.952696

CrossRef Full Text | Google Scholar

Sharapa, D. I., Genaev, A, Cavallo, L., and Minenkov, Y. (2019). A robust and cost-efficient scheme for accurate conformational energies of organic molecules. ChemPhysChem 20, 92–102. doi:10.1002/cphc.201801063

PubMed Abstract | CrossRef Full Text | Google Scholar

Sho, S., and Odanaka, S. (2019). Parallel domain decomposition methods for a quantum-corrected drift–diffusion model for MOSFET devices. Phys. Commun. 237, 8–16. doi:10.1016/j.cpc.2018.10.029

CrossRef Full Text | Google Scholar

Simons, J., and Nichols, J. (1997). Quantum mechanics in chemistry.

Google Scholar

Sitkiewicz, S. P., Rodriguez-Mayorga, M., Luis Josep, M., and Matito, E. (2019). Partition of optical properties into orbital contributions. Phys. Chem. Chem. Phys. 21, 15380–15391. doi:10.1039/c9cp02662b

PubMed Abstract | CrossRef Full Text | Google Scholar

Sparta, M., Retegan, M., Pinski, P., Riplinger, C., Becker, U., and Neese, F. (2017). Multilevel approaches within the local pair natural orbital framework. J. Chem. Theory Comput. 13, 3198–3207. doi:10.1021/acs.jctc.7b00260

PubMed Abstract | CrossRef Full Text | Google Scholar

Stegeman, A. (2006). Degeneracy in Candecomp/Parafac explained for p×p× 2 arrays of rank p + 1 or higher. Psychometrika 71, 483–501.

CrossRef Full Text | Google Scholar

Stoychev, G. L., Auer, A. A., Gauss, J., and Neese, F. (2021). DLPNO-MP2 second derivatives for the computation of polarizabilities and NMR shieldings. J. Chem. Phys. 154, 164110. doi:10.1063/5.0047125

PubMed Abstract | CrossRef Full Text | Google Scholar

Su, H. C., Jiang, H., and Zhang, B. (2007). Synchronization on Speculative Parallelization of Many-Particle Collision Simulation. World Congr. Eng. Comput. Sci.

Google Scholar

Subotnik, J. E., and Head-Gordon, M. (2005). A local correlation model that yields intrinsically smooth potential-energy surfaces. J. Chem. Phys. 123, 064108. doi:10.1063/1.2000252

PubMed Abstract | CrossRef Full Text | Google Scholar

Surján, P. R. (1999). “An introduction to the theory of geminals,” in Correlation and localization, 63–88.

Google Scholar

Szabo, A., and Ostlund, N. S. (2012). Modern quantum chemistry: Introduction to advanced electronic structure theory.

Google Scholar

Szabó, P. B., Csóka, J., Kállay, M., and Nagy, P. R. (2021). Linear-Scaling open-shell MP2 approach Algorithm benchmarks and large-scale applications, J. Chem. Theory Comput. 17, 2886–2905. doi:10.1021/acs.jctc.1c00093

PubMed Abstract | CrossRef Full Text | Google Scholar

Tew, D. P., Klopper, W., and Helgaker, T. (2007). Electron correlation: the many-body problem at the heart of chemistry. J. Comput. Chem. 28, 1307–1320. doi:10.1002/jcc.20581

PubMed Abstract | CrossRef Full Text | Google Scholar

Tew, D. P. (2019). Principal domains in local correlation theory. J. Chem. Theory Comput. 15, 6597–6606. doi:10.1021/acs.jctc.9b00619

PubMed Abstract | CrossRef Full Text | Google Scholar

Thiel, W (2014). Semiempirical quantum–chemical methods. Rev. Comput. Mol. Sci. 4, 145–157. doi:10.1002/wcms.1161

CrossRef Full Text | Google Scholar

Titov, A. V., Ufimtsev, I. S., Luehr, N., and Martinez, T. J. (2013). Generating efficient quantum chemistry codes for novel architectures. J. Chem. Theory Comput. 9 (1), 213–221. doi:10.1021/ct300321a

PubMed Abstract | CrossRef Full Text | Google Scholar

Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–311. doi:10.1007/BF02289464

PubMed Abstract | CrossRef Full Text | Google Scholar

Unke, O., Bogojeski, M., Gastegger, M., Geiger, M., Smidt, T., and Müller, K. R. (2021). E(3)-equivariant prediction of molecular wavefunctions and electronic densities. Adv. Neural Inf. Process. Syst. 34 14434–14447.

Google Scholar

Vahtras, O., Almlöf, J., and Feyereisen, M. W. (1993). Integral approximations for LCAO-SCF calculations. Chem. Phys. Lett. 213, 514–518. doi:10.1016/0009-2614(93)89151-7

CrossRef Full Text | Google Scholar

Valiev, M., Bylaska, E. J., Govind, N, Kowalski, K, Straatsma, T. P., Van Dam, H. J. J., et al. (2010). NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Phys. Commun. 181, 1477–1489. doi:10.1016/j.cpc.2010.04.018

CrossRef Full Text | Google Scholar

Vannieuwenhoven, N., Meerbergen, K., and Vandebril, R. (2015). Computing the gradient in optimization algorithms for the CP decomposition in constant memory through tensor blocking. SIAM J. Sci. Comput. 37 (3), C415–C438. doi:10.1137/14097968x

CrossRef Full Text | Google Scholar

Wang, B., Yang, K. R., Xu, X., Isegawa, M., Leverentz, H. R., and Truhlar, D. G. (2014). Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates. Accounts Chem. Res. 47, 2731–2738. doi:10.1021/ar500068a

PubMed Abstract | CrossRef Full Text | Google Scholar

Wang, H., Neese, C. F., Morong, C. P., Kleshcheva, M., and Oka, T. (2013) High-Resolution near-infrared spectroscopy of and its deuterated isotopologues J. Phys. Chem. A 117 9908–9918.

PubMed Abstract | CrossRef Full Text | Google Scholar

Wang, Y. M., Hättig, C., Reine, S., Valeev, E., Kjærgaard, T., and Kristensen, K. (2016). Explicitly correlated second-order Møller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context. J. Chem. Phys. 144, 204112. doi:10.1063/1.4951696

PubMed Abstract | CrossRef Full Text | Google Scholar

Wang, Y., Ni, Z., Neese, F., Li, W., Guo, Y., and Li, S. (2022). Cluster-in-Molecule method combined with the domain-based local pair natural orbital approach for electron correlation calculations of periodic systems. J. Chem. Theory Comput. 18, 6510–6521. doi:10.1021/acs.jctc.2c00412

PubMed Abstract | CrossRef Full Text | Google Scholar

Werner, H. J. (1995). “Problem decomposition in quantum chemistry,” in Domainbased parallelism and problem decomposition methods in computational science and engineering (SIAM), 239–261. doi:10.1137/1.9781611971507.ch14

CrossRef Full Text | Google Scholar

Westermayr, J., Gastegger, M., Schütt, K. T., and Reinhard, J. (2021). Perspective on integrating machine learning into computational chemistry and materials science. J. Chem. Phys. 154, 230903. doi:10.1063/5.0047760

PubMed Abstract | CrossRef Full Text | Google Scholar

Woolley, R. G., and Sutcliffe, B. T. (1977). Molecular structure and the born—oppenheimer approximation. Phys. Lett. 45, 393–398. doi:10.1016/0009-2614(77)80298-4

CrossRef Full Text | Google Scholar

Xie, Z. Y., Jiang, H. C., Chen, Q. N., Weng, Z. Y., and Xiang, T. (2009). Second renormalization of tensor-network states. Phys. Rev. Lett. 103, 160601. doi:10.1103/physrevlett.103.160601

PubMed Abstract | CrossRef Full Text | Google Scholar

Yang, J., Chan, G., Frederick, R., Schütz, M., and Werner, H. J. (2012). The orbital-specific-virtual local coupled cluster singles and doubles method. J. Chem. Phys. 136, 144105. doi:10.1063/1.3696963

PubMed Abstract | CrossRef Full Text | Google Scholar

Yang, J., Kurashige, Y., Manby, , Frederick, R., and Chan, G. K. L. (2011). Tensor factorizations of local second-order Møller–Plesset theory. J. Chem. Phys. 134, 044123. doi:10.1063/1.3528935

PubMed Abstract | CrossRef Full Text | Google Scholar

Yates, K. (2012). Hückel molecular orbital theory.

Google Scholar

Zhang, I. Y, and Grüneis, A. (2019). Coupled cluster theory in materials science. Front. Mater. 6. doi:10.3389/fmats.2019.00123

CrossRef Full Text | Google Scholar

Zhang, Q., Dwyer, T. J., Tsui, V., Case, D. A., Cho, J., Dervan, P. B., et al. (2004). NMR structure of a cyclic polyamide- DNA complex. J. Am. Chem. Soc. 126, 7958–7966. doi:10.1021/ja0373622

PubMed Abstract | CrossRef Full Text | Google Scholar

Ziółkowski, M., Jansík, B., Kjærgaard, T., and Jørgensen, P. (2010). Linear scaling coupled cluster method with correlation energy based error control. J. Chem. Phys. 133, 014107. doi:10.1063/1.3456535

PubMed Abstract | CrossRef Full Text | Google Scholar

Keywords: coupled cluster theory, divide-expand-consolidate coupled cluster framework, cluster perturbation theory, excitation energies, tetrahydrocannabinol, deoxyribonucleic acid

Citation: Corzo HH, Hillers-Bendtsen AE, Barnes A, Zamani AY, Pawłowski F, Olsen J, Jørgensen P, Mikkelsen KV and Bykov D (2023) Corrigendum: Coupled cluster theory on modern heterogeneous supercomputers. Front. Chem. 11:1256510. doi: 10.3389/fchem.2023.1256510

Received: 10 July 2023; Accepted: 11 July 2023;
Published: 15 August 2023.

Approved by:

Frontiers Editorial Office, Frontiers Media SA, Switzerland

Copyright © 2023 Corzo, Hillers-Bendtsen, Barnes, Zamani, Pawłowski, Olsen, Jørgensen, Mikkelsen and Bykov. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Dmytro Bykov, bykovd@ornl.gov

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.