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The NAO2GTO scheme provides an efficient way to evaluate the electron
repulsion integrals (ERIs) over numerical atomic orbitals (NAOs) with auxiliary
Gaussian-type orbitals (GTOs). However, the NAO2GTO fitting will significantly
impact the accuracy and convergence of hybrid functional calculations. To
address this issue, here we propose to use the fitted orbitals as a new numerical
basis to properly handle the mismatch between NAOs and fitted GTOs. We
present an efficient and linear-scaling implementation of analytical gradients
of Hartree-Fock exchange (HFX) energy for periodic HSE06 calculations with
fitted NAOs in the HONPAS package. In our implementation, the ERIs and their
derivatives for HFX matrix and forces are evaluated analytically with the
auxiliary GTOs, while other terms are calculated using numerically
discretized GTOs. Several integral screening techniques are employed to
reduce the number of required ERI derivatives. We benchmark the accuracy
and efficiency of our implementation and demonstrate that our results of
lattice constants, bulk moduli, and band gaps of several typical semiconductors
are in good agreement with the experimental values. We also show that the
calculation of HFX forces based on a master-worker dynamic parallel scheme
has a very high efficiency and scales linearly with respect to system size. Finally,
we study the geometry optimization and polaron formation due to an excess
electron in rutile TiO2 by means of HSE06 calculations to further validate the
applicability of our implementation.
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1 Introduction

The Kohn-Sham density-functional theory (KS-DFT) (Hohenberg and Kohn, 1964;
Kohn and Sham, 1965) has become the most popular method for predicting the
structural and electronic properties of molecular and condensed-matter systems. The
success of DFT is attributed to the fact that the local-density approximation (LDA)
(Kohn and Sham, 1965) and semilocal generalized-gradient approximation (GGA)
(Perdew, 1985; Perdew et al., 1996) for exchange-correlation energy functional can
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provide reasonable accuracy at a low computational cost.
However, local or semilocal functionals severely underestimate
band gaps of semiconductors due to their intrinsic self-
interaction error (Mori-Sánchez et al., 2008). Dramatic
improvements can be achieved by incorporating a certain
fraction of non-local orbital-dependent Hartree-Fock exchange
(HFX) into the local or semilocal exchange, producing so-called
hybrid functionals (Stephens et al., 1994; Adamo and Barone,
1999; Ernzerhof and Scuseria, 1999; Heyd et al., 2003, 2006;
Krukau et al., 2006). In particular, the Heyd–Scuseria–Ernzerhof
(HSE) screened hybrid functional (HSE03 (Heyd et al., 2003) or
HSE06 (Heyd et al., 2006; Krukau et al., 2006)) is the most
successful one in solid-state physics, which employs only a short-
range HFX to avoid the problematic effects of long-range one in
solids (Janesko et al., 2009). It has been shown that HSE can yield
improved results of structural, thermochemical, and electronic
properties for both molecules and solids (Paier et al., 2006b,a;
Marsman et al., 2008; Henderson et al., 2011). Nevertheless, the
evaluation of exact exchange is significantly more expensive than
the local or semilocal approximations, which formally has a
quartic scaling O(N4) with system size N and hinders the
wide applications of hybrid functionals. As a result, it is of
great importance to develop and implement efficient and
linear-scaling approaches for large-scale hybrid functional
calculations.

The success of hybrid functionals has also prompted the
development of efficient numerical techniques for reducing the
computational cost and scaling of HFX calculations in the past
two decades. Currently, hybrid functional calculations for
periodic systems are available in a range of DFT packages
with plane-wave (PW) (Marsman et al., 2008; Spencer and
Alavi, 2008; Broqvist et al., 2009; Hu et al., 2017b), Gaussian-
type orbital (GTO) (Heyd et al., 2003; Guidon et al., 2008; Lee
et al., 2022), and numerical atomic orbital (NAO) (Shang et al.,
2011; Levchenko et al., 2015; Qin et al., 2015; Lin et al., 2020)
basis sets. For PW basis sets, a low-rank approximation called
adaptively compressed exchange (ACE) (Lin, 2016; Hu et al.,
2017a) operator has been proposed, resulting in significant
acceleration of hybrid functional calculations. When
combined with the interpolative separable density fitting
(ISDF) algorithm (Lu and Ying, 2015; Hu et al., 2017b), the
overall computational scaling can be further reduced to O(N3).
However, linear-scaling hybrid functional calculations within
PWs cannot be achieved unless extended KS orbitals are
converted to maximally localized Wannier functions (Wu
et al., 2009; Ko et al., 2020). To enable linear-scaling hybrid
functional calculations, one has to exploit the sparsity of HFX
matrix represented with real-space localized basis functions. In
this context, GTOs exhibit a natural advantage since they are
analytical and decay exponentially in real space. Within GTOs,
four-center electron repulsion integrals (ERIs) for constructing
the HFX matrix can be evaluated analytically (Reine et al., 2012)
and a number of linear-scaling approaches (Burant et al., 1996;
Schwegler and Challacombe, 1996; Schwegler et al., 1997;
Ochsenfeld et al., 1998) existed in the quantum chemistry
community can be used as valuable references. Because of
this, GTO-based electronic structure packages such as
CP2K(Kühne et al., 2020), CRYSTAL (Dovesi et al., 2020),

Q-Chem (Lee et al., 2022), and Pyscf (Sun et al., 2020) have
made great progress in periodic HFX calculations.

In fact, current linear-scaling electronic structure packages,
such as SIESTA (Soler et al., 2002), CONQUEST (Torralba et al.,
2008), OPENMX (Ozaki and Kino, 2005), FHI-aims (Blum et al.,
2009), HONPAS(Qin et al., 2015; 2020a) and ABACUS(Li et al.,
2016), prefer to adopt NAO basis sets. Compared to
exponentially decayed GTOs, NAOs are strictly localized in
real space, which provides greater convenience for linear-
scaling calculations. However, hybrid functional calculations
with NAOs are more challenging since the numerical
evaluation of ERIs is much more time-consuming. To reduce
the computational cost, three possible routes can be taken. The
first route is to expand the products of NAOs in terms of PWs
(Chen et al., 2018; Lin et al., 2020), and the computational cost of
HFX can be asymptotically quadratic due to the locality of NAOs.
The second route is to introduce low-rank approximations, such
as the resolution-of-the-identity (RI) approach (Ren et al., 2012;
Levchenko et al., 2015; Lin et al., 2020, 2021) and the ISDF
decomposition (Qin et al., 2020b,c), which can significantly
reduce the computational cost by avoiding four-center
integrals. Furthermore, linear-scaling HFX calculation can be
implemented by using the localized RI (LRI) approximation
(Levchenko et al., 2015; Lin et al., 2020). The third route is to
fit the NAOs with a linear combination of several GTOs so
that the ERIs can also be calculated analytically with fitted
GTOs. We have previously proposed this scheme called
NAO2GTO (Shang et al., 2011) to take full advantages of
both NAOs and GTOs. In conjunction with several integral
screening techniques, HFX calculations based on the
NAO2GTO scheme can be very efficient and scale linearly
(Shang et al., 2011; Qin et al., 2015). In practice, however, the
NAOs cannot be fitted accurately with a small number (e.g., 3–6)
of GTOs, which will seriously affects the accuracy and even
the convergence of a hybrid functional calculation. We can
improve the results by increasing the number of GTOs, but
too many GTOs will significantly increase the
computational cost of ERIs. To effectively utilize the
NAO2GTO scheme for NAO-based hybrid functional
calculations, it is crucial to address the mismatch between
NAOs and fitted GTOs.

On the other hand, there have been few reports on analytical
energy gradients (atomic forces) for periodic hybrid functional
calculations with NAOs to date. Atomic forces are defined as
analytical gradients of total energy to atomic positions, which
are required for geometry optimization and ab initio molecular
dynamics simulations. In the PW method, the two-electron HFX
term has no contribution to atomic forces according to the
Hellmann–Feynman theorem (Feynman, 1939) since the PW
basis set is orthogonal and independent of the atomic positions.
However, the situation becomes more complicated for NAOs,
where the atomic forces also include Pulay corrections (Pulay,
1969) due to changes in the basis functions with respect to
atomic positions. For the HFX forces, it is necessary to compute
the first derivatives of ERIs in order to obtain analytical
gradients of the HFX energy. The NAO2GTO scheme
combined with integral screening also provides an efficient
way to analytically evaluate the ERI derivatives over NAOs.
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Therefore, the implementation of HFX forces with NAOs is
relatively straightforward.

In this work, we aim to extend the linear-scaling approach for
the HFX force calculations of periodic systems based on the
NAO2GTO scheme in the HONPAS package. In our approach,
the original NAOs are replaced by fitted GTOs, so as to eliminate the
errors introduced by the NAO2GTO fitting as much as possible. The
ERI derivatives are analytically evaluated with the NAO2GTO
scheme, and the computational cost is reduced by using integral
screening techniques, enabling linear-scaling HFX force
calculations. A master-worker dynamic parallel strategy is also
adopted to achieve high parallel efficiency. We benchmark the
accuracy and efficiency of our implementation by performing
HSE06 calculations for periodic systems and apply it to
investigate the small polaronic behavior of excess electrons in
rutile TiO2. The rest of the paper is organized as follows. Section
2 reviews the theoretical framework. Section 3 provides a detailed
description of our approach and implementation. Section 4 validates
the performance of our implementation. A summary is given in
Section 5.

2 Theory

2.1 Hybrid functional for periodic systems

Hybrid functionals currently used in the generalized KS
framework contain a fraction of non-local, exact HFX term. In
the PBE0 hybrid functional (also known as PBEh or PBE1PBE)
(Adamo and Barone, 1999; Ernzerhof and Scuseria, 1999), the
exchange-correlation energy is written as

EPBE0
xc � 1

4
EHF
x + 3

4
EPBE
x + EPBE

c (1)

where 25% HFX EHF
x is mixed with 75% Perdew-Burke–Ernzerhof

(PBE) exchange EPBE
x , and the electronic correlation is still

represented by the part of the PBE correlation EPBE
c . The

inclusion of the HFX in PBE0 reduces the self-interaction error
of the density functional, resulting in a substantial improvement
over the parent PBE. However, the full-range (FR) HFX is
computationally very demanding and may be problematic in
solids. To address this issue, Heyd, Scuseria, and Ernzerhof
(Heyd et al., 2003; Heyd et al., 2006) proposed to replace the
long-range part of HFX in the PBE0 by a corresponding PBE
counterpart. Then, the resulting expression for the HSE
exchange–correlation energy is given by

EHSE
xc � 1

4
ESR,HF
x ω( ) + 3

4
ESR,PBE
x ω( ) + ELR,PBE

x ω( ) + EPBE
c (2)

where ESR,HF
x and ELR,PBE

x (ω) is the short-range (SR) HFX and long-
range (LR) PBE exchange energies, and ESR,PBE

x (ω) is the SR
exchange energy. ω is an adjustable screening parameter that
defines the range separation, and ω is set to 0.11 Bohr−1 for
HSE06 (Heyd et al., 2006). Such a treatment not only improves
the computational convenience but also avoids the problematic
effects of LR HFX in metals and semiconductors with narrow
band gaps.

For periodic systems, the HFX energy per unit cell can be
written as

EHF
x � −1

2
∑

σ� α,β{ }
∑BZ
k,q

× ∑occ
i,j

∫
Ω
∫ψσ *

ik r( )ψσ
jq r( )v̂ r, r′( )ψσ *

jq r′( )ψσ
ik r′( ) dr′ dr (3)

where ψσ
ik(r) denote the i-th occupied (occ) crystalline spin-orbitals

with spin σ for k point sampling in the Brillouin zone (BZ), Ω is the
unit cell volume. EHF

x is used to represent the FR or SR HFX energy,
and v̂(r, r′) is either the Coulomb operator v̂(r, r′) � 1/|r − r′| in
PBE0 or the screened Coulomb operator v̂(r, r′) � erfc(ω|r −
r′|)/|r − r′| in HSE. Hereafter, we will formulate only the
collinear spin-polarized case with σ = {α, β}.

In the linear combination of atomic orbitals (LCAO) method,
the spin-orbitals are expanded in terms of a linear combination of
Bloch basis functions

ψσ
ik r( ) � 1��

N
√ ∑N

n

eikR ∑Nb

μ

cσμ k( )ϕμ r − rμ − R( ) (4)

where ϕμ(r − rμ − R) denotes the μ-th NAO centering at rμ within a
lattice translation vector R, cσμ(k) is the expansion coefficient, and N
is the number of primitive unit cells under the Born-von Kármán
(BvK) periodic boundary conditions. Within NAOs, the HFXmatrix
for the self-consistent field (SCF) calculations can be written as

Hσ,HF
x[ ]Gμκ � −∑

]λ

∑
N,H

Pσ,H−N
]λ μ0]N|κGλH( ) (5)

and the corresponding HFX energy can be obtained by

EHF
x � −1

2
∑
σ

∑
μ]κλ

∑
G,N,H

Pσ,G
μκ P

σ,H−N
]λ μ0]N|κGλH( ) (6)

where the subscripts of Greek letters {μ, ], κ, λ} label NAOs, the
superscript 0 represents the reference primitive unit cell, while G,N,
andH represent extended unit cells in the BvK supercells. The Pσ,G

μκ is
the spin density matrix element, which can be obtained by an
integration of the expanded coefficients in the BZ

Pσ,G
μκ � ∑

j

∫
BZ
cσ pμ,j k( )cσκ,j k( )θ ϵF − ϵσj k( )( )eikG dk (7)

where θ represent the step function, ϵF is the fermi energy and ϵσj(k)
is the j-th eigenvalue at k. For hybrid functional calculations with
NAOs, the main bottleneck is the evaluation of ERIs

μ0]N|κGλH( ) � ∫∫ ϕ0
μ r( )ϕN

] r( )v̂ r, r′( )ϕG
κ r′( )ϕH

λ r′( ) dr dr′ (8)

2.2 Analytical gradients of HFX energy

Since the NAOs are dependent of atomic positions, in hybrid
functional calculations we must additionally calculate the HFX
contribution to atomic forces. TheHFX forces acting on the I-th
atom can be directly obtained from the negative gradients of the
HFX energy with respect to atomic position RI
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FHF
I � −∂E

HF
x

∂RI

� ∑
σ

∑
μκ

∂Pσ,G
μκ

∂RI
∑
]λ

∑
N,H

Pσ,H−N
]λ μ0]N|κGλH( )

+1
2
∑
σ

∑
μ]κλ

∑
G,N,H

Pσ,G
μκ P

σ,H−N
]λ

∂ μ0]N|κGλH( )
∂RI

(9)

Note that the first term in Eq. 9 can be rewritten as

∑
μκ

∂Pσ,G
μκ

∂RI
∑
]λ

∑
N,H

Pσ,H−N
]λ μ0]N|κGλH( ) � −∑

μκ

Hσ,HF
x[ ]Gμκ∂P

σ,G
μκ

∂RI
(10)

which is automatically included in the orthogonalization force due
to the non-orthonormality of the NAO basis set (Soler et al., 2002; Li
et al., 2016). For periodic systems, the orthogonalization force is
given by

Forth
I � −∑

σ

∑
μκ

Hσ,G
μκ

∂Pσ,G
μκ

∂RI
� ∑

σ

∑
μκ

Eσ,G
μκ

∂SGμκ
∂RI

. (11)

where SGμλ � 〈ϕ0μ|ϕGλ 〉 is the overlap matrix element, and Eσ,G
μλ is the

energy-density matrix element given by

Eσ,G
μκ � ∑

j

∫
BZ
cσ*μ,j k( )cσκ,j k( )ϵσj k( )eikG dk (12)

where ϵσj(k) is the eigenstate energy.
Thus, we only need to deal with the second term

1
2
∑
σ

∑
μ]κλ

∑
G,N,H

Pσ,G
μκ P

σ,H−N
]λ

∂ μ0]N|κGλH( )
∂RI

� 1
2
∑
σ

∑
μ]κλ

∑
G,N,H

Pσ,G
μκ P

σ,H−N
]λ ×

∂ϕ0
μ

∂RI
ϕN
] |ϕG

κ ϕ
H
λ( )

+ ϕ0
μ

∂ϕN
]

∂RI
|ϕG

κ ϕ
H
λ( )+ ϕ0

μϕ
N
] |
∂ϕG

κ

∂RI
ϕH
λ( ) + ϕ0

μϕ
N
] |ϕG

κ

∂ϕH
λ

∂RI
( )

(13)

in which the ERI derivatives have to be evaluated properly. Since
each ERI may have four different centers, a maximum of
12 differentials is required. Therefore, the calculation of HFX
forces is formally more troublesome than that of HFX matrix,
and a poor implementation will decrease the overall performance.

3 Methodology

3.1 NAO2GTO scheme

A normalized NAO for atom I located at RI is defined as the
product of a numerical radial function and a real regular solid
harmonic (Soler et al., 2002)

ϕNAO
Ilmζ r( ) � ϕNAO

Ilζ rI( ) rlIYlm θ,φ( )[ ] (14)

where rI = r − RI, rI = |rI|, l and m label the angular and magnetic
momentum quantum numbers, respectively. In multiple-ζ bases, ζ
labels different basis with the same quantum numbers (l, m) but
different radial shapes. For simplicity, we will omit the index ζ later.
The numerical radial function involves a normalization factor N (l,
α) and is numerically tabulated in a linear radial mesh. [rlIYlm(θ,φ)]
also includes its individual normalization factor. NAOs are strictly

localized in real space, which provides greater convenience for
linear-scaling DFT calculations. However, the evaluation of ERIs
over NAOs in real space is computationally expensive, which will
introduce a big prefactor in linear-scaling HFX calculations (Shang
et al., 2010).

In the LCAO framework, GTOs are by far the most commonly
used basis functions to represent the molecular orbitals. This
preference is mainly due to the analytical properties of GTOs,
which allow efficient evaluation of ERIs for (post-)Hartree-Fock
calculations. A normalized primitive spherical harmonic GTO is
defined as

ϕGTO
Ilmα r( ) � N l, α( )exp −αr2I( ) rlIYlm θ,φ( )[ ] (15)

where α is the orbital exponent, and N (l, α) is the normalization
factor over the radial coordinates

N l, α( ) � 22l+3 l + 1( )!αl+3/2
2l + 2( )!π1/2

[ ]1/2

(16)

It is worth noting that most efficient algorithms for the evaluation of
ERIs are based on Cartesian primitive GTOs

Glα r( ) � N lx, ly, lz, α( ) x − Rx( )lx x − Ry( )ly z − Rz( )lz exp −α r − RI( )2[ ]
(17)

where l = lx + ly + lz labels the angular-momentum quantum number,
RI = (Rx, Ry, Rz) is the orbital center, and N (lx, ly, lz, α) is the
normalization factor

N lx, ly, lz, α( ) � 2
π

( )3/4 2lα 2l+3( )/4

2lx − 1( )‼ 2ly − 1( )‼ 2lz − 1( )‼[ ]1/2⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ (18)

For a shell of angular momentum l, there will be 2l + 1 spherical
GTOs, but (l + 1) (l + 2)/2 Cartesian GTOs. The transformation
between normalized spherical and Cartesian GTOs is required with
a transformation matrix c (l,m, lx, ly, lz) given by Schlegel and Frisch
(Schlegel and Frisch, 1995).

In order to obtain ERIs efficiently, we can represent the
NAOs in terms of a linear combination of spherical primitive
GTOs, and then calculate the ERIs analytically by calling
available libraries for GTO-based integrals (e.g. LIBINT
(Valeev and Fermann, 2014)). This scheme is called
NAO2GTO, which in principle is quite similar to the
minimal STO-nG basis set used in the quantum chemistry
community. In the NAO2GTO scheme, the numerical radial
function of each NAO is fitted as a linear combination of
different Gaussians,

ϕNAO
l r( ) ≃ ϕCGTO

l r( ) � ∑M
i�1

Di exp −αir2( ) (19)

where M is the number of Gaussians, αi and Di are the contraction
coefficient and exponent, respectively, similar to contracted GTOs
(CGTOs).

3.2 Replace NAOs with discretized CGTOs

If the NAO2GTO fitting is strictly accurate, the fitted orbitals
will be automatically normalized because of the normalization of
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NAOs. Once there is a non-negligible fitting error, the fitted orbitals
will not be normalized. Since normalization factors between NAOs
and CGTOs are different, the following approximation will no
longer hold

ϕNAO
lm r( ) ≠ ϕCGTO

lm � N l, α,D( )∑M
i�1

Di exp −αir2( )rlYlm θ,φ( ) (20)

with a normalization factor

N l, α,D( ) � 2l + 2( )!π1/2

22l+3 l + 1( )! ∑M
i,j�1

DiDj

αi + αj( )l+3/2
⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦

−1/2

(21)

where α = {αi} andD = {Di}. In practice, it is difficult to achieve an
exact NAO2GTO fitting with a small number of GTOs, such as
M = 3–6. Then, the NAO2GTO fitting will inevitably
introduce the ERI errors between original NAOs and fitted
CGTOs. In some cases, such errors can even invalidate the
final results. In our previous work, we employed the fitted
CGTOs to approximately evaluate the ERIs for the HFX term
while retaining original NAOs for pure DFT parts. For most
systems, we have found that a self-consistent convergence
problem often arises in hybrid functional calculations even
with high-precision fitting.

To eliminate the fitting errors properly, here we replace original
NAOs with the fitted and discretized CGTOs, which is done as the
following steps:

• Perform a less rigorous NAO2GTO fitting for each NAO to
obtain a set of CGTOs according to Eq. 19;

• Calculate the normalization constant N (l, α, D) for each
CGTO;

• Calculate the cutoff radius for each CGTO;
• Numerically tabulate the radial function of each CGTO
multiplied by N (l, α, D).

Note that the fitted CGTOs will give larger cutoff radii compared
to the original NAOs. Therefore, we need to feed the values inside a
new cutoff radius back to the radial function, beyond which all
values are equal to 0.

3.3 Evaluate ERIs and their derivatives with
CGTOs

With the auxiliary CGTOs, one shell set of contracted ERIs (ab|
cd) can be calculated by

ab|cd( ) � ∑K
k

∑L
l

∑M
m

∑N
n

CakCblCcmCdn akbl|cmdn[ ] (22)

with

Cak � Dakc a,m, ax, ay, az( ) (23)

where a denotes the shell orbital with angular momentum a = ax + ay
+ az, k is the index of K GTOs, and [akbl|cmdn] represents a set of
primitive ERIs over primitive Cartesian GTOs, in which (2a + 1)

(2b + 1) (2c + 1) (2d + 1) primitive and contacted ERIs are calculated
at once.

Since a primitive ERI contain four centers of A, B, C, and D, its
first-order derivatives should have the following 12 terms

∂ ab|cd[ ]
∂Ai

,
∂ ab|cd[ ]

∂Bi
,
∂ ab|cd[ ]

∂Ci
,
∂ ab|cd[ ]
∂Di

i ∈ x, y, z{ }. (24)

but only 9 derivatives are required because of the translational
invariance

∂ ab|cd[ ]
∂Ai

+ ∂ ab|cd[ ]
∂Bi

+ ∂ ab|cd[ ]
∂Ci

+ ∂ ab|cd[ ]
∂Di

� 0 (25)

Analogously, the first-order derivatives of contracted ERIs can also
be evaluated from the primitive ones, which are actually a linear
combination of higher and lower angular momentum ERIs

∂

∂Ai
ab|cd[ ] � 2α a + 1i( )b|cd[ ] − ai a − 1i( )b|cd[ ] (26)

We obtain the primitive ERIs and their derivatives from the
LIBINT library, (Valeev and Fermann, 2014) which implements
efficient recursive schemes based on the Obara-Saika method
(Obara and Saika, 1986) together with the Head-Gordon-Pople
(Head-Gordon and Pople, 1988) and Hamilton-Lindh (Hamilton
and Schaefer, 1991; Lindh et al., 1991) variations. We also consider
the eight-fold permutational symmetry of ERIs with NAOs, which
for periodic systems is given by

μ0]N|κGλH( ) � μ0]N|λHκG( ) � ]0μ−N|κG−NλH−N( )
� ]0μ−N|λH−NκG−N( ) � κ0λN−G|μ−G]N−G( )
� κ0λN−G|]N−Gμ−G( ) � λ0κG−H|μ−H]N−H( )
� λ0κG−H|]N−Hμ−H( ) (27)

In this way, we only need to handle about 1/8 of ERIs and their
derivatives. Furthermore, the translational invariance also gives
∂(μμ|μμ)

∂Rμ
� 0, which means that we can ignore the ERI derivatives if

four orbitals have the same center.

3.4 Integral screening

In practice calculations, most of the ERIs and their derivatives
have no significant contributions to the HFX matrix and forces,
which can be omitted by using integral screening techniques.
Thus, integral screening is essential for reducing the
computational cost, which should be able to provide an easy-
to-estimate upper bound for ERIs. We have previously employed
several ERI screening techniques to obtain an efficient and linear-
scaling HFX calculation (Shang et al., 2011; Qin et al., 2015). For
the calculation of HFX forces, however, integral screening based
on the upper bound of ERI derivatives is not a good choice. The
reason is that, according to the Schwarz inequality (Häser and
Ahlrichs, 1989), the upper bound of ( ∂μ

∂RI
]|λσ) requires a relatively

expensive calculation of ( ∂μ
∂RI

]| ∂μ∂RI
])(Horn et al., 1991), which

does not appear in the ERI derivatives. Alternatively, we can use
the same screening techniques based on the upper bound of ERIs
as done in the construction of the HFXmatrix. That is, if an ERI is
skipped during the calculation of the HFX energy, its derivatives
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should also be neglected for the calculation of HFX forces. Here,
we describe all the screening techniques we have employed to
compute the HFX forces. For simplicity, we omit the superscripts
of 0, G, N, and H later, and the indices {μ, ], κ, λ} label shell
orbitals in the following.

3.4.1 Schwarz screening with prametrized
screening functions

The first integral screening is based on Cauthy-Schwarz
inequality

| μ]|κλ( )|≤ | μ]|μ]( )|1/2| κλ|κλ( )|1/2 (28)
which gives a rigorous upper bound for an ERI or a set of ERIs. The
Schwarz screening actually takes advantage of the exponential decay
of the orbital-pair charge distributions Ωμ](r − P) = χμ(r − Rμ)χ](r −
R]) to decrease the total number of ERIs to be considered from
O(N4) toO(N2). To establish a straightforward Schwarz-screening
procedure, we need to calculate and store two-center integrals as
the screening matrix in the four-index (μ, ], κ and λ)
loop. However, this treatment is not efficient for large
systems in which a large screening matrix is needed.
Furthermore, it is inconvenient to employ the Schwarz
screening for primitive ERIs since each shell quartet also
requires calculating and storing its own screening matrix. In
fact, it has been observed by Guidon et al. (2009) that the
logarithm of a two-center ERI can be approximated as a
quadratic function at a relatively large two-center distance Rμ]

between orbitals μ and ]

log| μ]|μ]( )| Rμ]( )|≈ t2R
2
μ] + t0. (29)

These quadratic functions only depend on the two-center distance
Rμ] but have different parameters t0 and t2 for different types of
orbitals. Thus, we can use a set of quadratic functions (screening
functions) instead of the screening matrix to estimate the upper
bounds of both primitive and contracted ERIs. We obtain the fitting
parameters t0 and t2 by minimizing an asymmetric penalty function
(Guidon et al., 2009),

∑
i

k Δi( )Δ2
i . (30)

at a radial grid of Ri
μ] with the maximum distance Rμ] � Rμ

c + R]
c ,

and the error is defined as

Δi � log| μ]|μ]( ) Rμ]( )| − t2R
2
μ] + t0( ) (31)

and

k Δi( ) � 1 if Δi < 0;
104 if Δi ≥ 0.

{ (32)

where the choice of k (Δi) ensures the fitted value at Ri
μ] is always not

less than the true one. In Figure 1, we plot the fitting results for both
primitive and contracted two-center integrals. It can be seen that the
fitted value for each two-center distance is never less than the true
one, indicating that the screening function can be approximately
used as an upper bound in the Schwarz screening. As a result, we
only need to fit the screening functions and store the fitting
parameters for each type of shell pairs in advance, as shown in
Algorithm 1 (Step 1).

1: Step 1: Fit screening functions ⊳ For different types

of shell orbitals

2: for is and js ∈ Nspecies do ⊳ Atomic species Nspecies
3: for μ ∈ is, ] ∈ js do

4: for a ∈ μ, b ∈ ] do
5: Rab = Ra + Rb
6: Interpolate Ri and calculate[ab|ab](Ri)

7: Fit log|[ab|ab]1/2(Rab)|≈ tab
2 R2

ab + tab
0 .

8: end for

9: Rμ] = max{Rμ], Rab}

10: Interpolate Ri and calculate (μ]|μ])(Ri)
11: Fit log|(μ]|μ])1/2(Rμ])|≈ tμ]

2 R2
μ] + tμ]

0

12: end for

13: end for

14: Step 2: Build shell-pair lists ⊳ For all shell

orbitals

15: for μ = 1, Nb do

16: for ] = 1, μ do

17: tmax
2 � max {tmax

2 ,tμ]
2 }

18: tmax
0 � max {tmax

0 ,tμ]
0 }

19: if Rμ] ≤Rμ
c + R]

c and (tμ]
2 Rμ] + tμ]

0 ) + (tmax
2 Rμ] + tmax

0 )>
log ϵSchwarz then

20: Add μ, ] to shell-pair listμ]

21: end if

22: end for

23: end for

24: Step3: Compute HFX forces

25: for (μ, ]) ∈ listμ] do

26: for (κ, λ) ∈ listκλ do

27: Pmax � 2 × max{|Pσ
μκ|×|Pσ

]λ|, |Pσ
μλ|×|Pσ

]κ|}
28: if log Pmax + tμ]

2 Rμ] + tμ]
0 + tκλ

2 Rκλ + tκλ
0 >log ϵSchwarz then

29: for (k, l, m, n) ∈ (K, L, M, N) do

30: Cmax � max {Cmax ,CakCbl
CcmCdn}

31: if log Pmax + log Cmax + (tab
2 Rab + tab

0 ) + (tcd
2 Rcd +

tcd
0 )> log ϵSchwarz then

32: if Far-field SR ERIs and Pmax × Cmax ×

[ab|cd]SR > ϵFar-filed then

33: Call LIBINT to calculate primitive

ERI derivatives

34: end if

35: end if

36: Calculate contracted ERI derivatives

37: end for

38: Calculate HFX forces according to Eq. 13

39: end if

40: end for

41: end for

Algorithm 1. Flowchat of density matrix weighted Schwarz screening for

HFX forces.

3.4.2 Far-field distance screening
The distance screening proposed by Izmaylov et al. (Izmaylov

et al., 2006) further takes into account the decay of SR ERIs with
respect to the distance RPQ between two charge distribution centers
P and Q. According to the multipole expansion, the primitive ERIs
can be divided into near-field and far-field parts by (Burant et al.,
1996)
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RPQ ≥ ~RP + ~RQ, ~R � int 2α( )−1/2erfc−1 ϵ( )[ ] + 1, (33)

where ϵ is a threshold that defines the spatial range of a distribution
~R. The far-field SR ERIs have the following approximation

ab|cd[ ]SR ≈ KabKcd

erfc θ1/2ω RPQ( )
RPQ

(34)

with

Kab �
�
2

√
π5/4

α + β
exp − αβ

α + β
A − B( )2[ ] (35)

Thus, in HSE calculations we can employ the distance screening
based on Eq. 34 to screen out far-field primitive ERIs.

3.4.3 NAO screening
The NAOs are strictly localized in real space, so the ERIs over

NAOs will be strictly zero and negligible if two shell orbitals μ and ] (or
κ and λ) do not overlap with Rμ] >Rμ

c + R]
c . To reduce the number of

four-index loops, as shown in Algorithm 1 (Step 2), we first construct
two shell-pair lists (listμ] and listκλ) by taking into account the locality of
NAOs, which is done prior to entering the calculation of HFX forces.

On the other hand, both the Hamiltonian and density matrices in
pure DFT calculations exhibit a sparse pattern determined by the
locality of NAOs. The matrix element Hμκ is non-zero only when
the orbitals μ and κ directly overlap each other or indirectly overlap
through a non-local pseudopotential projector. For hybrid functional
calculations, the HFX matrix can also be stored in the same sparse
format as that of pure DFT. According to Eq. 5, the NAO screening
can screen out the ERIs for all shell pairs (μ, κ), (μ, λ), (], κ), and (], λ) do
not overlap when considering the full ERI symmetry.

3.4.4 Density matrix screening
Our initial implementation of hybrid functionals is based on a non-

direct SCF scheme, in which the ERIs are precalculated and stored in
memory or disk with the above integral screening approaches (Shang
et al., 2011). However, this scheme has a storage bottleneck and is not

efficient for large systems since it does not exploit the sparse density
matrix for integral screening. In fact, the ERIs are coupling with the
density matrix in Eq. 5 and Eq. 6, which means that a large ERI (μ]|κλ)
may also be negligible if the density matrix elements Pμκ and P]λ are
fairly small. The integral screening techniques to achieve linear scaling
HFX calculations are linked closely to the sparse density matrix, such as
the ONX (Burant et al., 1996; Schwegler and Challacombe, 1996) and
LinK (Schwegler et al., 1997) algorithms. It should be pointed out that
the NAO screening partially takes into account the sparsity of the
density matrix, so it can also lead to a linear scaling HFX calculation
(Shang et al., 2011).

In order to improve the screening efficiency, we employ the
density-matrix- based screening approach combined with a direct
SCF scheme to calculate ERIs on-the-fly at each SCF iteration, which
avoids the usage of memory for ERIs. The density matrix screening
is to introduce the density matrix in the Schwarz and distance
screening procedures. Considering the full ERI symmetry, the
density matrix weighted Schwarz screening for building the HFX
matrix is given by

max |Pσ
μκ|, |Pσ

μλ|, |Pσ
]κ|, |Pσ

]λ|{ } ×| μ]|μ]( )|1/2| κλ|κλ( )|1/2 ≤ ϵSchwarz
(36)

where the initial density matrix can be obtained from a post-PBE
calculation for the first SCF step. The HFX forces are calculated by
direct differentiation of the HFX energy after the SCF convergence,
thus the ERI derivatives can be screened out if the corresponding
ERIs have a negligible contribution to the HFX energy. Following
Guidon et al. (Guidon et al., 2008), we adopt the following screening
criterion for the calculation of HFX forces

2 × max |Pσ
μκ|×|Pσ

]λ|, |Pσ
μλ|×|Pσ

]κ|{ } ×| μ]|μ]( )|1/2| κλ|κλ( )|1/2 ≤ ϵSchwarz.
(37)

where the factor 2 is derived from the double contributions of ERIs
to the first term of HFX forces in Eq. 9. Our density matrix weighted
Schwarz screening for the calculation of HFX forces is shown in
Algorithm 1 (Step 3). Since the products of converged density matrix

FIGURE 1
Logarithm of two-center integrals (blue solids) and fitting functions (red lines) as a function of the two-center distance for (A) primitive and (B)
contracted integrals of p-type and d-type Si orbitals.
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elements are used, the calculation of the HFX forces will be more
faster than the construction of the HFX matrix at each SCF step.

3.5 Parallelization strategy

With the rapid development of computer clusters and
supercomputers, high-performance computing (HPC) is now
essential for program design. In the parallel implementation of
HFX forces, the key is to distribute the calculation of ERI
derivatives across different central processing unit (CPU) cores.
Of course, a straightforward way is to evenly distribute all shell
quartets on each processor. However, the total amount of shell
quartets is unknown until the integral screening is finished.
Furthermore, the computational cost for different types of shell
quartets may be very different. For instance, (dd|dd) with higher
order angular momentummay be hundreds of times more expensive
than (ss|ss), which also may cause serious load imbalance. On the
other hand, the distribution of the density matrix may also introduce
additional communication when considering the full ERI symmetry.
Therefore, load balancing and minimizing communication
overhead are essential considerations in the parallel design of
HFX force calculation.

For massively parallel computing, a better choice is to employ
the master-worker dynamic parallel scheme, which can yield very
high load balance and parallel efficiency. We have established a
master-worker parallel scheme for the calculation of HFX forces
as that for the construction of HFX matrix based on the dynamic
parallel distribution algorithm (Shang et al., 2020). In this
scheme, one message passing interface (MPI) process is
designated as the master to manage the distribution of the
shell quartets, while the remaining processes act as the
workers responsible for integral evaluation. The computational
task corresponding to the total amount of shell quartets is
obtained by multiplying the size of shell-pair lists. Then, the
shell quartets are assigned by the master to the worker processes
in batches by request at a time. Each worker process requests
individual and batched shell quartets from the master, and
computes the ERI derivatives and HFX forces with integral
screening. Once the current tasks are completed, the worker
process continues to request new shell quartets until there are no
tasks left. In order to further reduce the data communication for
the density matrix, we replicate the global density matrix on each
individual MPI process. Unlike the HFX matrix construction, the
calculation of HFX forces does not require a MPI_ALLREDUCE
operation, thus global communication can be avoided.

In recent years, heterogeneous architectures with dedicated
accelerators have become increasingly available in modern HPC
systems. As one of the most widely used accelerators, graphics
processing unit (GPU) is designed specifically for handling
massive parallelism and performing multiple computational
tasks simultaneously. Nowadays, numerous quantum
chemistry software packages have been equipped with GPU
support, in particular, to accelerate the evaluation of ERIs and
their subsequent contraction for constructing the HFX matrix
(Ufimtsev and Martinez, 2008, 2009; Barca et al., 2020). The GPU
acceleration can be accomplished by mapping ERIs onto GPU
threads, using either a one-block-one-contracted-integral

algorithm or a one-thread-one-contracted-integral algorithm
(Ufimtsev and Martinez, 2008). Regarding the master-worker
parallel distribution, we can set an appropriate batch size and
map the batched ERIs of a request across the GPU blocks or
threads, which depends on the available resources on the GPU
associated with each worker process. Therefore, our
parallelization strategy presented above could also be extended
to CPU-GPU heterogeneous parallelism, even though such an
extension is not covered in the present work.

4 Results and discussion

In this section, we focus on demonstrating the numerical
accuracy and efficiency of our implementation for HFX force
calculations of periodic systems in the HONPAS package (Qin
et al., 2015; Qin et al., 2020a). The norm-conserving PBE
pseudopotentials of the Troullier-Martins type (Troullier and
Martins, 1991) are used to represent the core-valence interaction.
The pseudopotential for Ti includes semicore states (3s and 3p) in
the valence. The NAOs are generated using default parameters or
are optimized using the simplex utility in SIESTA, and the
double-ζ plus polarization (DZP) basis set is employed. 5, 4,
and 3 GTOs, namely 543, are used for s-, p-, and d-type NAOs of
B, C, O, Si, and P, while a 544 fitting is used for Ti. The real-space
mesh cutoff for all systems is set to 250 Ry. The tolerance of
density matrix for the SCF convergence and the force tolerance in
coordinate optimization are set to the values of 10–4 and 0.01 eV/
Å, respectively. After k-point convergence tests, the 8 × 8 × 8
Monkhorst-Pack k-point sampling in the BZ is chosen for bulk
systems (Diamond, Si, SiC, BN, and BP).

4.1 Numerical accuracy and efficiency

4.1.1 Fitted orbitals for NAOs
In this work, we first use a linear combination of several Gaussians

to fit the tabulated radial function of NAOs based on the NAO2GTO
scheme and take the renormalized CGTOs as the new numerical basis
functions with a cutoff radius Rc. Since the CGTOs decay exponentially
in real space, we need to truncate them with a cutoff threshold defined
as ϕCGTO (Rc) < ϵcut. As illustrated in Table 1, a smaller threshold will

TABLE 1 The cutoff radii (in Bohr) of orbitals at a given threshold (cut) for
silicon atom with the DZP basis set. s1 and s2 label the 1st-ζ and 2nd-ζ s-type
orbitals, p1 and p2 label the 1st-ζ and 2nd-ζ p-type orbitals, and d denotes the
polarized d-type orbital.

Orb. ϵcut s1 s2 p1 p2 d

NAO 5.007 4.419 6.271 5.007 6.271

CGTO 10–3 5.172 4.557 8.481 6.093 7.789

10–4 5.972 5.262 9.549 6.889 8.630

10–5 6.677 5.883 10.500 7.595 9.385

10–6 7.313 6.445 11.366 8.236 10.077

10–7 7.900 6.961 12.167 8.829 10.720
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result in a larger cutoff radius for each CGTO. When ϵcut is set to 10–3,
the radius of a CGTO is slightly larger than that of its original NAO.
However, a smaller value of ϵcut = 10–7 will yield 1.5–2 times larger
cutoff radii. In practice, the cutoff radius also depends on the minimum
fitting exponent αmin, which is selected to be 0.15 in order to prevent the
generation of too diffuse GTOs.

We determine the cutoff radii by examining the ERI errors
resulting from the truncation of CGTOs. We compare the ERIs
for fitted CGTOs with different cutoff thresholds by using
numerical and analytical integrations, respectively. As listed in
Table 2, the maximum absolute error (ΔEmax) of ERIs can be as
less as 2.4 × 10–6 eV (1.76 × 10–7 Ry) if ϵcut = 10–5 is given.
Therefore, we decide to choose ϵcut = 10–5 as the default cutoff
threshold for all hybrid functional calculations. From Table 2, we
can also observe that the calculated ERIs over original NAO and
fitted CGTO differ by a maximum of 0.533 eV. Such a significant
difference may render the hybrid functional calculation invalid if

we use the fitted CGTOs for the HFX term while still relying on
the original NAOs for other terms. To ensure the accuracy and
reliability of the NAO2GTO scheme, we decide to apply the fitted
CGTOs consistently across all components of the hybrid
functional calculations. Specifically, we employ the analytical
CGTOs for the HFX calculation while the numerically
discretized CGTOs for other pure DFT calculations.

4.1.2 Integral screening
We then benchmark the numerical accuracy and efficiency of

different screening methods for the Si crystal with
HSE06 calculations. The lattice constant is chosen to be 5.43 Å,
and the primitive unit cell containing two Si atoms is used. The
Cartesian coordinates of two atoms are set to non-equilibrium
positions of (0, 0, 0) and (1.3175, 1.3575, 1.3575), respectively, so
that a relatively large value of atomic force in the x direction can be
obtained. Table 3 shows the absolute errors (total energy, band gap,

TABLE 2 Analytical (Analy.) and Numerical (Numer.) ERIs (in eV) at a given cutoff threshold (cut). The tested system is the silicon atomwith the DZP basis set. s1 and
s2 label the 1st-ζ and 2nd-ζ s-type orbitals, p1 and p2 label the 1st-ζ and 2nd-ζ p-type orbitals withm = −1, d label the polarized d-type orbitals withm = −2, ΔEmax is
the maximum absolute error between numerical and analytical ERIs.

Method ϵcut (s1s1|s1s1) (s2s2|s2s2) (p1p1|p1p1) (p2p2|p2p2) (dd|dd) ΔEmax

Analy. CGTO 11.80152342 13.23662039 10.35761045 12.56349594 9.28132159

Numer. 10–3 11.80001727 13.23633404 10.35760717 12.56348421 9.28132044 2.32 × 10–3

10–4 11.80150036 13.23661751 10.35761042 12.56349583 9.28132172 6.41 × 10–5

10–5 11.80152312 13.23662036 10.35761045 12.56349594 9.28132173 2.4 × 10–6

10–6 11.80152342 13.23662039 10.35761046 12.56349595 9.28132173 1.4 × 10–7

10–7 11.80152342 13.23662038 10.35761046 12.56349595 9.28132173 1.4 × 10–7

Original NAO 11.80299940 13.23767035 10.37228773 12.57084510 8.74843515 5.33 × 10–1

TABLE 3 Absolute errors (total energy ΔEtot and band gap ΔEg in eV, while atomic force ΔFx in eV/Å) and wall time (in seconds) of different integral screening
techniques for the Si crystal. All calculations are performed on 24 CPU cores.

ϵSchwarz ϵFarfield ΔEtot ΔEg ΔFx THFX TForce

Ref. 10–10 None -213.752168 -1.1946 0.660689 1392.2 18829.6

A 10–7 None 4 × 10–6 0 1 × 10–6 509.5 6622.9

10–6 None 7.0 × 10–5 0 1.0 × 10–5 333.7 4345.0

10–5 None 7.71 × 10–4 1.2 × 10–4 1.79 × 10–4 209.9 2802.3

AB 10–7 10–7 4 × 10–6 0 0 410.0 5257.9

10–6 10–6 7.2 × 10–5 0 1.3 × 10–5 271.2 3524.3

10–5 10–5 7.77 × 10–4 1.2 × 10–3 1.86 × 10–4 171.0 2317.7

ABC 10–7 10–7 4 × 10–6 0 0 200.3 2595.3

10–6 10–6 7.2 × 10–5 0 1.3 × 10–5 131.5 1666.5

10–5 10–5 7.77 × 10–4 1.2 × 10–3 1.86 × 10–4 80.3 1043.0

ABCD 10–7 10–7 5.3 × 10–5 0 1.7 × 10–5 69.5 62.4

10–6 10–6 7.08 × 10–4 4.0 × 10–4 6.96 × 10–4 37.0 18.8

10–5 10–5 2.74 × 10–3 1.31 × 10–2 5.38 × 10–3 15.1 4.8
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and atomic force) and the wall time for the calculation of HFX
matrix and forces under different screening methods and thresholds.
The reference values in the table are obtained using Schwarz-
screening only with a threshold of ϵSchwarz = 10–10 (in Ry), in
which the HFX time is taken from the last SCF step.

As can be seen from Table 3, both the numerical accuracy and
computational cost can efficiently be controlled by the thresholds.
The screening methods of Schwarz (A), far-field (B), and NAO (C)
show almost the same errors in energy and force at given thresholds,
while the density matrix screening (D) yields relatively larger errors.
All absolute errors lie within the range of 10−5–10−4 (eV or eV/Å)
when the thresholds are set to be 10–6 (Ry), which is then chosen as
the global default threshold. For building the HFX matrix, we find
that applying more screening methods of A, B, and C only leads to 1-
2 speed-up, which can be improved by further including D. The
calculation of HFX forces requires to evaluate the first-order
derivatives of ERIs, which contain 12 components. Therefore, we
can also see that the computational time of HFX forces under the
same screening methods without the density matrix is about
12 times higher than that of HFX matrix. However, if the density
matrix screening is involved, the computational cost of HFX forces
can be reduced by nearly 2-3 orders of magnitude. In particular, the
HFX force calculation can eventually be faster than the HFX matrix
construction with the thresholds larger than 10–7. This dramatic
improvement in efficiency can be attributed to two aspects: (1) the
fully converged density matrix after the SCF iteration is more sparse;
(2) the product of the sparse density matrix yields a smaller upper
bound to filter out much more shell quartets.

We also compare the analytical and numerical gradients of total
energy for the Si crystal. The numerical gradients are obtained by using
the finite difference method, in which the first atom Si1 is fixed at the
origin and the other atomSi2 located at (x, 1.3575, 1.3575) ismoved along
x direction. We perform a series of HSE06 calculations by varying the x
coordinate of Si2 from 1.3075 to 1.4075 Å. As shown in Figure 2, the x
component of analytical forces acting on Si2 are in very good agreement
with the numerical differentiations of total energies. The maximum

discrepancy between the analytical and numerical forces is less than
1.5 × 10–3 eV/Å, which also indicates that our implementation is correct.

4.1.3 Lattice constant, bulk modulus, and band gap
Furthermore, we verify the reliability of our improved

NAO2GTO scheme that replaces the NAOs with numerically
discretized CGTOs. We calculate the equilibrium lattice constants
a0, bulk moduli B0, and band gaps Eg for several typical
semiconductors with HSE06, and compare them with experimental
(Heyd and Scuseria, 2004) and other theoretical (Paier et al., 2006a;
Levchenko et al., 2015) results. The equilibrium lattice constants and
bulk moduli are determined by fitting energy-volume (E-V) data with
the third-order Birch-Murnaghan equation of state (Birch, 1947). The
band gaps are obtained using single-point calculations at the
optimized lattice constant. A 543 NAO2GTO fitting and cutoff
threshold of ϵSchwarz = 10–5 are chosen. All screening methods with
the default thresholds (ϵSchwarz = ϵFarfield = 10–6) are applied.

As summarized in Table 4, our HSE06 results agree satisfactorily
with the experimental values. It can also be seen that our results
differ slightly from other theoretical values with a difference of
0.01–0.025 Å for a0, 4–10 GPa for B0, and 0.02–0.18 eV for Eg,
respectively. Actually, such a discrepancy can also be found in other
codes (Levchenko et al., 2015; Lin et al., 2020), which can be
attributed to the use of different pseudopotentials and basis
sets. In the NAO framework, it has been shown that the radial
range and shape can influence the final results of DFT calculations
(Junquera et al., 2001; Anglada et al., 2002). We use the NAO2GTO
fitting to generate new numerical radial functions with a large
cutoff radius, which will result in deviations in the
HSE06 calculations due to the changes in the radial range and
shape of NAOs. As a result, we decide to use 3-6 GTOs with the
exponents larger than 0.15 to fit NAOs so that the basis functions
do not change significantly. It is important to stress that, we have
not observed numerical instability when using truncated CGTOs
for HSE06 calculations, but more detailed tests for different
systems are still necessary.

FIGURE 2
(A) Total energy and (B) atomic force as a function of Si coordinates. One atom is fixed at the origin, whereas the other atom is moved along the x
direction. The curve shows a polynomial fitting of total energy, and its partial differential (the slope) is the numerical force Fx = ∂Etot/∂Rx with the finite
difference method.
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TABLE 4 Lattice constants a0 (Å), bulk moduli B0 (GPa), and band gaps Eg (eV) for C, Si, SiC, BN, and BP with the cubic diamond structure. Experimental (Expt.)
results are taken from in the literature (Heyd and Scuseria, 2004). Theoretical values are from Ref. (Paier et al., 2006a) with plane-wave basis sets, whereas values in
parentheses are NAO-based results (Levchenko et al., 2015).

Solid a0 B0 Eg

HSE06 Ref. Expt. HSE06 Ref. Expt. HSE06 Ref. Expt.

C 3.559 3.549 3.567 457 467 443 5.58 5.49 5.48

Si 5.448 5.435 5.430 101.6 97.7 99.2 1.32 1.14 1.17

(5.446) (97.6) (1.34)

SiC 4.365 4.348 4.358 222 230 225 2.41 2.39 2.42

BN 3.622 3.603 3.616 391 402 400 6.01 5.98 6.4

BP 4.546 4.521 4.538 163 173 165 2.21 2.16 2.4

FIGURE 3
(A) The change of wall clock time for HFX matrix and forces with respect to the number of CPU cores for the Si supercell containing 512 atoms. (B)
The change time of wall clock time for HFX matrix and forces with respect to system size for Si supercells containing from 64 to 1024 atoms running on
240 CPU cores. The dashed lines correspond to a linear fit for the data. All calculations are performed on Intel(R) Xeon(R) CPUs (6258R CPU@2.70GHz).

FIGURE 4
(A)HSE06 band structure and (B) spin density of the self-trapped electron for the supercell of rutile TiO2with an excess electron. The isosurface is set
to be 10% of the maximum charge density, and a 3 × 3 × 4 supercell containing 216 atoms is used.
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4.2 Parallel efficiency and computational
scaling

In order to illustrate the parallel scalability of our implementation,
we perform Γ-only HSE06 calculations for the Si crystal with a supercell
containing 512 atoms by using different CPU cores. The default
parameters are used for NAO2GTO fitting and integral screening.
Our calculations are performed on Intel(R) Xeon(R) CPUs (6258R
CPU@2.70GHz). The wall time for building the HFX matrix in the last
SCF step is recorded, while the reported wall time for computing the
HFX forces only includes the second term in Eq. 13

Figure 3A shows the change of wall times with respect to the
number of CPU cores ranging from 48 to 768. The calculation of HFX
forces takes 222.1 and 99.2 s for 48 and 768 CPU cores, respectively,
which is 1.4–2.2 times faster than the HFX matrix construction
(2142.9 and 1521.9 s). In the master-worker dynamic parallelization
of HFX force calculation, the load balance can be effectively achieved,
and only point-to-point communication of shell quartet indices is
needed between the master and worker processes. Thus, the HFX
force calculation scales nearly perfectly up to 768 CPU cores with a very
high parallel efficiency of 95.9% as expected. However, the parallel
efficiency for the construction of HFXmatrix is significantly reduced to
57.8%. This reduction can be attributed to all-to-all communications
required for building the global HFX matrix, which has been
demonstrated in our previous work (Shang et al., 2020).

With such a good parallel scalability, we demonstrate the linear-
scaling behavior of our implementation with respect to system size
in parallel. We perform a series of Γ-only HSE06 calculations for the
Si crystal with different supercells containing from 64 up to
1024 atoms on 240 CPU cores, in which the HFX matrix
construction still maintains high parallel efficiency. As shown in
Figure 3B, the wall time of both HFXmatrix and force computations
scale linearly with respect to system size. In particular, the linear-
scaling calculation of HFX forces has a smaller prefactor than that of
HFX matrix.

4.3 Small electron polaron in rutile TiO2

As a prototypical photocatalyst, TiO2 is one of the most intensively
studied materials, and polarons often play a decisive role in its
applications (De Lile et al., 2022). For bulk rutile TiO2, excess
electrons can self-trap to form small polarons associated with local
lattice distortion (Setvin et al., 2014). It has shown that hybrid functionals
are sufficiently accurate to describe the formation and properties of small
polarons in rutile TiO2(Janotti et al., 2013; Elmaslmane et al., 2018; De
Lile et al., 2022). Herein, we apply our code to investigate the small
polaron due to the excess electron in bulk rutile TiO2 with HSE06. In all
our calculations, the experimental lattice constants of a= 4.594 Å and c=
2.959 Å are used. The calculated band gap for rutile TiO2 is 3.28 eV,
slightly higher than the experimental value of 3.03 eV (Amtout and
Leonelli, 1995) but lower than the reported HSE06 value of 3.39 eV
(Landmann et al., 2012). To simulate the formation of small polaron, a
3 × 3 × 4 supercell containing 216 atoms and −1|e| net charge is used for
spin-polarized HSE06 calculations. The k-point meshes of 2 × 2 × 2 and
4 × 4 × 4 are chosen for structural relaxation and electronic structure
calculations, respectively.OneTi atom is specified an initial displacement

(~ 0.18 Å) for localization of the polaron, and all atomic coordinates are
relaxed until the forces acting on each atom are less than 0.04 eV/Å.

After full structural optimization, we observe a local lattice
distortion around one Ti ion in the electron-doped rutile TiO2.
Compared to the pristine structure, the two Ti-O bonds
perpendicular to the c-axis relax outward, increasing from 1.981 to
1.991 Å in length. In particular, the other four bonds with an initial
length of 1.948 Å undergo two distinct changes: two of them increase
to 2.011 Å, while the remaining two decrease to 1.891 Å. Figure 4A
shows the band structure, where we can find a localized spin-
electron state located at roughly 0.88 eV below the conduction
band minimum (CBM). We also plot the spin density for this
localized state in Figure 4B. As expected, the spin density is
localized on the single Ti ion with a local lattice distortion,
indicating the formation of a small electron polaron. Our
results are in good agreement with the reported
HSE06 results, in which an electron polaron state at 0.77 eV
below the CBM was predicted by using VASP (Janotti et al.,
2013).

5 Conclusion

In summary, we have presented an efficient and linear-scaling
implementation of analytical gradients of HFX energy for periodic
HSE06 calculations within NAOs based on the NAO2GTO scheme.
To minimize the errors caused by the NAO2GTO fitting, the
original NAOs are replaced by the numerically discretized
CGTOs. The ERIs and their derivatives for the HFX term are
analytically evaluated with CGTOs, whereas other terms are
obtained using discretized CGTOs. Several integral screening
methods are utilized to reduce the computational cost of HFX
forces, among which the density matrix screening can lead to a
linear-scaling calculation of HFX forces with a smaller prefactor
compared to the HFX matrix construction. We have demonstrated
our implementation can yield accurate results of lattice constants,
bulk moduli, and band gaps for several semiconductors. In addition,
a master-worker dynamic parallel strategy is employed for
computing the HFX forces, which can lead to very high parallel
efficiency. We have also studied the small polaronic behavior of
excess electrons in rutile TiO2, validating the capability of our code
for predicting the polarons.
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