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The fluorescence/magnetic resonance (FL/MR) dual-modal imaging could provide
accurate tumor visualization to guide photothermal therapy (PTT) of cancer, which
has attracted widespread attention from scientists. However, facile and effective
strategies to synergistically enhance fluorescence intensity, MR contrast and
photothermal efficacy have rarely been reported. This study presents a novel
multifunctional probe Gd-EB-ICG (GI) for FL/MR dual-modal imaging-guided PTT
of cancer. GIs can self-assemble with endogenous albumin to form drug-albumin
complexes (GIAs), which exhibit excellent biocompatibility. Albumin can protect GIAs
from the recognition and clearance by the mononuclear phagocytic system (MPS).
High plasma concentration and long half-life allow GIAs to accumulate continuously
in the tumor area through EPR effect and specific uptake of tumor. Because of the
prolonged rotational correlation time (τR) of Gd chelates, GIAs exhibited superior MR
contrast performance over GIs with more than 3 times enhancement of longitudinal
relaxation efficiency (r1). The fluorescence quantum yield and photothermal
conversion efficiency of GIAs was also significantly improved due to the
constrained geometry, disrupted aggregation and enhanced photothermal stability.
This simple and feasible strategy successfully resulted in a synergistic effect for FL/MR
dual-modal imaging and photothermal therapy, which can cast a new light for the
clinical translation of multifunctional probes.
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Introduction

Cancer is a leading cause of death and accounted for almost 10.0million deaths worldwide in
2020 (Bray et al., 2021; Sung et al., 2021). Developing precise and efficient theranostic techniques
is particularly relevant to improve the longevity of cancer patients. Currently, a variety of nano
carriers equipped with imaging and treatment components have been developed for precise
diagnosis and imaging guided therapy (WangM. et al., 2020;Wang Y. et al., 2020). However, the
complex processes, host foreign body responses, and potential long-term toxicity seem to limit
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their clinical application (Larsen et al., 2016a). Endogenous albumin is
an attractive next-generation drug delivery carrier.

Human serum albumin (HSA) is the most abundant plasma
protein with a half-life of approximately 19 days (Anderson et al.,
2006; Kratz, 2008). HSA exhibits a molecular weight of 66.5 kDa and an
effective diameter of about 7.2 nm (Garcovich et al., 2009). HSA
contains multiple hydrophobic binding pockets and naturally serves
as a transporter of a number of different ligands. The negative charge on
the surface of HSA makes it highly water-soluble (Larsen et al., 2016a).
Notably, albumin specifically targets tumor regions due to its enhanced
permeability and retention (EPR) effect, abnormal nutritional needs,
albumin receptor binding, and SPARC-inducing effect (Neuzillet et al.,
2013; Larsen et al., 2016b; Liu and Chen, 2016). These properties as well
as its ready availability, biodegradability, and lack of toxicity and
immunogenicity make it an ideal candidate for drug delivery.
Additionally, albumin has unexpected effects as a drug delivery carrier.

In diagnostic imaging, a single imaging technique often cannot
provide effective and accurate information for clinical diagnoses and
medical research (Louie, 2010). The integration of MRI and FLI can
overcome the limitations of each other and achieve complementary
advantages, offering more detailed anatomical or biological tumor
information (Rosa et al., 2015; Yan et al., 2017). Furthermore,
conventional clinical treatments for cancer, including surgical
intervention, chemotherapy, and radiotherapy, have major drawbacks
(Cihoric et al., 2015). As a novel non-invasive cancer treatment strategy,
photothermal therapy (PTT) has attracted extensive attention owing to
its high efficiency, easy operation, negligible side effects, and good
bioavailability (Li et al., 2017; Wu et al., 2017). Importantly, PTT can
ignore cellular resistance as it induces cell death via physical
mechanisms, such as protein denaturation and membrane rupture
(Valcourt et al., 2019). Nevertheless, simple and effective strategies to
synergistically enhance fluorescence intensity, MR contrast, and
photothermal conversion efficiency have rarely been reported.

As amultifunctional probe delivery carrier, HSA can be used for the
synergistic enhancement of FL/MR dual-modal imaging and
photothermal therapy. Small molecule Gd chelates are the most
commonly used contrast agents in clinical practice. Generally,
connecting the ligand with macromolecules is an effective strategy to
enhance the performance of Gd-based contrast agents (Werner et al.,
2007; Song et al., 2008; Yang et al., 2008; Mastarone et al., 2011). As a
natural macromolecular substance in the human body, HSA can
effective limit the rotation of gadolinium chelates in the magnetic
field, thereby prolonging the rotational correlation time (τR), resulting
in a sharp increase in the longitudinal relaxivity (r1) (Chen et al., 2011;
Poeselt et al., 2012). Indocyanine green (ICG) is the only near-infrared
(NIR) dye approved for clinical application by the FDA. ICG has good
optical properties and thermotherapy ability, which can be applied for
NIR imaging and photothermal therapy (PTT) (Haller et al., 1992).
Recent studies have demonstrated that ICG emits tail fluorescence in
the NIR-II window, which can be used for NIR-II imaging (Bhavane
et al., 2018; Carr et al., 2018). The intercalation of ICG into the HSA
pocket may lead to emission enhancement due to constrained geometry
and disruption of aggregation (Tian et al., 2019; Yue et al., 2022). In
addition, HSA can also enhance the photothermal conversion efficiency
of ICG by improving its photothermal stability (Yu et al., 2021).

Evans Blue (EB) is an azo dye with high serum albumin binding
affinity (Xie et al., 2016). There are approximately 14 binding sites
on albumin for EB (Niu et al., 2014; Liu and Chen, 2016). This study

outlines a simple and feasible method to construct a novel
multifunctional probe, Gd-EB-ICG (GI), was designed and
synthesized by a facile and feasible method (Scheme 1). The
probe is comprised of three parts: 1) Gd-DOTA for MR imaging;
2) ICG for NIR-I/NIR-II imaging and photothermal therapy; 3) EB
for albumin binding. When injected intravenously into the blood
circulation, GIs rapidly assemble with albumin into drug-albumin
complexes (GIAs), whose molecular docking model is shown in
Scheme 2. GIAs can evade the recognition and clearance of the
mononuclear phagocytic system (MPS) and thus obtain a very long
circulation time. High plasma concentration and long half-life allow
GIAs to accumulate continuously in the tumor area through EPR
effect and specific uptake of tumor. In vitro experiments
demonstrated that GIAs exhibited superior fluorescence quantum
yield, r1 and photothermal conversion efficiency than GIs. In vivo
experiments demonstrated that GIAs exhibits excellent tumor
aggregation, imaging and killing effects. This facile and feasible
strategy not only achieved effective drug delivery, but also
successfully realized a synergistic effect for FL/MR dual-modal
imaging and photothermal therapy, which can cast a new light
for the clinical translation of multifunctional nanoprobes.

Results and discussion

Synergetic enhancement of optical/
magnetic and thermal properties of GIAs in
solution

The optical properties of GIAs were investigated by UV-visible
absorption and fluorescence spectroscopy. As shown in Figures 1A, B,
the UV-vis absorption spectrum of GIAs showed a maximum peak at
800 nm, while the emission spectrum exhibited a maximum peak at
830 nm. GIAs exhibited superior fluorescence quantum yield estimated
by the area under the curve over GIs with more than 2 times
enhancement. The enhanced emission can be explained by two
events: constrained geometry and disruption of aggregation, which
reduces non-radiative decay. In addition, GIAs emits tail fluorescence in
the NIR-II window, demonstrating its usefulness for NIR-II imaging.

The longitudinal (T1) relaxation times were measured using a 3.0 T
MRI scanner to evaluate the MR imaging capacity of GIAs as an
effective T1-weightedMRI contrast agent. As shown in Figure 1C, GIAs
exhibited superior r1 (14.65 mM−1s−1) over GIs (4.06 mM−1s−1) with
nearly four times enhancement. The enhanced r1 may be attributed to
the bulky and rigidmacromolecular structure of albumin. This structure
could dramatically prolong the rotational correlation time (τR),
resulting in an increase in longitudinal relaxivity, yielding a better
MR contrast performance. Furthermore, the phantom images also
demonstrated that GIAs exhibited superior MR signal contrast than
GIs at the same Gd concentration (Figure 1D).

Subsequently, the photothermal conversion efficiency of GIAs
was evaluated by measuring the temperature elevation of GIAs
solution after being exposed to an 808 nm laser (0.5 W/cm2,
10 min). As shown in Figure 1E, the concentration and
irradiation time-dependent temperature of the GIAs solution
increased significantly under laser irradiation. Specifically, the
GIAs solution (200 μg/mL) showed remarkable and rapid
temperature elevation upon irradiation, reaching a maximum
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temperature rise of 39.4°C (from 21.6°C to 61°C). In contrast, the GIs
solution showed limited photothermal conversion efficiency under
the same condition (temperature rise 29.3°C) (Figure 1F). The
enhanced photothermal conversion efficiency may be attributed
to the improved structural rigidity and photothermal stability. All
these results indicate that GIAs would has great potential as a high-
performance multifunctional probe for synergistic enhanced FL/MR
imaging and photothermal therapy.

In vitro cytotoxicity and cellular uptake of
GIAs

The cytotoxicity experiment was performed on 4T1 cells by
CCK-8 assay to evaluate the cytocompatibility of GIAs. As shown
in Figure 2A, upon incubation with GIAs for 24 h, the cell
viability of 4T1 cells remained >90% at the highest
concentration of 200 μg/mL. The results indicated the

SCHEME 1
The synthesis of the GI.

SCHEME 2
The 2D (A), surface (B,C), cartoon (D) and 3D (E) binding model of GI and HSA. GI is colored in yellow. The cartoon and surface of HSA is colored in
slate. The residues in HSA are shown as cyan sticks. The hydrogen bond interactions are depicted as green lines.
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FIGURE 1
(A) UV-Vis absorption spectra of GIAs. (B) Emission spectra of GIAs and GIs. (C) T1 relaxation properties and (D) corresponding phantom images of
GIAs and GIs. The color from blue to red was used to indicate the increase in T1 relaxation time. (E) Temperature of GIAs at different concentrations
following laser irradiation for 10 min. (F) Increasing photothermal temperature curves of GIAs and GIs with irradiation time.

FIGURE 2
(A) Cell viability of 4T1 cells after incubation with GIAs at different concentrations for 24 h. (B) Fluorescence microscopy images of 4T1 cells treated
with GIAs. Scale bar: 100 μm. (C) Fluorescence images of 4T1 cells upon NIR irradiation with different concentrations of GIAs. Green: FDA, live cells; Red:
PI, dead cells. Scale bar: 250 μm.
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excellent biocompatibility and very low biotoxicity of GIAs
in vitro. Moreover, the cellular uptake of GIAs on 4T1 cells
was investigated by fluorescence microscopy. The fluorescence
microscopy images displayed strong red fluorescence signals in
the cytoplasm of 4T1 cells after incubation with GIAs, which
perfectly integrated with the blue fluorescence signals of DAPI
(Figure 2B). This may be attributed to the albumin receptor
(gp60) distributed on cancer cell surfaces, which can bind
albumins and complete the transcytosis process (Wang et al.,
2021). These results demonstrate that GIAs could effectively and
specifically target tumor cells for FL/MR imaging and
photothermal therapy.

In vitro PTT of GIAs

The photothermal therapeutic efficiency of GIAs was
evaluated by incubating different concentrations of GIAs
with 4T1 cells. Fluorescence staining was carried out to
observe live cells (FDA, green) and dead cells (PI, red). As
shown in Figure 2C, only the green fluorescence signal was
observed in the control group, indicating that the cell viability

was not compromised after being subjected to irradiation. In
contrast, 4T1 cells treated with GIAs showed evident red
fluorescence. With increasing concentrations of GIAs, a
greater number of dead cells were observed after exposure to
laser irradiation. When the concentration reached 200 μg/mL,
significant 4T1 cell death was observed, with no living cells in
the field of view. The findings suggest that the high
photothermal conversion efficiency of GIAs could effectively
kill tumor cells in vitro.

In vivo dual-modal FLI/MRI of GIAs

The in vivo fluorescence imaging property of GIAs was
investigated in 4T1-tumor-bearing nude mice. After tail vein
injection of GIs and free ICG, the fluorescence images were
simultaneously recorded by in vivo imaging systems at
different time points. As shown in Figure 3A, the overall
bright fluorescence of mice in the GIAs group confirmed that
GIs can quickly assemble with albumin into drug-albumin
complexes after entering the bloodstream, thereby remaining
in the bloodstream. Subsequently, the fluorescence signal of

FIGURE 3
(A) In vivo fluorescence imaging of mice bearing 4T1 tumors after tail vein injection GIs and ICG. (B) MR images of tumor-bearing mice before and
after intravenous injection of GIs at different time points (The color from blue to red indicates increasing MR signal intensity).
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the tumor region increased substantially and achieved a
maximum at 6 h post-injection, maintaining a high level for
the following time. This is mainly attributed to the long

circulation time of GIAs, EPR effect, and specific uptake of
albumin by the tumor. In contrast, almost no signal was
detected in the tumor area of mice injected with free ICG due

FIGURE 4
Growth curve of (A) tumor volume and (B) body weight of mice. (C) Photographs of representative mice and extracted tumors. (D)H&E, TUNEL and
PCNA staining for tumor sections. The red fluorescence indicates the TUNEL or PCNA signal. Scale bar: 50 μm (a, PBS; b, Laser; c, GIAs; d, GIAs + laser).
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to rapid blood clearance and poor tumor accumulation.
Supplementary Figure S3 illustrates ex vivo fluorescence
images of major organs and tumors harvested from mice at
48 h. As expected, almost no fluorescence was detected in the
tumor for the ICG group, whereas bright fluorescence was
detected in the GIAs group. Simultaneously, the kidney also
showed moderate fluorescence, indicating that the probe was
mainly excreted through the kidney. Since GIAs has moderate
optical properties at the NIR-II window, the in vivo NIR-II
imaging performance of GIAs was then examined. As shown
in Supplementary Figure S4, after intravenous injection, the NIR-
II signal of the tumor region increased substantially and
maintained strong fluorescence up to the 48th hour. All these
results indicate that GIAs can effectively target and image the
tumor.

Considering its remarkable MR contrast performance in
solution, the in vivo MR imaging ability of GIAs was further
evaluated on 4T1-tumor-bearing nude mice. Pre-contrast and
contrast MR imaging for the tumor models was performed before
and after the injection for various time intervals (3, 6, 12, and
48 h) on a 3.0 T MR system. As shown in Figure 3B, compared
with pre-injection, a high T1-weighted MR signal within the

tumor can be easily seen over time, with a peak at 6 h post-
injection. The enhanced signal lasted for more than 6 hours. This
was in good agreement with the in vivo fluorescence imaging.
Furthermore, the signal-to-noise ratio (SNR) of the tumor region
was calculated to quantify the signal change. As shown in
Supplementary Figure S5, the SNR rapidly increased to reach
the maximum at 6 h post-injection, followed by a signal decrease,
which was highly consistent with the MR contrast images. These
results indicate that GIAs has excellent MR imaging capacity.
Combined with enhanced fluorescence imaging, GIAs exhibits
great potential as an FLI/MRI dual-modal probe for cancer
imaging.

In vivo PTT of GIAs

Encouraged by the above results, a mouse model of 4T1 breast
tumor was established to evaluate the therapeutic efficacy of GIAs.
The mice were randomly divided into 4 groups: a) PBS only b) Laser
only c) GIAs d) GIAs + laser. Tumor volumes and body weights
were monitored every other day after laser irradiation. As shown in
Figure 4A, the tumors in all three control groups exhibited similar

FIGURE 5
Liver and kidney function markers (A,B) and H&E staining images (C) of the major organs including the heart, liver, spleen, lung, and kidney of mice
after being treated with (A) GIAs and (B) PBS, respectively. Scale bar: 100 μm.
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growth speeds, indicating that laser irradiation of tumors and GIAs
injection alone do not significantly affect tumor growth. However,
the combined treatment of GIAs and laser irradiation resulted in
complete tumor ablation without relapse during the experiment,
which was attributed to enhanced photothermal conversion
efficiency and tumor aggregation. Moreover, no significant
differences in body weight were observed in the corresponding
groups, suggesting low systemic toxicity in all the treatments
(Figure 4B). Figure 4C displays the representative photographs of
mice and tumors treated with different methods, which were
consistent with the results above.

H&E, TUNEL, and PCNA staining of tumor sections further
validated the therapeutic effect on tumors (Figure 4D). H&E
staining showed significant coagulation necrosis in the tumor
tissues of the GIAs plus laser treatment group, and the nucleus of
the tumor cells in the necrotic area shrank, crumbled, and
dissolved, which occurred to a lesser extent in other groups.
This kind of contrast was more pronounced in TUNEL staining,
where high levels of apoptosis were observed in tumor cells in the
experimental group, while cells in the control group remained
alive. Additionally, PCNA staining was used to demonstrate the
proliferation. Similarly, the experimental group showed the least
positive signals among all groups, suggesting significant
inhibition of tumor proliferation following the combination
therapy of GIAs and laser irradiation. These results confirmed
the excellent efficacy of the GIAs in cancer photothermal therapy
in vivo.

Toxicity evaluation of GIAs in vivo

The in vivo toxicology evaluation was conducted on healthy
mice by analyzing blood chemistry indexes and histological
examination with PBS treated as control group. As illustrated
in Figures 5A, B, the important liver and kidney function
markers, including aspartate aminotransferase (AST), alanine
aminotransferase (ALT), serum creatinine (SCR), and blood
urea nitrogen (BUN), were within the normal range. No
apparent differences were observed between the GIAs treated
group and the control group, suggesting no evident damage of
liver and kidney damage after GIAs treatment. H&E staining
images revealed no evident tissue damage, inflammation, or
lesions of each organ in both the treatment group and the
control group, as shown in Figure 5C. All the above results
suggested GIAs possessed excellent biocompatibility for in
vivo application.

Conclusion

This paper describes the design and synthesis of a novel
multifunctional probe GI for FL/MR dual-modal imaging-
guided photothermal therapy of cancer. GIs can efficiently
assemble with endogenous albumin to form GIAs and self-
deliver to the tumor region. In in vitro experiments, the
prepared GIAs displayed synergistic enhancement of
fluorescence emission, MR contrast, and photothermal
efficiency. In vivo experiments revealed prominent NIR-I/

NIR-II/MR imaging and photothermal therapy performance
on tumor-bearing mice. Additionally, no potential toxicity
was observed in cytotoxicity, serum biochemistry, and
histological analyses. Overall, this work provides a simple
and feasible strategy for the preparation of a synergistically
enhanced multifunctional probe, which holds great potential for
cancer theranostics.
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