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Metal–organic frameworks (MOFs) have recently been considered the promising
catalysts due to their merits of abundant metal sites, versatile coordination groups,
and tunable porous structure. However, low electronic conductivity of most MOFs
obstructs their direct application in electrocatalysis. In this work, we fabricate an Ni–Rh
bimetallic conductive MOF ([Ni2.85Rh0.15(HHTP)2]n/CC) grown in situ on carbon cloth.
Abundant nanopores in the conductive MOFs expose additional catalytic active sites,
and the advantageous 2D π-conjugated structure helps accelerate charge transfer.
Owing to the introduction of Rh, [Ni2.85Rh0.15(HHTP)2]n/CC exhibited substantially
improved oxygen evolution reaction (OER) activity and exhibited only an
overpotential of 320mV to achieve the current density of 20mA cm-2. The
remarkable OER performance confirmed by the electrochemical tests could be
ascribed to the synergistic effect caused by the doped Rh together with Ni in
[Ni2.85Rh0.15(HHTP)2]n/CC, thereby exhibitingoutstandingelectrocatalytic performance.
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1 Introduction

With increasing energy consumption and global environmental concerns, renewable and
clean energy technologies have been developed to support the sustainable development of
human society (Cook et al., 2010; Chu and Majumdar, 2012; Roger et al., 2017; Seh et al., 2017).
Electrocatalysis of the oxygen evolution reaction (OER) has been regarded as one of the
important reactions for the conversion and storage technologies (Fu et al., 2017; Grimaud et al.,
2017; Tahir et al., 2017; You and Sun, 2018). However, OER is a multi-step and four-electron
reaction: 4OH− (aq) → O2 (g) + 2H2O (l) + 4e–. Therefore, the kinetics are extremely sluggish,
and large overpotentials are required to activate the reaction. In this case, high-activity
electrocatalysts are required to overcome reaction barriers (Hunter et al., 2016; Grimaud
et al., 2017; Suen et al., 2017; Tahir et al., 2017). Until now, the precious metals are still
considered the typical OER catalysts. However, their widespread use is limited due to their low
stability, excessive scarcity, and expensive cost (Tao et al., 2016; Suen et al., 2017; Wang et al.,
2017; Bezerra and Maia, 2020). Consequently, it is vital to increase the efficiency and economics
of OER electrocatalysts, hence supporting the growth of green energy (Hu and Dai, 2016; Wang
et al., 2017; Bezerra and Maia, 2020). Generally, high-performance electrocatalysts should
possess high conductivity, efficient proton transportability, long-term stability, and a high
concentration of active sites.Modest adsorption free energy of OER reactive intermediates on the
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surface is particularly critical for improving the intrinsic activity of
electrocatalysts (Seh et al., 2017; Suen et al., 2017).

Among several types of recently emerging functional materials,
metal–organic frameworks (MOFs), a special type of crystalline porous
materials have attracted immense attention for catalysis, owing to their
enormous specific surface area and tunable pore dimensions
(Motoyama et al., 2011; García-García et al., 2014; Wang et al., 2015;
Guo et al., 2017; Park et al., 2018; Szczęśniak et al., 2018;Ma et al., 2020).
While the MOFs have shown significant promise for electrochemical
applications (Jahan et al., 2012; Furukawa et al., 2013; Shen et al., 2016;
Guan et al., 2017; Zhang et al., 2017), the majority of them exhibit low
electrical conductivity, severely limiting their electrocatalytic behavior
and practical application as electrocatalysts (Xia et al., 2016; Zhao et al.,
2016). While subjecting the MOFs to heat-treatment activation, the
carbonization process can achieve good electrical conductivity but
simultaneously cause absolute collapse of the well-defined pore/
channel structures, thus transforming the active metal sites into the
agglomerate phases and losing the pristine superiority. Recently,
conductive MOFs have been proposed to exhibit superiority in both
rapid charge transport (such as ligand–ligand π–π stacking) and high
charge density (large concentration of charge carriers given by the
loosely connected high-energy electrons from the metal nodes) (Kim
et al., 2010; Zhang et al., 2013; Ding et al., 2015; Li C. et al., 2021). Due to
the favorable properties of charge transfer, the conductive MOFs show
the advantage of catalysis over the traditional MOFs for electrochemical
reactions. However, the pristine single-metal conductive MOFs contain
just a few redox-active centers, resulting in suboptimal electrocatalytic
activity and stability. Therefore, the performance of pristine conductive
MOFs is still far away from the commercial catalysts (Park et al., 2018).
According to the previously reported works, bimetallic conductive
MOFs displayed superior electrochemical property to the single-
metal counterpart by tuning the conductivity, electronic structure,
and absorption/desorption behaviors of intermediates (Zou et al.,
2019; Chen et al., 2020; Li J. et al., 2021). Thus, incorporating
different metal nodes into the frameworks to form bimetallic MOFs
is a significant strategy for improving the catalytic activity of conductive
MOFs (Giménez-Marqués et al., 2019). Recently, bimetallic systems
have already demonstrated higher catalytic activity than monometallic
counterparts, owing to their inherent properties (Yang et al., 2016; Yang
and Xu, 2017; Yaqoob et al., 2021). It is reported that the conductive
MOFs containing Co and Ni sites displayed superior ORR activity
compared to their monometallic counterparts (only Co site or only Ni
site) (Yoon et al., 2019). If loading a small amount of Fe into Ni-MOF-
74, it required a lower overpotential and showed better OER activity,
paving the way for the advancement of MOF-based electrocatalysts for
direct employment (Gao et al., 2019). In this work, wemake use of Rh to
improve the electrochemical OER activity of Ni-based
conductive MOFs.

2,3,6,7,10,11-Hexahydroxytriphenylene (HHTP) is a typical
triphenylene-based organic ligand, with an abundance of functional
-OH groups, which can be coordinated with metal atoms to form 2D
planar π-conjugatedMOFs. Due to the charge delocalization and orbital
overlap between the metal node and organic linker, this kind of MOFs
are characterized with intrinsic conductivity and can be directly used as
the electrocatalyst without pyrolysis activation. Herein, we have
designed and synthesized Ni–Rh-based bimetallic conductive MOFs
[(NixRhy)3(HHTP)2]n/CC using a simple one-step solvothermal
method. Since the conductive MOFs were in situ securely grown on

carbon cloth, the conductivity was greatly improved, and the
electrochemical impedance was substantially reduced (Ali et al.,
2018; Huang et al., 2020). It was discovered that the OER
performance of [(NixRhy)3(HHTP)2]n/CC was highly dependent on
the Ni/Rh molar ratio. The optimized [Ni2.85Rh0.15(HHTP)2]n/CC
showed the highest OER activity, with a low overpotential of
320 mV at the current density of 20 mA cm-2, similar to that of
commercial RuO2/CC. The synergistic effect of Rh and Ni in
[Ni2.85Rh0.15(HHTP)2]n/CC efficiently modulated the electronic state
distribution of the two central metal atoms, hence altering the
adsorption characteristics of oxygenous intermediates and improving
the electrocatalytic activity and stability of OER.

2 Experimental

Pretreatment of carbon cloth: The carbon cloth (0.5 cm × 2 cm)
was soaked in concentrated nitric acid for 24 h and then washed
with deionized water until neutral. Subsequently, the carbon cloth
samples were dried overnight in vacuum state at 60°C.

Synthesis of [Ni3HHTP2]n/CC: Cobalt acetate (Ni(OAc)2·4H2O,
13 mg) and hexahydroxytriphenylene (HHTP, 9.8 mg) were dissolved
in 1.8 mL solution (deionized water: DMF = 5:1, v/v), followed by
sonicating for 30 min. Afterward, the washed carbon cloth was put
into the aforementioned solution. The reaction mixture was sealed
into an autoclave, heated to 85°C, and maintained at this temperature
for 12 h. After the autoclave was cooled down, the obtained carbon
cloth was treated with deionized water and then freeze-dried for 24 h.

Synthesis of [NixRhy(HHTP)2]n/CC and [NixRhy(HHTP)2]n
powder: For the synthesis of [NixRhy(HHTP)2]/CC, 0.7 mg/mL of
rhodium acetate [Rh(OAc)2] solution was prepared ahead of time
and mixed into Ni(OAc)2 and HHTP solution, according to the set
ratio. Three different ratios of Ni/Rh were considered, the dosages of
which are summarized in Supplementary Table S1. The synthetic
steps of [NixRhy(HHTP)2]n powders were similar to those for
[NixRhy(HHTP)2]n/CC except without carbon cloth.

Preparation of RuO2/CC: The RuO2 dispersion solution was
prepared by adding 20 μL of 5% Nafion solution and 4 mg RuO2

into 780 μL of mixed solution (H2O: ethanol = 1:1, v/v). Next, the
RuO2 dispersion solution was drop-coated onto a 0.5 cm × 2 cm
carbon cloth. After this step, the obtained carbon cloth with set
RuO2 loading was dried overnight at 60°C.

Measurements: The phase composition of the sample was
characterized by X-ray powder diffraction (XRD) using a Shimadzu
XRD-6100 (Cu Kα radiation, λ = 1.5418 �A). The morphologies of
samples were observed by transmission electron microscopy (TEM,
JEM-2100F, Japan), and scanning electron microscopy (SEM)
depictions were obtained using a Zeiss_Supra55 electron microscope.
Fourier-transform infrared spectroscopy (FT-IR) was conducted in the
range of 4,000–400 cm-1 on a Thermo Nicolet iS10 spectrometer. JEOL
JEM 2100F was used for HRTEM and mapping. Raman spectra were
recorded using HORIBA HR800 series.

Electrochemical characterizations: Electrochemical measurements
were investigated using the electrochemical potentiostat (CHI 760E,
Chenhua Instrument Company) in 0.1 M KOH at room temperature.
The carbon cloth with the in situ grown catalyst was used as the working
electrode directly. In addition, the platinum wire and the saturated
calomel electrode were used as the counter and reference electrodes,
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SCHEME 1
Schematic illustration of the in situ synthesis of [(NixRhy(HHTP)2]n on the carbon cloth.

FIGURE 1
(A) Diagram of the coordination structure of Ni–Rh-based conductive MOF, (B) SEM image, (C,D) TEM images of [Ni2.85Rh0.15(HHTP)2]n/CC, and (E)
dark-field image and the corresponding elemental mappings of C, O, Ni, and Rh in [Ni2.85Rh0.15(HHTP)2]n/CC.
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respectively. All polarization curves were performed by linear
voltammetric scan at a sweep rate of 5 mV s-1 and were iR-
corrected. All potentials can be converted concerning the reversible
hydrogen electrode (RHE), based on the following Nernst equation:
E(vs. RHE) = ERef + 0.059*13 + ETest. The electrochemical impedance
spectroscopy (EIS) test was conducted on the working electrodes with
an overpotential of 0.2 V, a frequency range of 0.01 ~ 105 Hz, and an
amplitude of 5.0 mV.

3 Results and discussion

The Ni–Rh-based bimetallic conductive MOF
[(NixRhy)3(HHTP)2]n could be properly designed and synthesized
with the one-step solvothermal method, which is schematically
demonstrated in Scheme 1. During the solvothermal reaction
process, the metallic ions could be coordinated by the ligands to
fabricate a framework of long-range order. The chemical
coordination and 3D structural modulation of Ni–Rh-based
conductive MOF are displayed in Figure 1A and Supplementary
Figure S1, respectively. The long-range-ordered planar structure
enhances the structural integrity, and the typical p–p/p–d orbital
overlaps impart the material with excellent electron transport
capability. Because in situ growth process efficiently bonded these
[NixRhy(HHTP)2]n MOFs to the backbone of the carbon cloth, they
can be directly used as the OER electrodes. Differing from the
smooth surface of the original carbon cloth (Supplementary Figures
S2A, B), the surface of the manufactured material [Ni3(HHTP)2]n/
CC displayed a homogeneous distribution of regular nanorods
(Supplementary Figures S2C, D). However, when additional Rh
was doped, the rod-like morphology of the resultant MOF crystals
became irregular (Figure 1B and Supplementary Figures S2E–H).
The transmission electron microscopy (TEM) images in Figure 1C
showed that [Ni2.85Rh0.15(HHTP)2]n/CC had an irregular structure,
suggesting that the doping of Rh had disrupted the process of
crystallization and changed the rod-like morphology. As shown
in Figure 1D, no hetero-structural phases existed, but a typical MOF
morphology was observed in the view. Moreover, elemental
mappings using the annular dark-field image corroborated the
presence of C, O, Ni, and Rh, and these elements were
distributed uniformly across the whole [Ni2.85Rh0.15(HHTP)2]n/
CC surfaces (Figure 1E). These results indicated that the metal
elements were successfully bonded with the ligands in the
conductive MOFs.

XRD was used to determine the phase and structure of
[Ni2.85Rh0.15(HHTP)2]n/CC and [Ni3(HHTP)2]n/CC samples, as
shown in Figure 2A. The results revealed that Rh doping did not
appreciably alter the phase compositions and maintain the same
crystal structure. In contrast, when Rh concentration increased
gradually, the corresponding intensities of the XRD characteristic
peak decreased significantly, implying that Rh replaced part of Ni to
coordinate with HHTP, disturbing to a certain extent the structure
of the MOFs (Supplementary Figure S3). After Rh doping, the
functional groups contained in the samples remained intact,
according to FT-IR (Supplementary Figure S4). The Raman
spectra (Figure 2B) exhibited two wide peaks at ~1,350 and
~1,680 cm-1, which corresponded to the D and G peaks of the
carbon material, respectively. The ID/IG ratios obtained for

[Ni2.85Rh0.15(HHTP)2]n/CC and [Ni3(HHTP)2]n/CC were
0.756 and 0.77, respectively, indicating that both
[Ni2.85Rh0.15(HHTP)2]n/CC and [Ni3(HHTP)2]n/CC displayed the
similar graphitized structure. This is because the graphitized
structure is mainly ascribed to the carbon cloth, and the
solvothermal reaction did not influence the property of the
carbon cloth.

X-ray photoelectron spectroscopy (XPS) was adopted to investigate
the surface chemistry and valence state within the prepared samples.
The survey spectra of [Ni2.85Rh0.15(HHTP)2]n/CC (Supplementary
Figure S5) displayed several obvious peaks assigned to C, O, Ni, and
Rh. The high-resolution C 1s spectrum of [Ni2.85Rh0.15(HHTP)2]n/CC
can be fitted into two characteristic peaks located at 284.6 eV and
286 eV, corresponding to C-O and C=C species, respectively
(Figure 2C). Additionally, O-Ni/Rh (531.6 eV) and C–O (533 eV)
were observed in the O 1s spectrum (Figure 2D), indicating that the
ligand was successfully coordinated with Ni/Rh. These two
characteristic peaks indicated the existence of the HHTP ligand,
which was bound to the metal sites to form an ordered frame
structure. As shown in Supplementary Figure S1, the coordination
effect in the plane led to the generation of π-conjugate structures, which
can reinforce the electron-transferring capability and therefore improve
the catalytic performance (Zhang et al., 2021). The high-resolution Ni

FIGURE 2
(A) XRD patterns of [Ni3(HHTP)2]n/CC and [Ni2.85Rh0.15(HHTP)2]n/
CC, (B) Raman spectra of [Ni3(HHTP)2]n/CC and
[Ni2.85Rh0.15(HHTP)2]n/CC, and high-resolution XPS spectra of (C)C 1s,
(D) O 1s, (E) Ni 2p, and (F) Rh 3d in [[Ni2.85Rh0.15(HHTP)2]n/CC.
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2p spectrum (Figure 2E) demonstrated the typical characteristic peaks
at the binding energies of 874 and 856 eV, which corresponded toNi(II)
2p1/2 and Ni(II) 2p3/2, respectively, indicating the existence of Ni with a
single valence state (Xu et al., 2021). The broader peaks located at
880 and 862 eV were assigned to the satellite peaks. In the high-
resolution Rh 3d spectrum (Figure 2F), the two peaks at 314.7 and
310 eV correspond to Rh3+ 3d3/2 and Rh

3+ 3d5/2, respectively, indicating
that Rh existed in an trivalent form (Guo et al., 2019). In combination
with the results of XRD, it was proved that the [Ni2.85Rh0.15(HHTP)2]n/
CC sample has pure phase composition, without the formation of other
heterogeneous phases (Pan et al., 2020; Qi et al., 2020; Pan et al., 2021).

The electrocatalytic activity of as-prepared conductive MOF
electrocatalysts for OER was investigated in 0.1 M KOH solution
using a typical three-electrode system. The linear sweep
voltammetry (LSV) curves of the MOF samples with various Rh
doping concentrations are shown in Figure 3A. We can find that the
moderate doping of Rh might alter the electrochemical properties of
[Ni3(HHTP)2]n/CC and therefore accelerate the OER process.
However, excessive doping of Rh resulted in decreased OER
activity, which was ascribed to the structure collapse and
consequent conductivity attenuation of the conductive MOFs.
[Ni2.85Rh0.15(HHTP)2]n/CC displayed the lowest potential of
1.55 V at 20 mA cm−2 compared to its single-metal counterpart
(1.63 V for [Ni3(HHTP)2]n/CC) or other bimetallic conductive
MOFs with different metal ratios (1.61 V for
[Ni2.94Rh0.06(HHTP)2]n/CC and 1.6 V for [Ni2.7Rh0.3(HHTP)2]n/
CC). It is noteworthy that the additional peak of 1.4 V, as shown
in Figure 3A, was caused by the oxidation of Ni2+. It was agreeable to

see in Supplementary Figure S6 that the bimetallic conductive MOFs
of [Ni2.85Rh0.15(HHTP)2]n/CC displayed an excellent OER activity,
even similar to that of RuO2/CC in terms of the potential at
20 mA cm−2, under the same mass loading of 0.825 mg. In
addition, there was very poor electrocatalytic activity on the
blank carbon cloth, implying that the excellent electrocatalytic
performance was derived only from conductive bimetallic MOFs
[Ni2.85Rh0.15(HHTP)2]n/CC (Cao et al., 2019). To further investigate
the reaction kinetics, the corresponding Tafel slopes were analyzed.
As shown in Figure 3B, the Tafel slopes of [Ni3(HHTP)2]n/CC,
[Ni2.94Rh0.06(HHTP)2]n/CC, [Ni2.85Rh0.15(HHTP)2]n/CC,
[Ni2.7Rh0.3(HHTP)2]n/CC, and RuO2/CC were 120, 82.9, 65.6, 64,
and 140 mV dec−1, respectively. This result indicated that the
bimetallic MOFs achieved faster reaction kinetics than the
commercial RuO2 catalysts. In order to explore the charge
transfer capability at the interface of the catalyst/electrolyte, the
EIS test was performed. The Nyquist plots for different catalysts are
provided in Figure 3C, in which the inset shows an equivalent circuit
model. As demonstrated in Figure 3C, the Rh-doped MOFs
exhibited much smaller charge transfer resistance (Rct) than the
undoped [Ni2.85Rh0.15(HHTP)2]n/CC, indicating the doped Rh in
favor of charge transfer during the OER process. In addition to the
activity, long-term stability was another key concern for the practical
application of electrocatalysts. Therefore, a chronoamperometry (I-t
plot) response was performed at the constant potential of 1.6 V in
0.1 M KOH solution to assess the OER stability. Figure 3D shows
that the [Ni2.85Rh0.15(HHTP)2]n/CC catalyst retained 86% of the
initial current density after 45,000 s, which is larger than that of 79%

FIGURE 3
(A) LSV polarization curves and (B) related Tafel plots of [Ni3(HHTP)2]n/CC, [Ni2.94Rh0.06(HHTP)2]n/CC, [Ni2.85Rh0.15(HHTP)2]n/CC,
[Ni2.7Rh0.3(HHTP)2]n/CC, and RuO2/CC for OER in 0.1 M KOH. (C) Nyquist plots of [Ni3(HHTP)2]n/CC, [Ni2.94Fe0.06(HHTP)2]n/CC, [Ni2.85Rh0.15(HHTP)2]n/
CC, and [Ni2.7Rh0.3(HHTP)2]n/CC. (D) I–t chronoamperometric response of [Ni2.85Rh0.15(HHTP)2]n/CC and RuO2/CC. The loadings of
[Ni2.85Rh0.15(HHTP)2]n/CC RuO2/CC were 0.825 mg.
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for RuO2/CC, manifesting a better stability of
[Ni2.85Rh0.15(HHTP)2]n/CC.

4 Conclusion

In summary, the conductive MOFs [Ni2.85Rh0.15(HHTP)2]n/
CC were successfully synthesized with a simple solvothermal
method. The obtained conductive MOF showed prominent
OER activity comparable to RuO2/CC and outperformed RuO2/
CC in terms of long-term stability. The remarkable activity could
be attributed to the abundant active metallic sites in the MOFs,
which are in favor of reactant adsorption and activation. The
porous morphology leads to high-efficient mass transfer and ion
penetration. In addition, the conductive characteristics of the
MOFs facilitate charge transfer during the OER. The multi-
aspect merits synergistically improve the electrocatalytic
activity. Therefore, this work provides a facile method to
synthesize the bimetallic conductive MOFs, being directly used
as the efficient OER electrocatalysts.
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