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The excessive use of fossil has resulted in the drastic exhaustion of natural energy
sources, leading to environmental challenges and energy crises. Owing to rising
energy demand there is a dire need to shift towards renewable energies from
lignocellulosic biomass. The present study assessed the co-production of
biohydrogen (H2) and biomethane (CH4) by utilizing a less explored halophyte
Atriplexcrassifolia. Various reaction parameters were evaluated for their effect on
biohydrogen and biomethane production in batch experiments. One parameter at
a time experimental strategy was chosen for production optimization. Hydrogen
and methane yields along with their production rates were assessed at different
incubation times, temperatures, pH, substrate concentrations, and inoculum sizes
in acidogenesis and methanogenesis stages, respectively. In the first stage,
maximum cumulative hydrogen production of 66 ± 0.02 mL, with hydrogen
yield of 13.2 ± 0.03 mL/g, and hydrogen production rate (HPR) of 1.37 ±
0.05 mL/h was attained when the reaction mixture (5 g Atriplexcrassifolia and
10mL pretreated sewage sludge) was processed at 37°C and pH 5.5 after 48 h of
incubation. While in the second stage, maximum cumulativemethane production,
i.e., 343 ± 0.12 mL, methane yield (MY) of 8.5 ± 0.07 mL/mL, and methane
production rate (MPR) of 0.8 ± 0.05 mL/h was achieved after 18 days of
incubation of reaction mixture (40 mL of hydrogenic slurry with 80 mL
inoculum) at 45°C and pH 8. Furthermore, a 51% and 24% rise in biohydrogen
and biomethane production respectively were recorded when the gases were
produced at these optimized reaction conditions. The results ensure halophyte
Atriplexcrassifolia as an imperative renewable energy resource and proposed that
effective optimization of the process further increased the coproduction of
biohydrogen and biomethane.
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1 Introduction

Over the past few decades, excessive exploitation of fossil
fuels has exacerbated the depletion of natural resources, leading
to environmental degradation, global warming, and climate
variability brought on by overpopulation and rapid
urbanization. According to International Energy Agency, 2020,
88% of the world’s energy demand is fulfilled by fossil fuels
(Aghbashlo et al., 2018; Hosseinpour et al., 2018), resulting
significant increase in the atmospheric concentration of
greenhouse gases (GHG), with global CO2 emissions reaching
33.1 Gt (British Petrol Energy Outlook, 2019). These worldwide
challenges prompted renewed interest in renewable energy
sources (Banu et al., 2020; Sharmila, et al., 2020). Biofuels are
significant existing environment-friendly energy assets around
the globe. According to ongoing improvements in EU policies,
32% of the world’s energy demand will be fulfilled in 2030 by
renewable resources (EU. Red II Directive).

Lignocellulosic biomass is ample and inexhaustible feedstock
for bio-energy with global accessibility of around 220 billion tons
per annum, attributing to 10% of worldwide energy demand
(Radhakrishnan et al., 2020). Conventional methods utilized
first-generation food crops (starchy grain and maize) as
feedstock. Researchers are now focusing on exploiting
lignocellulosic biomass such as halophytes to produce second-
generation biofuels in an attempt to overcome the conflict
between food and biofuel in developing countries (Sharma
et al., 2016). With yields comparable to other energy crops
and the additional advantage of utilizing saline soils,
halophytic plants have enormous potential to produce
biofuels. Halophyte Atriplexcrassifolia (saltbush) belongs to
the Amaranthaceae family. Among other species, it can be
found all over the world in a wide range of environments,
including preserved alkaline and salt deserts, tropic soil, semi-
natural meadows, irrigated agricultural fields, and coastal areas
(Hasanuzzaman et al., 2019). Halophyte-based biofuels promise
to strengthen the global economy while simultaneously assuring
financial stability (Prasad and Ingle, 2019). This study ensures
halophyte Atriplex crassifolia as an imperative renewable energy
resource.

Among various biofuels acquainted to date, hydrogen (H2) and
methane (CH4) are expected to play a significant role in the green
economy (Aghbashlo et al., 2019). Biohydrogen is accounted as a
potentially viable alternative to fossil fuels, due to its high energy
density (142 kJ/mol), being 2.75 times greater than other fuels
(Abdullah et al., 2020). H2 burning merely emits water vapors
with no hazardous gases into the atmosphere (Zhang et al.,
2020). Methane comprises the majority of biogas because of its
greater energy density (Srivastava et al., 2020). It has all the
advantages of petroleum, including a robust network for
transportation, trading, and supply (Rasapoor et al., 2020; Fu
et al., 2021). To compete with present-day fuel demand,
appropriate methods are required to produce hydrogen and
methane. Despite the advantages of single-stage dark
fermentation or anaerobic digestion (AD) processes, novel
techniques must employ for global biogas production (Rasapoor
et al., 2020; Paritosh et al., 2021). Recent research has led to the
development of two-stage anaerobic digestion process, which

divides into two different phases (acidogenesis and
methanogenesis) (Thungklin et al., 2018). The co-production of
H2 and CH4 in the two-stage AD process is thought to be a
significant pathway to increase energy recovery by 90% because
effluent at the end of dark fermentation (acidogenesis) is rich in
organic matter. It is mostly due to the simple operational process,
enhanced production rate, improved COD reduction, and wide
range of feedstock availability (Rabii et al., 2019).

Incubation time, temperature, pH, substrate concentration
utilized, and inoculum size are significant environmental and
operational factors in a two-stage process. Incubation time has
been reported to perform a significant part in increasing the
hydrogen and methane yields (Mohan et al., 2007; Lin P. J. et al.,
2011) andmight significantly influence the composition of produced
volatile fatty acids in effluent (Liu et al., 2008). Production rates of
both CH4 and H2 increase within a certain time range, but when the
optimum time limit exceeds, productivity decreases as incubation
time increases. Specific factors affecting incubation time include
substrate used and biodegradability (Bakonyi et al., 2018).
According to some reports, acidogenic bacteria’s ability to
produce hydrogen can increase with temperature within a
specific range but can also be inhibited by excessive heat (Wang
and Wan, 2009). The optimum temperature range for the anaerobic
digestion process depends on micro-flora. pH affects the activity of
hydrogenase and other metabolic processes, therefore choosing the
optimum pH is also essential for increasing H2 and CH4 production.
While Lee et al. (2002) claimed that the maximum H2 yield rate was
attained at an initial pH of 9, Fan et al. (2004) and Ginkel et al.
(2001) stated the highest cumulative H2 production at pH 5.5. These
contradictory results indicated to be the consequence of a reduction
in buffering capacity, which stopped pH from decreasing. From a
practical perspective, it’s crucial to investigate how initial pH affects
hydrogen and methane production when there is no pH control
during anaerobic fermentation.

The majority of research on optimizing the AD process focuses
on the substrate and inoculum concentration. Reduced substrate
concentration operates as a limiting factor and inhibits the synthesis
of biogas, however, if it exceeds its optimum limit, all pre-available
enzymes form enzyme-substrate complexes and may not be able to
bind with the residual substrate. Few studies have specifically
examined the role of inoculum size. It is well acknowledged that
inoculum is crucial in a two-stage anaerobic digestion process to
preserve the system’s stability and hasten the initiation of digestion
(De Vrieze et al., 2015). Quintero et al. (2012) claim that the
production of biogas, the pace at which organic matter breaks
down, the length of the lag phase, and the stability and ease of
scaling of the AD can all be improved by the use of the appropriate
inoculum. The substrate-to-inoculum (S:I) ratio affects AD because
a suitable S:I can regulate the inoculum’s microbial population and
make the hydrolysis step easier (Li et al., 2018). The effects of
substrate concentration and inoculum size on the two-stage
anaerobic digestion process are still not fully understood.

Biohydrogen and biomethane have drawn worldwide
consideration. Both are effective alternatives to fossil fuels due to
their favorable environmental effects, simplicity of usage in industry,
and potential to reduce developing nations’ reliance on fossil fuels.
As mentioned previously, this research project will be the first to
assess the co-production of biohydrogen and biomethane in a
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two-stage anaerobic digestion process utilizing unexplored
halophyte Atriplexcrassifolia. Moreover, the present study was
also carried out to investigate the effects of hydraulic retention
time, temperature, pH, substrate concentration, and inoculum size
on efficient biohydrogen and biomethane production from
pretreated Atriplexcrassifolia using sewage sludge microflora.

2 Materials and methods

2.1 Substrate and pretreatment

Atriplexcrassifolia, a halophyte, was gathered from the fields of
GCUniversity Lahore, Kala Shah Kaku (KSK) campus, Pakistan.
This air-dried lignocellulosic biomass was crushed into a fine
powder (1.5 mm) and passed through a 16-mesh sieve before
being employed as a substrate. Alkali pretreatment of the
substrate was done utilizing 3% sodium hydroxide (NaOH)
reagent, heating at 121°C for 60 min Table 1, summarizes the
detailed composition and characterization of Atriplexcrassifolia.

2.2 Seed inoculum

The inoculum (municipal sewage sludge) was obtained from the
Hydrology Directorate andWASA laboratory, LDA, Lahore. For the
first (acidogenesis) stage, the sewage sludge was subjected to the heat
shock method according to Yang et al. (2019). This procedure
involved heating the sludge for 15 min at 100°C. Acidogenic and
methanogenic vegetative cells were destroyed by the heat shock
method, whereas endospore-producing acidogenic cells remained
intact. The characteristics of inoculum were; pH 9.5, total solid
concentration (TS) of 13%, and volatile solid concentration (VS.)
of 46%.

2.3 Fabrication

2.3.1 Nitrogen purging
To assemble a nitrogen purging apparatus, a 5 mL syringe was

utilized and cut in half, leaving 3 mL of space from the plunger side.
To the plunger side of the syringe, a balloon was attached and
securely sealed with para-film. Additionally, a 16 gauge LP needle
was connected to the syringe, enabling the introduction of nitrogen
gas for the purging process.

2.3.2 Water displacement assembly
Water displacement apparatus was assembled using various

components. The setup included a 250 mL reagent bottle with a
rubber cork, through which steel pipes were inserted. The steel pipe
was then connected to a plastic pipe. An inverted measuring cylinder
was positioned inside a plastic container, supported by a retort
stand, with a distance of 1 cm–2 cm from the base. The plastic pipe
was inserted through the base of the container, entering the
measuring cylinder to facilitate the displacement of water (Figure 1).

2.4 Two stage anaerobic digestion setup

The two stages of the experiment involved dark fermentative
hydrogen production (acidogenesis) and anaerobic digestion
methane production (methanogenesis). Dark fermentative
biohydrogen production experiments were performed in 250 mL
reagent bottles with a working capacity of 200 mL. Each
fermentative reagent bottle contained 5 g VS. Atriplexcrassifolia,
48 mL of hydrogen fermentation media (g/L) i.e., CuCl2 (0.01 g),
KH2PO4 (0.25 g), NH4Cl (0.5 g), MnCl2 (0.015 g), K2HPO4 (0.25 g),
ZnCl2 (0.01 g), FeCl3 (0.02 g), CaCl2 (0.005 g) and MgCl2 (0.3 g)
(Sekoai and Kana, 2013), 25 mL pretreated inoculum. Sodium

TABLE 1 Characterization of pretreated and untreated Atriplexcrassifolia used for two stage anaerobic digestion (AD).

Characteristics Untreated Atriplexcrassifolia Pretreated Atriplexcrassifolia

Lignin (%) 19.2% ± 0.02% 6.9% ± 0.02%

Cellulose (%) 37% ± 0.04% 62% ± 0.07%

Hemicellulose (%) 21% ± 0.02% 12.3% ± 0.06%

Delignification (%) __ 64% ± 0.01%

TS (%) 95.6% ± 0.12% 98.5% ± 0.03%

VS. (%) 94.8% ± 0.03% 95.3% ± 0.07%

FIGURE 1
Water displacement assembly for biogas production.
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bicarbonate (5 g/L) was added for buffering capacity. To provide
anaerobic environment, nitrogen gas was injected into the
headspace of each reagent bottle. All reagent bottles were
manually shaken for 1 min after a few hours to provide agitation.

In the second stage (methanogenesis), under various fermentation
conditions effluent (slurry) from the hydrogen production step was
transferred to reagent bottles with a working volume of 200 mL. The
substrate-to-inoculum ratio (1:2) was added to each reagent bottle. All
bottles were once again sealed before being incubated to produce
methane. Initial pH in both stages was maintained by adding 1N
NaOH and 1 N HCL solution (Cheng et al., 2016). All of the
experimental tests were performed in triplicates.

2.5 Effect of physiochemical parameters on
biohydrogen and biomethane production

The physiochemical parameters optimized for H2 (biohydrogen)
production were incubation time (1–7 days), pH (4.5–7), incubation
temperature (25°C—40°C), substrate concentration (3g–7 g), and
inoculum size (5mL–25mL). However, for biomethane production, the
parameters were the same but the ranges varied such as incubation time
(4–20 days), incubation temperature (35°C—55°C), pH (7–9), substrate/
slurry concentration (10mL–50mL) and inoculum size (20mL–100mL).

2.6 Analytical technique

The lignocellulosic content of Atriplexcrassifolia was assessed
using a technique developed by the NREL (National Renewable
Energy Laboratory) (Sluiter et al., 2008), and VS. and TS were
evaluated using standard techniques (APHA, 1998). The volume of
biogas produced during the two-stage anaerobic digestion process
was estimated using the water displacement method. A vessel filled
with barrier solution was submerged in a reservoir. The amount of
gas produced was equal to the volume of water that was displaced in
the container (Yin et al., 2014). Based on the cumulative
biohydrogen and biomethane production potential, maximum
hydrogen yield (mL/g) and methane yield (mL/g) values were
estimated for the batch experiment.

2.7 Statistical analysis

Following the completion of each experiment in triplicate, the
results were statistically analyzed with SPSS version 16.00. (IBM
Analytics, New York, United States). The data was represented
graphically using MS Excel, and the Y-error bars in the result
section’s figures showed the SD (standard deviation) amid
triplicate tests, which varied considerably at p ≤ 0.05.

3 Results

3.1 Content analysis

Table 1 shows lignin, cellulose, and hemicellulose contents of
untreated and pretreated Atriplexcrassifolia. Maximum

delignification of 64% ± 0.07% and enhanced available cellulosic
content of 62 ± 0.01%were observed by utilizing 3% NaOH (sodium
hydroxide) reagent-mediated pretreatment.s.

3.2 Effect of incubation time on biohydrogen
and biomethane production

Biogas compositional study revealed that produced biogas was
entirely devoid of methane and only comprised hydrogen and
carbon dioxide (i.e. 2.57: 1) respectively. The amount of
biohydrogen produced over the first 24 h, i.e. 13 ± 0.02 mL
increased gradually, reaching its peak after 2 days of incubation,
i.e. 34 ± 0.05 mL. According to Figure 2, the maximal HY and HPR,
i.e. 6.8 ± 0.03 mL/g and 0.7 ± 0.02 mL/h, respectively, were obtained
after 48 h. A continued increase in incubation time led to a steady
decline in the synthesis of biohydrogen. However, in the second
stage the maximum cumulative methane production, i.e. 81 ±
0.07 mL, the highest MY, i.e. 3.95 ± 0.03 mL/mL, and the
maximum MPR, i.e. 1.22 ± 0.04 mL/h were recorded on the 18th
day of incubation (Figure 3). Biogas compositional study revealed
that the produced biogas was majorly comprised of methane
(i.e.,78%).

3.3 Effect of incubation temperature on
biohydrogen and biomethane production

Figure 4, depicts the results of corresponding biohydrogen
fermentation at varying temperatures. By comparing various
temperature regimes (25°C–40°C), the optimum temperature for
enhancing biohydrogen production was determined. According to
Figure 4A, hydrogen production began progressively after a certain
lag period and terminated within 48 h. When the temperature
exceeded 30°C, there was a significant increase in the cumulative
hydrogen production. Maximum cumulative biohydrogen
generation was achieved at 37°C (53 ± 0.01 mL), followed by
40°C (46 ± 0.02 mL). The maximum HY and HPR, i.e. 10.5 ±
0.01 mL/g and 1.2 ± 0.03 mL/h, respectively, were also attained at
37°C (Figure 4B). However, in the second stage, as the temperature
increased from 35°C to 40°C, the synthesis of biomethane gradually
increased. Themaximum cumulative biomethane production (178 ±
0.05 mL) was observed at 45°C (Figure 5A). While, the maximum
MY of 8.9 ± 0.02 mL/mL and the highest MPR of 0.41 ± 0.03 mL/h
were also achieved at 45°C, as shown in Figure 5B.

3.4 Effect of pH on biohydrogen and
biomethane production

The 5.5 pH was the optimum value for achieving maximum
biohydrogen production (Figure 6). At pH 5.5, the highest
cumulative biohydrogen production, HY, and HPR, i.e. 57 ±
0.05 mL, 11.4 ± 0.03 mL/g, and 1.2 ± 0.01 mL/h, respectively
were attained. The yield rate and production of biohydrogen
steadily decreased as the pH increased. As shown in Figure 7,
biomethane production steadily enhanced in all groups following
a specified lag period and stopped within 18 days. The pH 8 resulted
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in the maximum cumulative methane production (198 ± 0.12 mL),
MY (9.9 ± 0.07 mL/mL), and production rate (0.45 ± 0.05 mL/h).

3.5 Effect of substrate concentration on
biohydrogen and biomethane production

The supreme cumulative biohydrogen production (64 ±
0.02 mL) was achieved at 37°C after 48 h by utilizing a 5 g

(w/w) substrate (Figure 8A). The maximum HY and HPR,
i.e.,12.8 ± 0.01 mL/g and 1.33 ± 0.03 mL/h, respectively, were
also attained by utilizing 5 g Atriplexcrassifolia (Figure 8B).
Slurry from an enhanced dark fermentation process was used
as a substrate for the synthesis of biomethane during the
anaerobic digestion process. As evident in Figure 9,
biomethane production steadily enhanced in all groups
following a specified lag period and stopped within 18 days.
The slurry/substrate concentration, i.e. 40 mL resulted in the

FIGURE 2
Effect of incubation time on H2 yield (mL/g) and H2 production rate (mL/h) in dark fermentation.

FIGURE 3
Effect of incubation time on MY (mL/mL) and MPR (mL/h) in anaerobic digestion.
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highest cumulative methane production (320 ± 0.15 mL), MY
(8 ± 0.1 mL/mL), and MPR (0.74 ± 0.07 mL/h).

3.6 Effect of inoculum size on biohydrogen
and biomethane production

Figure 10, presents the impact of inoculum size on hydrogen
yield and production rate using pretreated sewage sludge as
inoculum. The maximum amount of cumulative biohydrogen, i.e.
66 ± 0.02 mL was obtained utilizing 10 mL (v/v) of sewage sludge
after 48 h of incubation at 37°C (Figure 10A) According to
Figure 10B, the maximal HY and HPR, i.e. 13.2 ± 0.05 mL/g and
1.37 ± 0.05 mL/h, respectively, were attained utilizing 5 g substrate
and 10 mL pretreated inoculum. A continued increase in inoculum
size led to a steady decline in the synthesis of biohydrogen. However,

in the second stage the maximum cumulative methane production,
i.e. 343 ± 0.15 mL, the highest MY, i.e. 8.5 ± 0.07 mL/mL, and the
maximum MPR, i.e. 0.8 ± 0.05 mL/h were recorded after utilizing
80 mL untreated inoculum (Figure 11).

4 Discussion

As described earlier, a maximum delignification of 64% ± 0.01%
was achieved by pretreating the Atriplexcrassifolia with 3% NaOH
reagent. The findings were comparable to those of Chandra et al.
(2012) and Zheng et al. (2018). In addition to depolymerizing lignin
and providing a region for enzymatic reactions, NaOH pretreatment
technique causes partial hemicellulose salvation and cellulosic
deformation (Kumar et al., 2009), ultimately increasing the
cellulosic content upto 62% ± 0.07%.

FIGURE 4
(A) Cumulative H2 production (mL), (B) H2yield rate (mL/g) and production rate (mL/h) at different incubation temperatures.

FIGURE 5
(A) Cumulative CH4 production (mL), (B) CH4 yield (mL/mL) and production rate (mL/h) at different incubation temperatures.
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While talking about the effect of time on biohydrogen and
biomethane generation, biomethane production significantly
decreased as time increased above the optimum time limit of
18 days. This is due to the accumulation of volatile fatty acids
(VFAs), increased alkalinity, and suppression of methanogenesis.
Volatile fatty acids (VFAs) can suppress methane yield by inhibiting
methanogenic bacteria when their concentrations become too high as
time increases, disrupting the balance between acidogenic and
methanogenic microorganisms. VFAs, such as butyric acid and
propionic acid, can have toxic effects on methanogens, reducing
methane production. Alkalinity, on the other hand is crucial for
maintaining a stable pH range that supports methanogenic activity.
Insufficient alkalinity can lead to a drop in pH, hindering
methanogenesis and causing VFA accumulation, further suppressing
methane yield. Incubation time may have a major impact on the

consortium’s ability to produce hydrogen and methane since it is
linked to changes in metabolic patterns and exerts an effect on the
composition of subdominant microorganisms (Lu et al., 2019). The
current research work’s findings support Liu et al. (2018), that the
maximum biohydrogen production devoid of methane was attained
after 48 h. Methanogen activity is inhibited by a shorter retention time.
In contrast, the optimum incubation time for producing biohydrogen
from sewage sludge, according to Massanet-Nicolau et al. (2010) was
24 h. The impact of retention time (RT) on the anaerobic digestion of
lignocellulosic biomass in CSTR was studied by Shi et al. (2017), giving
contrasting results. CSTRs with RT of 20 days had lower methane
content than those with RT of 40 and 60 days. Propionate,
predominating the reactor after a 20-day retention time, hindered
the methanogens’ activity, lowering the amount of methane in the
biogas. According to Zhu et al. (2008), the optimum incubation time for

FIGURE 6
pH effect on (A) Cumulative H2 production (mL), (B) HY (mL/g) and HPR (mL/h).

FIGURE 7
pH effect on (A) Cumulative CH4 yield (mL), (B) MY (mL/mL) and MPR (mL/h).
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producing biohydrogen and biomethane can vary based on the types of
substrate used, its concentration, and the design of the reactor.

The incubation temperature also significantly affects the
production rates of biohydrogen and biomethane. As the
temperature rose above the optimum values, i.e. 37°C and 45°C for
H2 and CH4 production, respectively, the yield of both gases began to
decrease, due to the inhibition of the microbial activity responsible for
their production. High temperatures can negatively affect the
enzymatic activity and metabolic processes of the microorganisms
involved, leading to reduced efficiency and lower gas production.
High temperatures impede the bioactivity of the methanogens that
convert VFAs to methane (Chuang et al., 2011). It could result in the
accumulation of VFAs, which would lower pH. Yokoyama et al.
(2007) showed that operating a fermenter at thermophilic conditions
would reduce the bioactivity of the methanogens. In the current
investigation, the incubation temperature affected the production of
hydrogen and methane. Temperature directly affects the

thermodynamic equilibrium of biochemical pathways involved in
anaerobic digestion as well as activity, growth rate, and bacterial
diversification (Lin et al., 2016). A similar outcome was demonstrated
by Intanoo et al. (2016), who found that cassava wastewater produced
the highest cumulative hydrogen and methane at mesophilic
temperatures (35°C–45°C). Contrarily, Luo et al. (2010) conducted
fermentative hydrogen production utilizing cassava stillage to study
the effects of temperature and pH concentrations in its enhancement.
Under thermophilic temperature, the maximal hydrogen production
rate, i.e. 53.8 mLH2/gVS, was attained. On the other hand, Zainal et al.
(2020) showed how temperature and dark fermentation effluent
affected biomethane synthesis in a two-stage up-flow anaerobic
sludge bioreactor. Optimum biomethane production was attained
at 54°C. The results demonstrated that hydrogen and methane
production is dependent on temperature.

The maximum generation of biomethane and biohydrogen was
achieved at pH values of 8 and 5.5, respectively. The production of

FIGURE 8
(A) Cumulative H2 production (mL), (B) H2yield rate (mL/g) and production rate (mL/h) at different substrate concentrations.

FIGURE 9
(A) Cumulative CH4 production (mL), (B) CH4 yield (mL/mL) and production rate (mL/h) at different substrate concentrations.
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both gases decreased as pH surpassed the optimized values. This
can be attributed to the inhibition of the microbial consortia
responsible for their production. Extremes in pH disrupt the
activity and stability of the microorganisms involved, leading to
reduced gas generation and lower overall efficiency. The firststage
(acidogenesis) of the two-stage AD process favors the fermentation
of substrates to biohydrogen and the formation of volatile fatty
acids because of the operating parameters that include an acidic
pH and short retention durations. The alkaline pH and extended
incubation time in the secondstage promote methane production
from VFAs obtained from the slurry of the firststage. The pH range
in which all bacterial enzymes are active varies, with maximum
activity occurring at the optimum pH value. The findings were in
accordance with those reported by Lin C. Y. et al. (2011), who used
mixed culture and observed maximum hydrogen productivity at
an ideal pH of 5.5; Ruggeri et al. (2015) conducted a study with the
objective of producing biohydrogen from wastewater from the

production of noodles. The analysis of Clostridium butyricum
revealed that a pH value of 5.5 was necessary for the highest
level of hydrogen production, but a pH of 4.5 might have inhibitory
effects. The maximum hydrogen yield was attained at pH = 5.5
(2.7 molH2/mol glucose) when Tapia-Venegas et al. (2015) used a
pH monitoring system during biohydrogen fermentation carried
out in a steady state. Won et al. (2013) observed the highest
hydrogen output and productivity at a pH value of 5.5 when
fermenting wastewater from a sugar refinery. The results,
however, differed from those of Yang et al. (2015), who found
that the highest MY from food waste was produced at pH 8.5 in
contrast to the control group. Variability may occur because
different pH values significantly affect enzyme activity against
the substrate. VFAs reduce the pH of the reaction medium
during a two-stage fermentation process, which inhibits
the activity of the enzymes that produce biohydrogen and
biomethane.

FIGURE 10
Inoculum size effect on (A) Cumulative H2 yield (mL), (B) HY (mL/g) and HPR (mL/h).

FIGURE 11
Inoculum size effect on (A) Cumulative CH4 yield (mL), (B) MY (mL/mL) and MPR (mL/h).
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The production of biohydrogen and biomethane decreased as the
substrate concentration exceeded the desired limit of 5 g and 40mL,
respectively. High substrate concentrations created an imbalance in
microbial activity, leading to inhibition of the microorganisms
responsible for biohydrogen and biomethane production, thereby
reducing gas yields. In the firststage as substrate concentration increased
a higher concentration of volatile fatty acids was produced. Higher
substrate concentrations have been shown to increase the efficiency of
hydrogen andmethane synthesis, however, themaximumconcentration at
which product inhibition will occur is unknown. Reduced substrate
concentration operates as a limiting factor and inhibits the synthesis of
biohydrogen, however, if substrate exceeds its optimum limit in two-stage
process, all pre-available enzymes form enzyme-substrate complexes and
may not be able to bind with the residual substrate. Moreover, there is no
predetermined ideal concentration for any of the substrates employed in
the anaerobic fermentation process (Wang andWan, 2009). For instance;
Fan et al. (2004) stated that the best sucrose concentration for fermentative
hydrogen production was 2 g/L, although earlier research showed
maximum HPR at even 20 g/L (Wu et al., 2006). The use of various
inoculum, substrate, and substrate concentration ranges may be the cause
of this contradiction (Wang andWan, 2009). For maximum biohydrogen
production, Liu and Shen (2004) discovered that 2 g of substrate
concentration produced the greatest results. Buitrón et al. (2014)
discovered that 1,636mg COD/L effluent produced the maximum
results for the generation of biomethane in a two-stage process. The
varied amount of VFAs and organic matter produced during the
acidogenesis stage contribute to variability. The results demonstrated
that hydrogen and methane production is dependent on substrate/
slurry concentration.

In case of size of the inoculum, as inoculum size exceeded its
optimum limit (80 mL for CH4 and 10 mL for H2), biomethane and
biohydrogen production significantly decreased. The significant
decrease in biomethane and biohydrogen production with an
excessive inoculum size can be attributed to competition and limited
availability of resources. When the inoculum size exceeds its optimum
limit, there is an increased competition among microorganisms for
available nutrients, leading to reduced efficiency in methane and
hydrogen production. This competition can limit the growth and
activity of the desired microorganisms, resulting in a significant
decrease in gas production This can also be explained by the
possibility that a higher inoculum size led the metabolic pathway to
change, deviating from the production of biohydrogen and biomethane,
towards the formation of other products. Optimum inoculum size for
producing biohydrogen from pretreated sewage sludge according to
Argun and Dao (2017) was 5%. Heat shock pretreatment of sewage
sludge, reduces lactate synthesis, increase HY and HPR by inhibiting
methanogens. According to Suksong et al. (2019) and Cremonez et al.
(2019), the optimum inoculum size for producing biohydrogen and
biomethane can vary based on the types of inoculum used, digestion
conditions and the design of the reactor. Optimum inoculum size
improves biogas disintegration, shorten the lag period, and make two-
stage AD process more stable and scalable.

5 Conclusion

The high cellulosic content of Atriplexcrassifolia renders it
a powerful substrate that can be utilized to produce increased

yields of hydrogen and methane. Halophyte A. crassifolia after
being pretreated with 3% sodium hydroxide yielded a
significant volume of biogas when subjected to dark
fermentation and anaerobic digestion. The incubation time,
temperature, pH, substrate concentration, and inoculum size
drastically affected the co-production of biomethane and
biohydrogen. The optimal incubation time was 48 h and
18 days for biohydrogen and biomethane production,
respectively. The maximum hydrogen yield and production
rate were observed at an incubation temperature 37°C,
substrate concentration 5 g, inoculum size 10 mL, and
pH 5.5. While the maximum methane yield and production
rate were obtained after incubating a reaction mixture
containing 40 mL slurry concentration and 80 mL inoculum
at 45°C and pH 8. Under these fully optimized conditions, a
51% and 24% increase was observed in H2 and CH4

production, respectively. This study shows that the two-
stage fermentative production of H2 and CH4 from
Atriplexcrassifoliaunder optimized conditions is a viable and
sustainable method that can be effectively utilized at an
industrial scale. Extensive exploration of the industrial
potential of each component in A. crassifolia is needed,
requiring further research to unlock valuable applications
and products. Research should focus on developing cost-
effective, industrial-scale pre-treatment techniques and
optimizing the two-stage process for efficient and
economically viable production of biohydrogen and
biomethane, aligning with the increasing global demand for
zero-emission fuels.
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