
Effect of grain boundary
resistance on the ionic
conductivity of amorphous
xLi2S-(100-x)LiI binary system

Longbang Di1†, Jiangyang Pan1†, Lei Gao2*, Jinlong Zhu1,
Liping Wang1, Xiaomeng Wang1, Qinqin Su1, Song Gao2,
Ruqiang Zou2, Yusheng Zhao3 and Songbai Han1*
1Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology,
Shenzhen, China, 2School of Materials Science and Engineering, Peking University, Beijing, China, 3Eastern
Institute for Advanced Study, Ningbo, China

Solid-state electrolytes (SSEs) hold the key position in the progress of cutting-
edge all-solid-state batteries (ASSBs). The ionic conductivity of solid-state
electrolytes is linked to the presence of both amorphous and crystalline
phases. This study employs the synthesis method of mechanochemical milling
on binary xLi2S-(100-x)LiI system to investigate the effect of amorphization on its
ionic conductivity. Powder X-ray diffraction (PXRD) shows that the stoichiometry
of Li2S and LiI has a significant impact on the amorphization of xLi2S-(100-x)LiI
system. Furthermore, the analysis of electrochemical impedance spectroscopy
(EIS) indicates that the amorphization of xLi2S-(100-x)LiI system is strongly
correlated with its ionic conductivity, which is primarily attributed to the effect
of grain boundary resistance. These findings uncover the latent connections
between amorphization, grain boundary resistance, and ionic conductivity,
offering insight into the design of innovative amorphous SSEs.
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1 Introduction

All-solid-state batteries (ASSBs) offer a viable solution to mitigate the safety concerns of
conventional lithium-ions batteries (LIBs), in addition to their potential for exploiting the Li-
metal anode with a theoretical specific capacity of 3,860 mAh g−1 and electrochemical
potential of −3.04 V versus the standard hydrogen electrode, thereby enabling a significant
enhancement of the energy-density of the batteries (Janek and Zeier, 2016). To make ASSBs
practical, it is crucial to advance the development of solid-state electrolytes (SSEs) with
exceptional performance (Xia et al., 2019; Abakumov et al., 2020; Zhao et al., 2020). Typical
SSEs mainly include sulfide, halide, oxide, and other systems. Sulfide SSEs commonly exhibit
high ionic conductivity and good processability, but the low intrinsic electrochemical
stability windows (Zhu et al., 2015). Halide SSEs offer high ionic conductivity and
compatibility with high voltage cathodes such as LiCoO2, but are not stable with Li-
metal anode (Kwak et al., 2022). Oxide SSEs exhibit wide electrochemical stability windows,
but feature high interfacial and grain boundary resistance (van den Broek et al., 2016). Each
SSE owns distinct properties in terms of ionic conductivity, electrochemical window, and
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stability in the air (Kamaya et al., 2011; Manthiram et al., 2017; Yao
et al., 2019; Kim et al., 2020; Li et al., 2020; Xu et al., 2023). Notably,
ionic conductivity is a vital performance indicator that impacts the
application of SSEs (Kwak et al., 2022; Yang and Wu, 2022).

The ionic conductivity of SSEs can be optimized by
manipulating lattice structure, element substitution, phase
change, amorphization, etc (Asano et al., 2018; Wang et al., 2019;
Luo et al., 2021; Kwak et al., 2022; Schweiger et al., 2022; Szczuka
et al., 2022). Among these methods, amorphization has gained
attention due to the emergence of mechanochemical synthesis
methods, which is an effective approach to synthesizing SSEs
with lower grain boundary resistance (Dalvi and Shahi, 2004;
Morimoto et al., 2004; Kim and Martin, 2006; Enayati and
Mohamed, 2014). Representatively, the amorphous Li2S-P2S5
binary system SSEs can be prepared by mechanical milling and
exhibit a high ionic conductivity (>10–4 S/cm) (Hayashi et al., 2004).
In addition, some SSEs such as Li6PS5I (Brinek et al., 2020), Li2B4O7

(Wohlmuth et al., 2016), Li2ZrCl6 (Chen et al., 2021), and Li3YCl6
(Asano et al., 2018) show higher ionic conductivity after undergoing
amorphization. However, the impact of amorphization on the ionic
conductivity varies depending on the specific SSEs system,
crystalline structures play a critical role in ionic conductivity for
numerous SSEs. (Zhao et al., 2019; Schweiger et al., 2022). For
instance, a recent study by Schweiger et al. revealed that Li10GeP2S12
experienced an increase in grain boundary resistance and a decrease
in ionic conductivity with increasing milling time against the
behavior of other SSEs. The mechanism behind this phenomenon
is that defects and site disorder caused by ball milling impede the
migration of lithium ions within the lattice (Schweiger et al., 2022).
Therefore, it is essential to investigate the impact of amorphization
on the grain boundary resistance and ionic conductivity of SSEs,
while also elucidating the underlying mechanism.

In this study, the amorphous SSEs of binary xLi2S-(100-x)LiI
(10 ≤ x ≤ 90) were synthesized by mechanical ball-milling method
for the first time. PXRD analysis indicates that the amorphization
degree of xLi2S-(100-x)LiI system is significantly influenced by the
stoichiometry of Li2S and LiI. Furthermore, electrochemical
impedance spectroscopy (EIS) analysis reveals a strong
correlation between the amorphization degree of the xLi2S-(100-
x)LiI system and its ionic conductivity, with the effect of grain
boundary resistance being the primary contributing factor.
Additionally, the increase of Li2S content in xLi2S-(100-x)LiI may
restrict the grain boundary impedance reduction caused by
amorphization.

2 Materials and methods

2.1 Materials synthesis

The amorphous SSEs of binary xLi2S-(100-x)LiI (x = 10, 30, 50,
70, 90) were synthesized through a ball milling process. First, the
starting materials of Li2S (Alfa Aesar, 99.9%) and LiI (Energy
chemical, 98%) were ground in an agate mortar for 30 min to get
the homogeneous mixture. Then, the stoichiometric mixtures of Li2S
and LiI were ball-milled at 500 rpm for 33 h in a grinding jar with
ZrO2 balls using planetary ball mill (Pulverisette 7 PL, Fritsch). The
ball-to-powder mass ratio is 20:1 during sample preparation, and

each cycle running for 15 min and resting for 5 min. The entire
preparation process were carried out under an argon atmosphere
(O2 < 0.1 ppm, H2O < 0.1 ppm).

2.2 X-ray diffraction measurements

PXRD measurements were conducted at room temperature on
an Empyrean diffractometer from Malvern Panalytical using Cu Kα
(λ = 1.541,874 Å) and a Bragg–Brentano geometry, for identify the
phases of xLi2S-(100-x)LiI binary system. PXRD data were collected
with 2θ ranging from 20° to 90° at a scan rate of 0.14° s−1. Before
measurements, each sample was placed on a zero-background
sample holder in an Ar-filled glovebox and protected by a
Kapton film for the hygroscopicity of xLi2S-(100-x)LiI.

2.3 Electrochemical impedance
spectroscopy measurements

Ionic conductivities of xLi2S-(100-x)LiI binary system were
obtained through EIS measurement. Powder samples of xLi2S-
(100-x)LiI were cold pressed into pellets under 4 tons in an
insulative mold, and the pellets were placed between two stainless
steel rods served as blocking electrodes. EIS measurement was
performed on electrochemical workstation analyzer (AUTOLAB
M204) in a frequency range from 1 MHz to 1 Hz with an
amplitude of 50 mV. Moreover, the Nyquist curves were fitted by
equivalent circuit to obtain the bulk resistance and grain boundary
resistance of xLi2S-(100-x)LiI SSEs.

3 Results and discussion

As presented in Figure 1, the amorphous degree of xLi2S-(100-x)
LiI (x = 10, 30, 50, 70 and 90) system significantly depends on the
stoichiometry of Li2S and LiI. Before ball-milling, all PXRD patterns
of xLi2S-(100-x)LiI exhibit sharp-peak feature, which indicates their
good crystallinity (Figure 1A). In contrast, the PXRD patterns of
xLi2S-(100-x)LiI after ball-milling exhibit different degrees of
broadening (Figure 1B). Representatively, FWHM of the PXRD
peaks in the range of 40°–50° is used here to quantitatively analyze
the amorphization degree of xLi2S-(100-x)LiI binary system (Indris
et al., 2000; Sasano et al., 2011; Holder and Schaak, 2019; Londono-
Restrepo et al., 2019; Schweiger et al., 2022; Sun et al., 2022). It
should be emphasized that the peak positions and FWHM of Li2S or
LiI at x = 10 or 90 are not discernible from the PXRD pattern due to
the low content. Surprisingly, different stoichiometric ratios of Li2S
and LiI in xLi2S-(100-x)LiI lead to obviously different
amorphization degrees, even under the same ball-milling
conditions. As shown in Figures 1C, D, the FWHM of LiI
presents an increasing trend with the increase of Li2S and
changes from 0.239 (x = 10) to 1.124 (x = 70), which
demonstrates that the presence of Li2S can promote the
amorphization of LiI. In contrast, the FWHM of Li2S seems to
tend to remain constant as x increases in xLi2S-(100-x)LiI (x ≥ 50).
Interestingly, the amorphization degree of the xLi2S-(100-x)P2S5
binary system is also dependent on the stoichiometric ratios of Li2S
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and P2S5 (Minami et al., 2006; Tatsumisago and Hayashi, 2012;
Kudu et al., 2018). However, the amorphization degree of xLi2S-
(100-x)P2S5 diminishes as Li2S increases, accompanied by the
appearance of sharp peaks of Li2S in the PXRD patterns
(Hayashi et al., 2004). Therefore, the difference between the
xLi2S-(100-x)LiI and xLi2S-(100-x)P2S5 suggests that the
amorphization degree depends not only on the stoichiometric
ratios but also on the composition of the compound in the
binary system.

The stoichiometric ratios of Li2S and LiI determine the
amorphization degree of the xLi2S-(100-x)LiI binary system,
which significantly affects its ionic conductivity. Figure 2A
shows the Nyquist plots of amorphous xLi2S-(100-x)LiI binary
system at room temperature (RT), and each curve exhibits a
typical semicircle at high frequency representing the resistance
and the linear part at low frequency representing ion blocking
electrode. The EIS data were processed based on the formula: Z =
(Z0 × S)/l to eliminate the effect of SSE pellet thickness and area
on the impedance, in which Z0 is the raw data of the measured
EIS, l is the thickness, and S is the area of SSE pellet. Fitting the

plot by the equivalent circuit leads to the resistance R, which
corresponds to the value of the real part of the Nyquist curve, and
the ionic conductivity is calculated according to the formula of
σ = l/(R × S). As presented in Figure 2B, the ionic conductivities of
xLi2S-(100-x)LiI show a non-monotonic variation with the
increase of x. As x increased from 10 to 70, the ionic
conductivity of xLi2S-(100-x)LiI increased from 1.03 × 10−6 S/
cm to 8.43 × 10−6 S/cm. Subsequently, after x continued to
increase to 90, the ionic conductivity appeared to drop
significantly to 1.78 × 10−7 S/cm. The above non-monotonic
ionic conductivity changes may be attributed to both the
amorphization degree of LiI and the content of Li2S in xLi2S-
(100-x)LiI. In the first stage (x from 10 to 70), the amorphization
of LiI is the dominant factor in influencing the ionic conductivity
of xLi2S-(100-x)LiI (Figure 1C). However, in the next stage (x
from 70 to 90), the adverse effect of Li2S content on ionic
conductivity may play a major role.

To understand the ionic transport mechanism of the amorphous
xLi2S-(100-x)LiI in depth, the Nyquist plots were fitted with the
equivalent circuit consisting of bulk resistance (Rb), grain boundary

FIGURE 1
PXRD patterns of xLi2S-(100-x)LiI (x = 10, 30, 50, 70 and 90) (A) before ball-milling and (B) after ball-milling (C) FWHM of LiI peak in 40°–45° (x = 10,
30, 50, 70) (D) FWHM of Li2S peak in 40°–45° (x = 30, 50, 70, 90).

FIGURE 2
(A) Nyquist plots of the amorphous xLi2S-(10-x)LiI (B) Ionic conductivities of the amorphous xLi2S-(10-x)LiI.
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resistance (Rgb) and constant phase element (CPE). As illustrated in
Figure 3A, lithium ions transport in the bulk phase and grain
boundary of SSEs, which determines the overall ionic
conductivity of xLi2S-(100-x)LiI (Gao et al., 2016; Goswami and
Kant, 2019; Vadhva et al., 2021). Obviously, the hindrance of lithium
ions transport at the grain boundaries is stronger than that of the
bulk phase according to Figures 3B–F. For 10Li2S-90LiI, for example,
its Rgb is 947.7 kΩ cm, which is much higher than that of Rb
(8,403Ω cm). Besides, the variation of Rgb is significantly higher
than that of Rb. The Rb and Rgb of 70Li2S-30LiI with the highest
ionic conductivity are 3,632Ω cm and 116.1 kΩ cm respectively. In

contrast, the Rb and Rgb of 90Li2S-10LiI with the lowest ionic
conductivity are 9,925Ω cm and 5,566.4 kΩ cm respectively.

Furthermore, to present the dependence of Rb and Rgb on x in
xLi2S-(100-x)LiI, the differences between Rb and Rgb on logarithmic
scale are presented in Figure 4A. While the ionic conductivity of
xLi2S-(100-x)LiI undergoes the significant change with x from 10 to
90 (Figure 2), Rb does not undergo a distinct fluctuation, as well as
the bulk phase conductivity σb. In contrast, Rgb and the grain
boundary conductivity σgb show the significant changes and are
in agreement with the trend of the ionic conductivity (Figure 4B).
Also, the conductivity isotherms extracted from EIS can reflect the

FIGURE 3
(A) Equivalent circuit model for SSEs, consisting of Rb, Rgb and CPE. The fitting results of Nyquist plots of (B) 10Li2S-90LiI (C) 30Li2S-70LiI (D) 50Li2S-
50LiI (E) 70Li2S-30LiI (F) 90Li2S-10LiI.

FIGURE 4
(A) Resistance of bulk and grain boundary in xLi2S-(100-x)LiI. (B) Ionic conductivity of bulk and grain boundary in xLi2S-(100-x)LiI.
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dependence of the grain boundary conductivity on x in xLi2S-(100-
x)LiI, which is consistent with the results of the Nyquist curves fitted
with the equivalent circuit. As shown in Figure 5A, conductivity
isotherms are plotted from the real part (σ′) of the complex ionic
conductivity as a function of frequency. Typically, the frequency
independent plateaus (marked by arrow) correspond to the ionic
conductivities at the grain boundary of SSEs (Schweiger et al., 2022).
As x increases, the plateau of σ′ gradually reaches a maximum of 8.50 ×
10−6 S/cm at x = 70, then dropping to a minimum of 1.79 × 10−6 S/cm at
x = 90. It is worth emphasizing that the feature of conductivity isotherms
not only agrees with the analysis of the Nyquist curve, but also the values
corresponding to the plateau of σ′ are very close to the grain boundary
conductivity σgb in Figure 4B, which confirms the above analysis of ionic
conductivity of amorphous xLi2S-(100-x)LiI. In addition, the imaginary
part (Z″) of the complex impedance as a function of frequency is plotted
in Figure 5B, and the Z″ peak height is usually considered to be equal to
half of the most resistive elements (here, i.e., the grain boundary
resistance) in SSEs (Irvine et al., 1990). Consistently, the dependence
of Z″ peak height on x can also corroborate the results of Nyquist curves
fitted with the equivalent circuit.

Obviously, the above results indicate that the ionic conductivity
change of amorphous xLi2S-(100-x)LiI depends directly on the grain
boundary conductivity σgb and is almost unaffected by the bulk
phase conductivity σb. On the other hand, in combination with the
PXRD data of xLi2S-(100-x)LiI (Figure 1), it can be concluded that
the increase in grain boundary conductivity σgb may depend on the
enhanced amorphization of LiI as x increases from 10 to 70, while
the decrease in grain boundary conductivity σgb may be mainly
affected by the increase in Li2S content as x increases from 70 to 90.
In other words, there is a competitive relationship between the
amorphization of LiI and the content of Li2S in affecting the grain
boundary conductivity of amorphous xLi2S-(100-x)LiI.

4 Conclusion

In conclusion, the amorphous xLi2S-(100-x)LiI (10 ≤ x ≤ 90)
binary system was synthesized by mechanical ball-milling method. The
PXRD analysis significantly demonstrated that the increase of Li2S
content can promote the amorphization of LiI, and the amorphous
degree of Li2S tend to remain constant as x increases in xLi2S-(100-x)LiI

(x≥ 50). The EIS analysis revealed that the change in ionic conductivity of
amorphous xLi2S-(100-x)LiI depends on the grain boundary conductivity
and is almost unaffected by the bulk phase conductivity. In addition, the
competitive mechanism between the amorphization of LiI and the
content of Li2S in affecting the grain boundary conductivity was
found. The findings of xLi2S-(100-x)LiI binary system provide insights
into the future design of new amorphous SSEs.
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