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The preparation of yolk-shell structured magnetic mesoporous composites is a
significant subject between researchers. Especially, modification of theses
composites with ionic liquid/metal complex is very important for catalytic
processes. In the present study, a novel magnetic methylene-based periodic
mesoporous organosilica (PMO)-supported ionic liquid/Cu complex with yolk-
shell structure (YS-Fe3O4@PMO/IL-Cu) was prepared via the soft template-
assisted method. The TGA, FT-IR, SEM, EDX, XRD, VSM, nitrogen-sorption, and
ICP techniques were employed to identify YS-Fe3O4@PMO/IL-Cu. The YS-
Fe3O4@PMO/IL-Cu material was applied as a powerful nanocatalyst for the
synthesis of pyranopyrazoles under ultrasonic media. The study demonstrated
that the YS-Fe3O4@PMO/IL-Cu nanocatalyst is highly recyclable, selective, and
effective. The leaching test was performed to investigate the nature of the
designed catalyst under the applied conditions.
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1 Introduction

Yolk-shell structured nanoparticles (NPs) are hybrid materials in which a core is
encapsulated in a hollow shell and can move freely within this shell, commonly
demonstrated as core/void/shell. In this structure, the core is not blocked and thus
provides an effective active site for the chemical processes (Kim et al., 2002; Kamata
et al., 2003; Yin et al., 2004; Gao et al., 2007; Liu et al., 2013; Purbia and Paria, 2016; Xie et al.,
2017). The unique properties of yolk-shell structured materials, such as low density, high
surface area, permeable shells, high thermal stability, and interstitial hollow spaces, make
them powerful platforms for biotechnology/biomedicine, controlled release, magnetic
resonance imaging, data storage, catalysis, environmental remediation, etc. (Kresge et al.,
1992; Vartuli et al., 1994; Holmes et al., 1998; Vartuli et al., 1998; Tsuji et al., 1999; Morishita
et al., 2006; Puanngam and Unob, 2008; Du and He, 2011; Zhao et al., 2011; Ghaedi et al.,
2013; Zhang, 2013; Nasab and Kiasat, 2016; Purbia and Paria, 2016). Among the various
categories of yolk-shells (YSs), magnetic composites with Fe3O4 cores and nano-silica shells
are very attractive due to their advantages such as good magnetic properties, high chemical
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and thermal stability, non-toxicity, high adsorption capacity, high
surface area, high biocompatibility, and high accessibility of–OH
groups on their surface for any modification (Arruebo et al., 2006;
Liu et al., 2011; Yang et al., 2015). Recently, the catalytic application
of YS-structured magnetic mesoporous silica nanocomposites has
received much attention. Some of the newly developed systems in
this regard are Au@Void@PMO (Yang et al., 2015), Fe3O4@SiO2@
Pd/HSPMO (Dai et al., 2017), PMO-MHS (Zhang et al., 2008), and
Fe3O4@void@mSiO2 (Qiu et al., 2015).

Periodic mesoporous organosilica (PMOs), a desirable class of
organic-inorganic composite materials with great properties such as
high surface area, high lipophilicity, and high thermal and
mechanical stability, have emerged as an ideal support (Wang
et al., 2015; Yu et al., 2019; Norouzi et al., 2020; Neysi and
Elhamifar, 2023). In particular, bifunctional PMOs (BPMOs),
which contain organic functionalities on both the mesoporous
walls and channels, are highly attractive for catalytic processes

On the other hand, ionic liquids (ILs) have attracted tremendous
attention in chemistry and materials science in the last decade owing
to their unique characteristics, such as low vapor pressure, high
chemical and thermal stability, and their capability to dissolve a
variety of compounds. In particular, recently, imidazolium-based
ILs have been widely used as linkers for the effective immobilization
of catalytic active sites on solid supports (Neysi et al., 2020; Jangra
et al., 2021; Veysipour et al., 2021; Neysi and Elhamifar, 2022).

The preparation of pyranopyrazole derivatives has emerged as a
powerful tool in organic synthesis because they are an important class of
biologically active compounds. Some biological properties of
pyranopyrazoles are anticancer, antifungal, anti-anxiety, antiviral,
and anti-AIDS (Babaie and Sheibani, 2011; Moosavi-Zare et al.,
2013; Zolfigol et al., 2013; Ali et al., 2014; Gujar et al., 2014; Pandit
et al., 2015). To date, many homogeneous and heterogeneous catalysts
have been reported for the synthesis of pyranopyrazoles under different
conditions. However, some of these systems suffer from the problems of

SCHEME 1
Preparation of the YS-Fe3O4@PMO/IL-Cu catalyst.
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high catalyst loading, harsh conditions, and the use of toxic organic
solvents. Therefore, design a green and efficient catalytic system to
overcome the above limitations is a significant subject between

chemists. Given the above and continuing our recent studies on the
design and preparation of novel magnetic and mesoporous catalytic
systems, herein novel magnetic methylene and ionic liquid-based

FIGURE 1
FT-IR of (A) Fe3O4@Surfactants@PMO, (B) YS-Fe3O4@PMO, and (C) YS-Fe3O4@PMO/IL-Cu.

FIGURE 2
PXRD pattern of (A) Fe3O4, (B) YS-Fe3O4@PMO, and (C) YS-Fe3O4@PMO/IL-Cu.
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bifunctional periodic mesoporous organosilica (BPMO) supported
copper with yolk-shell structure (YS-Fe3O4@PMO/IL-Cu) was
prepared and applied as an effective and recoverable catalyst for the
synthesis of pyranopyrazoles under green conditions. In this BPMO,
methylene functional groups are incorporated into the mesoporous
walls, while ionic liquid functions are located in the mesoporous
channels.

2 Experimental section

2.1 Synthesis of YS-Fe3O4@PMO NPs

For the synthesis of YS-Fe3O4@PMO, Fe3O4 NPs were first
prepared according to our previous procedure (Neysi et al., 2019).
Then, Fe3O4 NPs (0.25 g) were added to a reaction flask containing

EtOH)16 mL (, H2O (36 mL), CTAB (0.72 g), pluronic P123 (17.1 g)
and ammonia solution (0.9 mL, 25% wt). This was stirred at
35°C–40°C for 0.5 h. Next, tetraethyl orthosilicate (TEOS, 0.7 g)
and bis(triethoxysilyl)methane (BTEM, 2.1 g) were added to the
reaction flask, and stirring continued for 1 h. The resulting mixture
was statically heated at 100°C for 17 h. The product was separated,
washed with ethanol and water, and dried at 80°C for 7 h. Finally, to
obtain a yolk-shell structure, the CTAB and pluronic P123 templates
were removed by Soxhlet extraction (Zhang et al., 2008).

2.2 Synthesis of YS-Fe3O4@PMO/IL NPs

For this part of the study, YS-Fe3O4@PMO NPs (0.25 g) were
added and ultrasonically dispersed in toluene (20 mL) at RT for
20 min. Then, 1-methyl-3-(3-trimethoxysilylpropyl) imidazolium
chloride (0.15 g) was added, and the resulting mixture was
refluxed under Ar atmosphere for 1 day. After cooling to room
temperature, the product was collected using a magnet, washed with
ethanol, dried at 75°C for 11 h, and named YS-Fe3O4@PMO/IL.

2.3 Synthesis of YS-Fe3O4@PMO/IL-Cu
catalyst

First, the YS-Fe3O4@PMO@IL NPs (0.25 g) were sonicated in
DMSO (40 mL) for 20 min. Then, Cu(OAc)2.4H2O (0.75 g) was
added while stirring at RT for 1 day. The resulting mixture was then
stirred at 80°C for 2 h. The product was collected using a magnet,
washed with ethanol and H2O, dried at 75°C for 11 h, and named
YS-Fe3O4@PMO/IL-Cu (Elhamifar et al., 2017). According to the
ICP analysis, the loading of copper on the designed material was
found to be 0.45 mmol Cu/g of YS-Fe3O4@PMO/IL-Cu.

2.4 Synthesis of pyranopyrazoles using YS-
Fe3O4@PMO/IL-Cu catalyst

For this part of the study, YS-Fe3O4@PMO/IL-Cu catalyst
(0.36 mol%) was added to a flask containing aldehyde (1 mmol),
malononitrile (1 mmol), ethyl acetoacetate (1 mmol), and hydrazine
hydrate (1 mmol). The reaction progress was monitored under
ultrasonic conditions at RT. After the reaction was completed,
the hot EtOH was added to the reaction flask, and YS-Fe3O4@
PMO/IL-Cu was separated using an external magnetic field. The
pure pyranopyrazoles were obtained after recrystallizing the crude
mixture in EtOH.

2.5 IR, 1H and 13C-NMR data of
pyranopyrazoles

2.5.1 6-Amino-4-(2,4-dichlorophenyl)-3-methyl-
1,4-dihydropyrano[2,3-c]pyrazole- 5-carbonitrile

IR (KBr, cm-1): 3,480 (NH), 3,253, 3,118 (NH2), 3,075 (=C-H
stretching vibration, sp2), 2,927 (C-H stretching vibration, sp3),
2,184 (CN), 1,641 (C=N), 1,467 (C=C), 1,411 (C-O, ether), 869
(C-Cl). 1H-NMR (400 MHz, CDCl3): δ (ppm), 1.90 (s, 3H), 4.45 (s,

FIGURE 3
N2 adsorption–desorption isotherm of YS-Fe3O4@PMO/IL-Cu.

FIGURE 4
SEM analysis of the YS-Fe3O4@PMO/IL-Cu catalyst.
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1H), 7.01 (d, 1H, j = 8 Hz), 7.11 (d, 1H, j = 8 Hz), 7.76 (s, 1H), 8.60 (s,
2H, NH2), 11.95 (s, 1H, NH). 13C-NMR (100 MHz, CDCl3): δ (ppm)
13.2, 16, 59.3, 110.0, 117.4, 126.7, 130.0, 131.0, 132.4, 135.0, 139.6,
142.6, 163.7, 177.4.

2.5.2 6-Amino-4-(2-bromo-6-hydroxyphenyl)-3-
methyl-1,4-dihydropyrano[2,3- c]pyrazole-5-
carbonitrile

IR (KBr, cm-1): 3,495 (OH), 3,380 (NH), 3,255, 3,120 (NH2), 3,079
(=C-H stretching vibration, sp2), 2,917 (C-H stretching vibration, sp3),
2,187 (CN), 1,619 (C=N), 1,475 (C=C), 1,268 (C-O, ether), 823

(C-Br). 1H-NMR (400 MHz, CDCl3): δ (ppm) 1.94 (s, 3H), 4.53
(s,1H), 5.30 (s, 1H, OH), 6.92 (t, 1H, j = 5.8 Hz), 7.10 (d, 1H, j = 8 Hz),
7.11 (d, 1H, j = 8 Hz), 8.67 (s, 2H, NH2), 11.88 (s, 1H, NH).

13C-NMR
(100MHz, CDCl3): δ (ppm),13.3, 16.5, 59.5, 110.2, 113.4, 117.3, 123.7,
123.9, 128.7, 128.9, 139.6, 156.6, 163.9, 177.6.

3 Results and discussion

The synthesis of YS-Fe3O4@PMO/IL-Cu NPs is presented in
Scheme 1. Initially, the surface of Fe3O4 NPs was coated with a

FIGURE 5
The VSM analysis of (A) Fe3O4 and (B) YS-Fe3O4@PMO/IL-Cu.

FIGURE 6
The EDX analysis of the YS-Fe3O4@PMO/IL-Cu catalyst.
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periodic mesoporous organosilica shell via hydrolysis and co-
condensation of TEOS and BTEM in the presence of CTAB and
pluronic P123 surfactants. To obtain a yolk-shell structure, the CTAB
and pluronic P123 templates were removed by Soxhlet extraction.
Subsequently, the surface of YS-Fe3O4@PMO/IL NPs was modified

with a complex of ionic liquid and copper salt to obtain YS-Fe3O4@
PMO/IL-Cu catalyst. It is important to note that the YS-Fe3O4@PMO/
IL-Cu catalyst is a multifunctional material that contains the advantages
ofmagnetic NPs, supported ionic liquids and YS-structuredmesoporous
materials. For example, as shown in Scheme 1, ILmoieties play a key role
in the immobilization and stabilization of catalytic copper species.

Figure 1 demonstrates the FT-IR of Fe3O4@surfactants@PMO,
YS-Fe3O4@PMO, and YS-Fe3O4@PMO/IL-Cu NPs. For all samples,
the peaks observed at 588 and 3300–3450 cm-1 are related to Fe-O
and O-H bonds, respectively. Also, the signals observed at 823 and
1078 cm-1 are assigned to the asymmetric and symmetric vibrations
of the Si-O-Si bond, respectively (Figures 1A,B). It should be noted
that before surfactant extraction, the sharp peaks at 2923 and
2855 cm-1 are due to C-H stretching vibrations of CTAB and
P123 (Figure 1A). After the Soxhlet extraction, the intensity of
these peaks is significantly decreased, confirming the successful
elimination of surfactants (Figure 1B). In Figure 1C, the peaks at
1418 and 1625 cm-1 are related to C=C and C=N of imidazolium
rings, respectively.

The XRD analysis of the Fe3O4, YS-Fe3O4@PMO, and YS-
Fe3O4@PMO/IL-Cu catalysts is displayed in Figure 2. This
clearly illustrates six signals at 2Ɵ = 30.3, 35.7, 43.4, 53.8,
57.7, and 63.0°, which is in agreement with the standard XRD
pattern of Fe3O4 NPs. This confirms that the Fe3O4 NPs are very
stable during the preparation of the YS-Fe3O4@PMO/IL-Cu
catalyst. It is also important to note that for YS-Fe3O4@PMO
and YS-Fe3O4@ PMO/IL-Cu materials, the intensity of PXRD
peaks is decreased, indicating the successful modification of
magnetite NPs with Me-PMO, IL, and copper moieties.
(Figure 2).

The N2 adsorption–desorption isotherm of the YS-Fe3O4@
PMO/IL-Cu showed a type IV isotherm with an H1 hysteresis
loop, which is characteristic of ordered mesostructures with high
regularity (Figure 3). Also, the BET surface area, average pore

FIGURE 7
The TG analysis of the YS-Fe3O4@PMO/IL-Cu catalyst.

TABLE 1 Effect of solvent and catalyst loading in the synthesis of
dihydropyrano[2, 3-c]pyrazolea.

Entry Solvent Catalyst (mol%) Yield (%)

1 — YS-Fe3O4@PMO/IL-Cu (0.36) 28

2 EtOH YS-Fe3O4@PMO/IL-Cu (0.36) 65

3 CH3CN YS-Fe3O4@PMO/IL-Cu (0.36) 14

4 DMF YS-Fe3O4@PMO/IL-Cu (0.36) 50

5 n-Hexane YS-Fe3O4@PMO/IL-Cu (0.36) <10

6b H2O YS-Fe3O4@PMO/IL-Cu (0.36) 95

7 H2O YS-Fe3O4@PMO/IL-Cu (0.45) 95

8 H2O YS-Fe3O4@PMO/IL-Cu (0.18) 68

9 H2O YS-Fe3O4@PMO/IL-Cu (0.09) 35

10 H2O YS-Fe3O4@PMO/IL (0.008 g) 23

11 H2O YS-Fe3O4@PMO (0.008 g) 21

12 H2O Fe3O4 (0.008 g) 35

aAll reactions were performed at RT, for 10 min.
bOptimum conditions.
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size, and total pore volume of the designed YS-Fe3O4@PMO/IL-
Cu nanocomposite were found to be 659 m2/g, 7.6 nm, and
1.30 cm3/g, respectively. These results demonstrate the good
formation of an ordered PMO shell for YS-Fe3O4@PMO/IL-Cu.

The SEM image of the YS-Fe3O4@PMO/IL-Cu catalyst showed
the presence of uniform particles with spherical structure and an
average size of 70 nm (Figure 4). These are very good NPs for
catalytic and adsorption processes.

The VSM analysis showed a saturation magnetization of about
30 emu·g−1 for the designed YS-Fe3O4@PMO/IL-Cu nanocatalyst,
lower than that of pure magnetic iron oxide NPs (Figure 5)
(Norouzi et al., 2020). This proves the successful coating of
PMO shell on magnetite NPs and also confirms the high
magnetic properties of the catalyst, which is an excellent
characteristic in the catalytic field.

The EDX pattern confirmed the presence of the desired
elements in the YS-Fe3O4@PMO/IL-Cu catalyst (Figure 6). This
analysis illustrated the signals of C, Si, N, Cu, Fe, and O elements in
the catalyst, proving the successful incorporation and
immobilization of the expected inorganic and organic moieties
into/onto Fe3O4 NPs.

In the next step, TGA analysis was conducted to evaluate the
thermal stability of the YS-Fe3O4@PMO/IL-Cu catalyst (Figure 7).
The first weight loss below 120°C is due to the loss of water and
alcoholic solvents left over from the synthesis process. Another
weight loss at 200°C–320°C is related to the decomposition of the
remaining CTAB and P123 surfactants. The highest weight loss,
observed at 325°C–650°C, is attributed to the removal of methylene
and ionic liquid functional groups, which are incorporated/
immobilized in/on the structure of YS-Fe3O4@PMO/IL-Cu
nanocomposite.

After characterizing the YS-Fe3O4@PMO/IL-Cu catalyst, its
application in the synthesis of dihydropyrano [2, 3-c]pyrazoles
was investigated. For this part of the study, the condensation
between malononitrile, PhCHO, ethyl acetoacetate, and
hydrazine hydrate was selected as a model reaction. The

TABLE 2 Synthesis of pyranopyrazoles by using YS-Fe3O4@PMO/IL-Cua.

Entry Aldehyde Time (min) Yield (%)b Found M. P. Reported M. P.

1 C6H5CHO 10 95 241–243 240–24333

2 4-MeO-C6H4CHO 15 89 206–208 206–20933

3 4-Me-C6H4CHO 20 89 174–176 176–17728

4 3-HO-C6H4CHO 17 90 262–264 260–26233

5 4-Br-C6H4CHO 12 89 182–184 180–18233

6 4-CN-C6H4CHO 10 96 197–199 196–19830

7 4-NO2-C6H4CHO 10 87 191–193 194–19628

8 4-Cl-C6H4CHO 8 93 231–233 233–23532

9 2,4-diCl-C6H3CHO 25 85 217–219 New

10 2-Br-6-HO-C6H3CHO 50 86 271–273 New

aConditions: ethyl acetoacetate (1 mmol), malononitrile (1 mmol), benzaldehyde (1 mmol), hydrazine hydrate (1 mmol), and catalyst (0.36 mol%) in H2O (8 mL) at 25°C.
bIsolated yields.

FIGURE 8
The recoverability and reusability of YS-Fe3O4@PMO/IL-Cu.
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effects of the solvent and catalyst loading were studied at RT
under ultrasonic conditions. As displayed in Table 1, the effects
of different solvents such as EtOH, CH3CN, n-Hexane, DMF,
H2O, and solvent-free media were studied, and the best results
were obtained in H2O at 25°C (Table 1, entries 1–6). The effect of
catalyst loading was also investigated, with the best yield obtained
in the presence of 0.36 mol% of YS-Fe3O4@PMO/IL-Cu.
According to these results, the use of 0.36 mol% of YS-Fe3O4@
PMO/IL-Cu in H2O at 25°C under ultrasonic irradiation was
chosen as the optimum condition. In order to prove whether the
cupper centers act as catalytic sites or not, in the next study the
reaction was carried out using Cu-free Fe3O4, YS-Fe3O4@PMO,
and YS-Fe3O4@PMO/IL materials under the same conditions as
YS-Fe3O4@PMO/IL-Cu (Table 1, entries 10–12). The result
showed that for all Cu-free samples, only a low yield of the
desired product was obtained, indicating that the reaction is
mainly catalyzed by immobilized copper sites.

After optimizing the different parameters, the efficiency of the
YS-Fe3O4@PMO/IL-Cu nanocatalyst was evaluated by using
different aldehyde substrates for the preparation of pyrazole
derivatives. As seen in Table 2, all investigated aldehydes were
converted to their corresponding products in high yields. These
results confirm the high efficiency of YS-Fe3O4@PMO/IL-Cu for
the preparation of a wide range of biologically active
pyranopyrazoles.

The recoverability and reusability of the YS-Fe3O4@PMO/IL-
Cu catalyst were investigated in the condensation of
malononitrile, ethyl acetoacetate, benzaldehyde, and hydrazine
hydrate under optimized conditions. For this purpose, at the end
of the reaction, the catalyst was magnetically removed, washed,
and reused in the next run under the same conditions as in the
first step. The results indicated that the synthesized catalyst can
be recovered and reused at least 9 times without significant loss of
efficiency (Figure 8).

A leaching test was then performed to investigate the nature of
the catalyst under the reaction conditions. For this purpose, the
model reaction was selected as the test. After about 50% of the
process was completed, the catalyst was removed using an external
magnet, and the reaction progress of the residue was monitored for
60 min. The result demonstrated no further progress of the
reaction, confirming no leaching of the active catalytic species
and also the heterogeneous nature of the designed catalyst. This
result confirms the successful immobilization of the copper
moieties on the material framework.

Next, a comparative study was performed between the
activity of the YS-Fe3O4@PMO/IL-Cu catalyst and several
identified catalysts in the synthesis of pyranopyrazoles
(Table 3). The results showed that our designed catalyst is
better than other catalysts in terms of catalyst loading,
reaction time, and recovery numbers. These findings are
attributed to the magnetic nature, mesoporous structure,
supported ionic liquids, and high stability of the designed YS-
Fe3O4@PMO/IL-Cu nanocatalyst.

4 Conclusion

In this study, the magnetic YS-Fe3O4@PMO/IL-Cu catalyst was
prepared and identified by using PXRD, FT-IR, TGA, EDX, ICP,
SEM, nitrogen sorption, and VSM analyses. The TGA, EDX, and
FT-IR analyses demonstrated the high chemical and thermal
stability of YS-Fe3O4@PMO/IL-Cu. The VSM and PXRD
analyses showed very good magnetic properties of the material.
The nano dimensions and particle size of this catalyst were
confirmed using SEM analysis. The nitrogen-sorption diagram
also showed a mesoporous structure for the designed catalyst.
The YS-Fe3O4@PMO/IL-Cu nanocomposite was used as a
powerful catalyst in the synthesis of biologically active

TABLE 3 Comparative study between the activity of the YS-Fe3O4@PMO/IL-Cu catalyst and several identified catalysts in the synthesis of pyranopyrazoles.

Entry Catalyst Conditions Recovery numbers Ref

1 L-proline H2O, cat. (10 mol%), reflux, 10 min - Mecadon et al. (2011)

2 SiO2-TMG Neat, cat. (10 mol%), 100°C, 30 min 4 Atar et al. (2014)

3 Fe3O4@SiO2-HMTA-SO3H Solvent free, cat. (0.03 g), RT, 12 min 4 Ghorbani-Vaghei and Izadkhah (2018)

4 Fe3O4@SiO2-EP-NH-HPA H2O, cat. (0.02 g), RT, 5 min 7 Hosseini Mohtasham and Gholizadeh (2020)

5 Fe3O4 H2O, cat. (0.015 g), RT, 60 min 8 Ali et al. (2014)

6 YS-Fe3O4@PMO/IL-Cu H2O, cat. (0.36 mol%), RT, 10 min 9 This work
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pyranopyrazoles, giving the desired products in high yields and
selectivity. Moreover, the YS-Fe3O4@PMO/IL-Cu catalyst was easily
recovered and reused at least 9 times without any significant
decrease in its efficiency.
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