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Today, with the indiscriminate use of antibiotics, we face the resistance of some
bacterial strains against some antibiotics. Therefore, it is essential to report and
synthesize new compounds with antimicrobial properties. A novel copper/
dipicolinic acid–metal–organic framework cross-linked oxidized pectin and
chitosan (Cu/DPA-MOF/OP/CS) hydrogel polymer was synthesized under
environmental conditions with the controllable process, which uses
biodegradable polymer compounds such as pectin and chitosan in its
structure. The efficient physicochemical features of the synthesized Cu/DPA-
MOF/OP/CS hydrogel using SEM, FT-IR, TGA, BET, XRD, and EDS/mapping were
identified and confirmed. The newly synthesized Cu/DPA-MOF/OP/CS hydrogel
showed activity against Gram-positive and Gram-negative bacterial strains and
fungal species, and significant antibacterial and antifungal properties were
observed. In antibacterial activity, the MIC against Gram-positive species was in
the range of 16–128 mg/mL, the MIC against Gram-negative species was in the
range of 64–256mg/mL, and the MIC against fungal species was in the range of
128–512 mg/mL. In antimicrobial evaluations, in addition to the MIC test, the MBC
test, theMFC test, and the IZD test were performed, and the results were reported.
The results were compared with commercial antibiotics in the market.
Development of novel nanostructures based on hydrogel polymers with
distinctive functionality can affect the performance of these nanostructures in
different areas.
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1 Introduction

In recent years, the widespread and generally unnecessary use of
drugs has caused the resistance of a wide range of pathogenic
microbes. This has resulted in threats and health concerns,
increased treatment costs, and patient deaths (Otter et al., 2015).
Providing new compounds with antimicrobial properties is one of
the goals suggested to prevent these cases. As is known,
nanotechnology is developing, and nanostructures can have
potential activities in this field. Various nanocompounds with
biological properties such as anticancer (Wani et al., 2016),
anticoagulant (Zaky et al., 2023), antiviral (Balagna et al., 2021),
and antimicrobial activities (Al-Jumaili et al., 2017) have been
reported. The use of metals causes significant biological
properties in these compounds (Khan et al., 2018; Zare et al.,
2019). Copper is known as one of the transition metals of the
periodic table with biological properties. So far, new complex and
nanocompounds containing copper with biological properties such
as antibacterial and antifungal activities have been reported (de
Araújo et al., 2017; Marković et al., 2018; Dimitrijević et al., 2020; Li
et al., 2023). Recently, there have been reports on the use of this
metal in advanced nanocompounds such as metal–organic
frameworks (MOFs) with biological properties (Jo et al., 2019;
Sun et al., 2021; Lin et al., 2023). The unique properties of MOF
compounds have attracted the attention of biomedical aspects (Al-
Rowaili et al., 2018; Giliopoulos et al., 2020). Excellent physical and

chemical properties, such as high porosity, high thermal stability,
and high reactivity, are the most critical features of these compounds
(Razavi and Morsali, 2019; Ghanbari et al., 2020). These properties
and characteristics have caused the use of these compounds to be
reported as potent biomedical agents (Babucci et al., 2020; Ahmadi
et al., 2021; Li et al., 2021; Han et al., 2022). Although these
compounds have significant physicochemical properties,
according to their applications, biocompatibility and
biodegradability need to be improved.

These compounds can connect with organic polymers and
create novel polymer compounds (Han et al., 2022). Today, the
use of polymers in life is inevitable. Polymers have many
applications, such as in the building and automotive industries,
binder materials, cables and pipes, and membrane materials (Sun,
2019; Nurazzi et al., 2021; Hu et al., 2022). Polymers are also found
in abundance in nature, such as DNA, cellulose, starch, pectin, and
chitosan. Polymer compounds with significant properties can be
produced using natural polymer compounds. For example, recently,
there have been reports on the use of pectin and other compounds,
such as metal–organic frameworks and hybrid materials, in
synthesizing new polymers with biomedical and drug delivery
applications (Rascón-Chu et al., 2019; Li et al., 2021; Kiadeh
et al., 2021). Chitosan is mentioned among other natural
polymers. Chitosan with numerous nanocompounds can create
novel polymer compounds with high biological capabilities.
Among others, we can refer to the reports of chitosan–ZnO
nanoparticles, chitosan-functionalized MoS2 hybrids, halloysite
nanotubes by chitosan grafting, etc., with anticancer and
antimicrobial properties (Ghaffari et al., 2020; Kasinathan et al.,
2020).

Therefore, it can be expected that a metal–organic framework
containing copper and natural polymers such as chitosan and pectin
can synthesize new nanostructures with its unique biological
properties.

Microwave is one of the most efficient procedures for the
synthesis of different materials with diverse applications (Sargazi
et al., 2018). This method is not only fast, affordable, and
controllable, but its operational process is also environmentally
friendly. These properties have distinguished the microwave
method from other conventional methods (Zheng et al., 2022).

In this study, we investigated that whether the polymer
synthesized by the hydrogel method using the aforementioned
materials after identifying and confirming the structure was
subjected to antimicrobial evaluations such as antifungal and
antibacterial evaluations.

2 Materials and methods

2.1 Materials

All materials such as copper(II) nitrate trihydrate, 2, 6-pyridine
dicarboxylic acid, chitosan (10 mg/mL acetic acid: water), pectin
(pectin from citrus peel, impurities ≤10% moisture), and solvents
with high purity were obtained fromMerck and Sigma-Aldrich. The
cultures such as Mueller Hinton agar and Mueller Hinton broth
were obtained from Sigma-Aldrich. The bacterial and fungal strains
were obtained from American Type Culture Collection.

FIGURE 1
N2 adsorption/desorption isotherms of Cu/DPA-MOF (A) and
Cu/DPA-MOF/OP/CS hydrogel (B).
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2.2 Synthesis of copper/dipicolinic
acid–metal–organic framework cross-
linked oxidized pectin and chitosan hydrogel

For the synthesis of Cu/DPA-MOF/OP/CS hydrogel, the first
copper/dipicolinic acid-metal–organic framework (Cu/DPA-MOF)
was synthesized as follows: in 25mL bidet water (double distilled
water), copper (II) nitrate trihydrate, as a source of metal (0.1 mmol),
and dipicolinic acid, as a linker (0.1 mmol), were placed undermicrowave
irradiation at ambient temperature for 25 minwith amicrowave power of
320W. Then, the synthesized Ti/DPA-MOF, used for the next step, was
isolated by nanofiltration, washed three timeswith bidet water and EtOH,
and dried for 48 h under vacuum at ambient temperature.

In the next step, under stirring at 30°C, oxidized pectin (2 g) was
dissolved in bidet water (10 mL). In another receptacle, chitosan

(2 g) was dissolved in bidet water (10 mL) under the aforementioned
conditions (Salama and Aziz, 2020). The synthesized Cu/DPA-MOF
(300 mg) was added to the oxidized pectin solution and stirred
(800 rpm) for 1 h at 30°C. The chitosan solution was added drop by
drop to the Cu/DPA-MOF/oxidized pectin (Cu/DPA-MOF/OP)
solution at 30°C under stirring for 1 h. Finally, the container
containing the admixture was placed in water at 37°C for 4 h.

2.3 Antimicrobial studies of Cu/DPA-MOF
and Cu/DPA-MOF/OP/CS hydrogel

In vitro minimum inhibitory/fungicidal/bactericidal
concentrations and the disk inhibition zone diameter (DIZD) for
synthesized Cu/DPA-MOF and Cu/DPA-MOF/OP/CS hydrogel

FIGURE 3
XRD patterns of Cu/DPA-MOF (A) and Cu/DPA-MOF/OP/CS hydrogel (B).

FIGURE 2
FT-IR spectra of Cu/DPA-MOF (A) and Cu/DPA-MOF/OP/CS hydrogel (B).
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were tested. In antimicrobial studies, standard guidelines reported
by previous work were used (Hosseinzadegan et al., 2020; Zeraati
et al., 2022). The minimum inhibitory concentration/fungicidal
concentration (MIC and MFC) for antifungal studies and MIC
and minimum bactericidal concentration (MBC) for antibacterial
studies were reported.

2.3.1 In vitro minimum inhibitory concentration
(MIC)method

For the in vitrominimum inhibitory test, concentrations of 1, 2,
4, 8,16, 32, 64, 128, 256, 512, 1024, and 2048 μg/mL of Cu/DPA-
MOF and Cu/DPA-MOF/OP/CS hydrogel were dispersed in bidet
water. A volume of 100 μL of the prepared concentrations was
transferred to the microplate wells. Then, 100 μL of the liquid
culture medium (for antibacterial investigation, Mueller Hinton
broth, and for antifungal investigation, Dextrose Tryptone broth)
was added. Finally, 10 μL of the bacterial/fungal suspension with the

prepared concentration of 1 × 105 CFU/mL (colony-forming unit/
mL) was added to the wells. The wells were incubated for a suitable
period (48 h) at an appropriate temperature (37°C to check
antibacterial activity and 27°C to check antifungal activity). A
lower concentration that was clear was reported as MBC/MFC. It
is noted that the last row of each plate was only a mixture of the
culture medium and bacterial/fungal suspension as a control
without derivatives (Hosseinzadegan et al., 2020; Zeraati et al.,
2022). The results were averaged after three repetitions.

2.3.2 In vitro minimum fungicidal/bactericidal
concentration (MFC/MBC) method

For the in vitro minimum fungicidal/bactericidal concentration
test, the MIC and five diluted concentrations of the previous step
were cultured on the appropriate agar culture medium (for
antibacterial activity, Mueller Hinton agar, and for antifungal
activity, Dextrose Tryptone agar). Then, they were incubated for

FIGURE 4
SEM images of Cu/DPA-MOF (A) and Cu/DPA-MOF/OP/CS hydrogel (B).
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a suitable period (72 h) at an appropriate temperature (37°C to check
antibacterial activity and 27°C to check antifungal activity). The
concentration at which bacteria/fungi did not grow was reported as
the minimum fungicidal/bactericidal concentration. The results
were averaged after three repetitions (Hosseinzadegan et al.,
2020; Zeraati et al., 2022).

2.3.3 In vitro disk inhibition zone diameter (DIZD)
method

For determining the in vitro disk inhibition zone diameter, first,
bacterial/fungal species were cultured on a suitable agar culturemedium
(for antibacterial activity, Mueller Hinton agar and for antifungal
activity, Dextrose Tryptone agar), and a disk blank was placed on it.

FIGURE 5
Thermal behavior of Cu/DPA-MOF (A) and Cu/DPA-MOF/OP/CS hydrogel (B).

FIGURE 6
EDS elemental analysis (A) and mapping graph (B) of Cu/DPA-MOF/OP/CS hydrogel.
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Then, the minimum inhibitory concentrations of Cu/DPA-MOF and
Cu/DPA-MOF/OP/CS hydrogel were dispersed in bidet water. A
measure of 10 μL of the prepared concentration was injected into a
disk blank. The plates were incubated for a suitable time (48 h) at an
appropriate temperature (37°C to check antibacterial activity and 27°C
to check antifungal activity). Finally, the diameter of the created halo
was measured using a caliper. The results were averaged after three
repetitions (Zeraati et al., 2022).

3 Results and discussion

3.1 Characterization and structure
prediction of the copper/dipicolinic
acid–metal–organic framework cross-
linked oxidized pectin and chitosan (Cu/
DPA-MOF/OP/CS) hydrogel

In two steps, the novel Cu/DPA-MOF/OP/CS hydrogel was
synthesized. In the first step, Cu/DPA-MOF was synthesized using
copper(II) nitrate trihydrate (0.1 mmol) and dipicolinic acid under
microwave irradiation. In the second step, the Cu/DPA-MOF/OP/
CS hydrogel was synthesized using Cu/DPA-MOF, oxidized pectin,
and chitosan.

To characterize, confirm, and predict the structure of the Cu/
DPA-MOF/OP/CS hydrogel, techniques such as N2 adsorption/
desorption isotherm, FT-IR spectrum, XRD patterns, SEM
images, thermal stability curve, EDS elemental analysis, and
mapping graph were used.

The curves in Figure 1 show the N2 adsorption/desorption
isotherm related to Cu/DPA-MOF (A) and Cu/DPA-MOF/OP/
CS hydrogel (B). Based on the BET results, the specific surface
area for Cu/DPA-MOF and Cu/DPA-MOF/OP/CS hydrogel was
obtained as 28.200 m2/g and 37.700 m2/g, respectively. Based on
previous studies, the high specific surface area is an essential factor
in the reactivity, properties, and performance of nanoparticles (Asiri
et al., 2022; Zeraati et al., 2022). Therefore, it can be suggested that
the polymerization of Cu/DPA-MOF Cu/DPA by oxidized pectin
and chitosan caused a significant increase in the specific surface area.

As is known, one of the most important analyses to identify and
confirm the structure of organic compounds and polymers is the FT-
IR spectrum. Absorptions related to functional groups and bonds
between atoms can be recognized and confirmed using the FT-IR
spectrum. The FT-IR spectra of Cu/DPA-MOF (A) and the Cu/
DPA-MOF/OP/CS hydrogel (B) were prepared after the synthesis
and are shown in Figure 2. In the FT-IR spectra of Cu/DPA-MOF
and Cu/DPA-MOF/OP/CS hydrogel, significant absorptions such as
Cu–O, C–O, C=C, C=N, and C=O were observed in regions
400–600 cm-1 (Elango et al., 2018), 1000–1100 cm-1,
1300–1400 cm-1, 1450 cm-1, and 1600 cm-1, respectively. In the
FT-IR spectrum of Cu/DPA-MOF/OP/CS hydrogel, absorption
related to C–H of SP3 carbons below 3000 cm-1 and O–H groups
in the region of 3300 cm-1 were observed (Bakhshi et al., 2022; Jasim
et al., 2022).

By XRD patterns presented in Figure 3, the size of Cu/DPA-
MOF (Figure 3A) and Cu/DPA-MOF/OP/CS hydrogel (Figure 3B)
was calculated using Scherrer’s method, according to the relevant
equation and previous reports (Saqezi et al., 2022), and was found to

FIGURE 7
Proposed structure of Cu/DPA-MOF/OP/CS hydrogel.
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be 61 and 78 nm, respectively. In XRD patterns, the planes [111],
[200], and [220] related to copper nanoparticles were observed at
36°, 45°, and 62°, respectively (Gan et al., 2015; Elango et al., 2018).

Figure 4 shows the SEM images of Cu/DPA-MOF (A) and Cu/
DPA-MOF/OP/CS hydrogel (B). The nano-sized synthesized
compounds and the same morphology of the nanostructures are
observed in the figure. Therefore, in addition to XRD patterns, SEM
images confirm the nano-sized structure of synthetic compounds.

Thermal stability is one of the critical factors in the application
of nanocompounds and polymers. The TGA curve of Cu/DPA-
MOF (A) and Cu/DPA-MOF/OP/CS hydrogel (B), which shows
their thermal stability, is presented in Figure 5. In both samples, the
first weight loss is related to water loss on the surface and water
enclosed in the structure, which is visible in the region around
90°C–110°C. In Cu/DPA-MOF, the observed weight loss from
temperatures above 200°C to areas below 400°C can be attributed
to the decomposition of main structures. Based on the thermal
behavior of the Cu/DPA-MOF/OP/CS hydrogel, in the region
(200°C–400°C), the structures of chitosan and oxidized pectin
may have disappeared. As an important result, the Cu/DPA-
MOF/OP/CS hydrogel has more thermal stability than Cu/DPA-
MOF. This behavior can be attributed to the hydrogel nature of the
final structures. Therefore, the Cu/DPA-MOF/OP/CS hydrogel is
completely stable up to a higher temperature, and this feature can be
used in various applications (Figure 6).

In order to ensure the formation of Cu/DPA-MOF/OP/CS
hydrogel products, EDS elemental analysis with the mapping
graph has been carried out. It is observed that the amounts of
elements of carbon, oxygen, and Cu are shown in EDS analysis. In
addition, the presence of these elements has been confirmed

schematically in Fig 6. As an important result, the presence of
these elements in the final structures is a strong evidence for the
formation of the Cu/DPA-MOF/OP/CS hydrogel structure.

Using the interpreted analysis, especially FT-IR spectra, XRD
patterns, and EDS elemental analysis with the mapping graph, it is
suggested that the Cu/DPA-MOF/OP/CS hydrogel was synthesized
in the form, as shown in Figure 7.

As shown in Figure 7, the proposed structure is consistent with
the general groups observed during FT-IR spectra.

3.2 Antimicrobial effects of Cu/DPA-MOF
and the Cu/DPA-MOF/OP/CS hydrogel

In the antimicrobial evaluations of Cu/DPA-MOF and the Cu/
DPA-MOF/OP/CS hydrogel, cefazolin, as a commercial
antibacterial drug, and terbinafine, as a commercial antifungal
drug, against five Gram-negative species, five Gram-positive
species, and three fungal species were tested and investigated.
The results of antimicrobial activities are given in Tables 1, 2 and
Table 3.

During the investigation of antibacterial and antimicrobial
activities, it is proved from the results reported in the tables that
the effectiveness of Cu/DPA-MOF and Cu/DPA-MOF/OP/CS
hydrogel was more than cefazolin and terbinafine, which are
known drugs. As is known, copper is a disinfectant compound
with significant antimicrobial properties. The observed powerful
antimicrobial properties of the synthesized compounds can be
attributed to the copper complex present in the structure, the
nano-sized structures, and the high specific surface area.

TABLE 1 Antimicrobial effects of Cu/DPA-MOF and Cu/DPA-MOF/OP/CS hydrogel on Gram-negative species.

Compound GN-species Cu/DPA-MOF Cu/DPA-MOF/OP/CS hydrogel Cefazolin

Klebsiella pneumoniae (ATCC 13883) MIC 4 4 1

MBC 8 8 2

DIZD 17.04 18.26 17.53

Escherichia coli (ATCC 25922) MIC 64 32 32

MBC 128 64 64

DIZD 16.61 19.82 22.37

Yersinia enterocolitica (ATCC 9610) MIC 32 16 16

MBC 64 32 32

DIZD 17.46 17.53 16.16

Proteus mirabilis (ATCC 7002) MIC 32 16 32

MBC 64 32 64

DIZD 16.43 15.29 18.61

Acinetobacter baumannii (ATCC 19606) MIC 64 32 —

MBC 128 64 —

DIZD 14.28 16.97 —

GN-species: Gram-negative species

DIZD, reported as mm

MIC, reported as μg/mL

MBC, reported as μg/mL
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Comparing the effects of Cu/DPA-MOF and Cu/DPA-MOF/
OP/CS hydrogel shows that the Cu/DPA-MOF/OP/CS hydrogel was
relatively more effective than Cu/DPA-MOF. The reason can be
attributed to the specific surface area, and as mentioned, a higher
specific surface area causes more effectiveness and efficiency in
nanoparticles (Asiri et al., 2022; Suksatan et al., 2022; Zeraati et al.,
2022).

4 Conclusion

Briefly, in this study, the novel Cu/DPA-MOF/OP/CS hydrogel was
synthesized in mild conditions with remarkable physichochemical
properties. To identify and confirm the structure of the novel
hydrogel synthesized, techniques such as N2 adsorption/desorption
isotherm, FT-IR spectrum, XRD patterns, SEM images, thermal

TABLE 3 Antimicrobial effects of Cu/DPA-MOF and Cu/DPA-MOF/OP/CS hydrogel on fungal species.

Compound Cu/DPA-MOF Cu/DPA-MOF/OP/CS hydrogel Terbinafine

F species

Candida albicans (ATCC 10231) MIC 32 8 64

MFC 64 16 128

DIZD 18.64 20.14 16.38

Fusarium oxysporum (ATCC 7601) MIC 32 16 32

MFC 64 32 64

DIZD 18.37 20.53 21.15

Aspergillus fumigatus (ATCC 1022) MIC 16 16 16

MFC 32 32 32

DIZD 18.62 19.31 19.96

F species: fungal species

DIZD, reported as mm

MIC, reported as μg/mL

MFC, reported as μg/mL

TABLE 2 Antimicrobial effects of Cu/DPA-MOF and Cu/DPA-MOF/OP/CS hydrogel on Gram-positive species.

Compound GP-species Cu/DPA-MOF Cu/DPA-MOF/OP/CS hydrogel Cefazolin

Listeria monocytogenes (ATCC 19115) MIC 64 64 16

MBC 128 32 32

DIZD 20.37 22.16 21.73

Staphylococcus epidermidis (ATCC 14990) MIC 8 4 4

MBC 16 8 8

DIZD 17.95 17.42 18.59

Bacillus cereus (ATCC 11778) MIC 64 64 —

MBC 128 128 —

DIZD 14.36 15.67 —

Rhodococcus equi (ATCC 25729) MIC 128 32 —

MBC 256 64 —

DIZD 14.34 16.18 —

Staphylococcus aureus (ATCC 29213) MIC 2 1 2

MBC 4 2 4

DIZD 18.43 17.97 21.21

GP-species: Gram-positive species

DIZD, reported as mm

MIC, reported as μg/mL

MBC, reported as μg/mL
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stability curves, EDS elemental analysis, and mapping graph were used.
Particle size in the nano range, high specific surface area, and high
thermal stability were the essential features of the synthesized hydrogel.
Next, the antimicrobial properties (antibacterial and antifungal) of the
synthesized compounds were tested. To evaluate the antimicrobial
properties of the synthesized compounds, the antimicrobial
properties of cefazolin and terbinafine, which are well-known drugs
in the market, were assessed and compared with the effects of synthetic
nanoparticles. A comparison of the results showed that the synthesized
compounds had higher antimicrobial properties than drugs. The
observed significant antimicrobial properties of the synthesized
compounds can be attributed to the efficient network complex
present in the structure, the nano-sized structures, and the high
specific surface area with stable porosity.
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