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The global annual production of rice is over 750million tons, and generates a huge
amount of biomass waste, such as straw, husk, and bran, making rice waste an
ideal feedstock for biomass conversion industries. This review focuses on the
current progress in the transformation of rice waste into valuable products,
including biochar, (liquid and gaseous) biofuels, valuable chemicals (sugars,
furan derivatives, organic acids, and aromatic hydrocarbons), and carbon/
silicon-based catalysts and catalyst supports. The challenges and future
prospectives are highlighted to guide future studies in rice waste valorization
for sustainable production of fuels and chemicals.
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Introduction

The excessive use of non-renewable fossil fuels causes enormous challenges, such as
energy crisis and global warming (Binder and Raines, 2009; Putten et al., 2013). Biomass is
the main renewable carbon resource that could replace fossil feedstocks in producing fuels
and valuable chemicals (Hu et al., 2015; Sun et al., 2018; Zhang and Huber, 2018; Dodds and
Gross, 2019). Compared to edible biomass such as corn, sugarcane and sweet potato, the
conversion of biomass waste is promising due to non-edible, low cost and low
environmental harm.

Agricultural waste, including corn stoves (leaves, stalk, and cobs), wheat straw, rice
straw, rice husk, and bagasse (sugarcane), etc., is abundant with a world production of
5.1 billion tons per year in dry weight (Ho et al., 2014; Biswas et al., 2017). Particularly, the
utilization of rice waste (Oryza sativa) is highly desired in many Asia countries such as
China, India, Indonesia, Vietnam, etc., where rice is the main food crop (Wanninayake et al.,
2021). In general, the rice waste mainly includes the rice husk and the rice straw. As reported
in previous studies, 1 kg of harvested rice grain is accompanied by 1–1.5 kg of rice straw, and
an ideal milling process can produce around 20% of rice husk (Abraham et al., 2016;
Wanninayake et al., 2021; Shaheen et al., 2022). That means over 750–1,125 million tons of
rice straw and around 150 million tons of rice husk are produced as rice waste every year
around the world. Cellulose, hemicellulose, and lignin are the main components of rice waste
(Chieng and Kuan, 2022). In rice straw, the lignocellulosic composition is 32%–47% of
cellulose, 19%–27% of hemicellulose, and 5%–24% of lignin, and in rice husk, the
predominant composition is 25%–35% of cellulose, 18%–21% of hemicellulose, and
26%–31% of lignin (Binod et al., 2010; Santos et al., 2016). Besides the organic
components, SiO2 (>80%) is dominant with other oxides containing Al, Fe, Ca, Na, Mg,
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K, etc., that can be utilized for silica production or other materials
based on these elements (Chieng and Kuan, 2022).

Rice waste can be converted into fuels and valuable chemicals,
such as biochar, biofuels and platform molecules (e.g., glucose)
(Figure 1) (Uddin et al., 2021; Shaheen et al., 2022; Shukla et al.,
2022). Various methodologies have been developed for the
utilization of rice waste, such as combustion, fast and slow
pyrolysis, gasification and microbial fermentation. Herein, the
synthesis and applications of rice waste as biochar and biofuels
are firstly introduced, which act as carbon-neutral alternatives to
fossil fuels. Then, the transformation of rice waste into platform
chemicals is highlighted in providing renewable carbon feedstocks
for sustainable chemical production with the existing industrial
facilities. Furthermore, other applications of rice waste, such as in
the synthesis of carbon catalyst or support materials, are also
introduced. The summary of the valuable products derived from
rice waste in recent years is presented in Table 1. At the end, the
challenges and perspectives for the potential sustainable applications

and the related chemical processes are discussed to guide future
development.

Biochar

Biochar is a carbonaceous product that can be produced from
the thermal decomposition of biomass, such as pyrolysis or
gasification, in an oxygen-limited environment (Zou et al., 2022).
Biochar derived from rice waste can feature several advantages
including low cost, high carbon content, highly porous structure
and rich functional groups which make it suitable for various
applications in energy fuels, environmental science and new
materials (Zou et al., 2022).

Biochar is utilized as excellent adsorbents for water treatment
(Foong et al., 2022). To remove lead from wastewater, Pham et al.
used alginate to modify biochar derived from rice husk, which
provides higher surface area and more surface oxygen-contained

FIGURE 1
Valuable products from rice waste.
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TABLE 1 Summary of the valuable products from rice waste in recent years.

No. Resources Preparation routes Products Applications References

1 Rice husk Pyrolysis at 500°C and steam at 800°C under N2,
then loading Ni and Zn

Biochar/
catalysts

Steam gasification of food waste for H2 production Farooq et al.
(2021)

2 Huimins from rice
waste conversion

Pretreated by AlCl3 followed by pyrolysis at
500°C–700°C

Biochar/
catalysts

As Lewis acid catalysts Xiong et al. (2021)

3 Cooked rice waste One-pot pyrolysis of a nitrogen containing
precursor of g-C3N4, cooked rice and metal salts
at 500°C under N2

Biochar/
catalysts

Low-temperature desulfurization of H2S Yuan et al. (2023)

4 Rice husk Pyrolysis at 500°C and modified with alginate
under N2

Biochar As waste treatment agents: adsorption of Pb in
wastewater

Pham et al. (2022)

5 Rice husk Pyrolysis at 400°C–700°C under N2 Biochar As waste treatment agents: arsenic and cadmium
abatement and detoxification in sediment

Zhang et al.
(2020)

6 Rice straw Pyrolysis at 400°C–700°C under N2 Biochar As waste treatment agents: As and Cd abatement
and detoxification in sediment

Zhang et al.
(2020)

7 Rice husk Pyrolysis at 300°C–500°C under N2 Biochar As waste treatment agents: cationic dyes removal Saravanan et al.
(2021)

8 Rice straw Impregnation-pyrolysis at 500°C under N2 Biochar As waste treatment agents: crystal violet
adsorption

Yi et al. (2021)

9 Rice husk Controlled pyrolysis at 400°C–700°C under
limited supply of O2

Biochar As soil amendments: increase moisture content,
soil microbial biomass quantity and total -C, -N,
-P concentrations; enhance paddy productivity

Singh et al. (2018)

10 Rice husk Pyrolysis at 450°C and 650°C Biochar As soil amendments: reducing N leaching of
Calcaric Cambisols, increase soil microbial
biomass and microbial activity

Bu et al. (2019)

11 Rice husk Pyrolysis at 500°C under N2 Biochar As soil amendments: decrease nitrate leaching in
the soil

Mohammd et al.
(2019)

12 Rice husk Pyrolysis at 300, 450, 650°C under N2 Biochar As soil amendments: reduce P sorption and
increase P bioavailability in acid soil

Eduah et al.
(2019)

13 Rice straw Continuous slow pyrolysis at 500°C Biochar As soil amendments: immobilize heavy metals of
Cd, Cu, Pb, and Zn

Lu et al. (2017)

14 Rice straw Continuous slow pyrolysis at 500 °C Biochar As soil amendments: immobilize Cd and reduce
the concentration of Cd in lettuce shots

Zhang et al.
(2017)

15 Rice bran Non-catalytic method using subcritical water-
methanol mixture

Biofuels Liquid biofuels: biodiesel Zullaikah et al.
(2017)

16 Rice straw Catalytic hydroliquefaction using Ni/CeO2

catalysts
Biofuels Liquid biofuels: bio-oil Chen et al.

(2018a)

17 Damaged rice
grains

Presacchararification followed by simultaneous
saccharification and fermentation using waste
brewer’s yeast

Biofuels Liquid biofuels: bioethanol Mihajlovski et al.
(2018)

18 Rice straw Fermentation by Clostridium beijerinckii DSM
6422 pretreated by microwave-assisted
hydrothermolysis

Biofuels Liquid biofuels: biobutanol Valles et al. (2020)

19 Rice husk Catalytic pyrolysis via non-noble Ni-Fe catalysts
supported on 5 different treated rice husk
pyrolysis carbon supports

Biofuels Gaseous biofuels: Biohydrogen Xu et al. (2018)

20 Rice husk Catalytic steam gasification using CeO2-modified
Ni-CaO sorption catalysts

Biofuels Gaseous biofuels: Biohydrogen Zeng et al. (2022)

21 Rice husk Solid state fermentation with Clostridium
termitidis and Clostridium intestinale

Biofuels Gaseous biofuels: Biohydrogen Tosuner et al.
(2019)

22 Rice straw Microwave co-pyrolysis at 700°C–900°C
under N2

Biofuels Gaseous biofuels: Biohydrogen Nyambura et al.
(2022)

23 Rice straw Hydrothermal pretreatment at 150°C and 210°C
and subsequent anaerobic digestion

Biofuels Gaseous biofuels: Biomethane He et al. (2017)

(Continued on following page)
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TABLE 1 (Continued) Summary of the valuable products from rice waste in recent years.

No. Resources Preparation routes Products Applications References

24 Rice straw Infrequently fed anaerobic digestion Biofuels Gaseous biofuels: Biomethane Zealand et al.
(2017)

25 Rice bran Anaerobic digestion of de-oiled rice bran Biofuels Gaseous biofuels: Biomethane Jha et al. (2020)

26 Rice straw and rice
bran

Anaerobic co-digestion of rice straw and de-oiled
rice bran

Biofuels Gaseous biofuels: Biomethane Jha et al. (2021)

27 Rice straw Combined effect of ozonolysis and temperature
hydrolysis

Biofuels Gaseous biofuels: Biomethane Patil et al. (2021)

28 Rice straw Two-phase anaerobic co-digestion Biofuels Gaseous biofuels: Biomethane Chen et al. (2015)

29 Rice straw Dilute-acid hydrolysis at high temperature and
pressure

Valuable
chemicals

Sugars: Xylose and glucose Karimi et al.
(2006)

30 Rice straw Mechanochemical-assisted hydrolysis and
pretreated by KOH

Valuable
chemicals

Sugars: Xylose and glucose Qi et al. (2019)

31 Rice husk Acid-hydrolysis with acid treatment Valuable
chemicals

Furan derivatives: Furfural Bariani et al.
(2020)

32 Rice husk One-pot hydrolysis-dehydration under boron-
doped biochar catalysts in ionic liquid

Valuable
chemicals

Furan derivatives: Furfural and 5-
hydroxymethylfurfural

Ofrasio et al.
(2020)

33 Cooked rice waste Microwave heating at 160°C under AlCl3 as the
catalyst

Valuable
chemicals

Furan derivatives: 5-Hydroxymethylfurfural Xiong et al. (2021)

34 Rice straw Catalytic conversion with HSO3-ZSM-5 zeolite
catalyst under sonication

Valuable
chemicals

Furan derivatives: 5-Hydroxymethylfurfural Hoang et al.
(2020)

35 Cooked rice One-pot catalytic conversion with trivalent and
tetravalent metals

Valuable
chemicals

Furan derivatives: 5-Hydroxymethylfurfural Yu et al. (2017)

36 Rice straw Catalytic conversion with PolyE-IL catalyst Valuable
chemicals

Organic acids: Levulinic acids, formic acids and
acetic acids

Ukarde and
Pawar (2022)

37 Rice husk Acid-hydrolysis with acid treatment Valuable
chemicals

Organic acids: Acetic acids, formic acids and
levulinic acids

Bariani et al.
(2020)

38 Rice straw Tandem catalysis via Sn-sepiolite combined with
recombinant E. coli whole cells harboring horse
liver alcohol dehydrogenase

Valuable
chemicals

Furan derivatives: furfural Peng et al. (2019)

Organic acids: Furoic acid

39 Rice straw Catalytic fast pyrolysis with hierarchical HZSM-5
treated with organosilanes

Valuable
chemicals

Aromatic hydrocarbons Zhang et al.
(2018b)

40 Rice husk Catalytic fast pyrolysis with hierarchical micro-
mesoporous composite molecular sieve (MCM-
41 and HZSM-5)

Valuable
chemicals

Aromatic hydrocarbons and monocyclic
aromatics

Li et al. (2019)

41 Rice husk Microwave assisted catalytic fast pyrolysis with
alkali-treated HZSM-5 zeolite

Valuable
chemicals

Aromatic hydrocarbons: benzene, toluene,
ethylbenzene and xylene

Li et al. (2020)

42 Rice straw Catalytic pyrolysis of extracted microcrystalline
cellulose with alkali modified ZSM-5

Valuable
chemicals

Aromatic hydrocarbons Nishu et al. (2021)

43 Rice straw Catalytic pyrolysis of rice straw with Ni and alkali
modified ZSM-5

Valuable
chemicals

Aromatic hydrocarbons Nishu et al. (2023)

44 Rice straw Catalytic fast pyrolysis with hierarchical HZSM-5
modified by hexadecyl trimethyl ammonium
bromide

Valuable
chemicals

Aromatic hydrocarbons Zhang et al.
(2018a)

45 Rice straw Catalytic fast pyrolysis with hierarchical HZSM-5
modified by alkali and metals

Valuable
chemicals

Aromatic hydrocarbons Chen et al.
(2018b)

46 Rice straw Pretreated with NaOH and calcined at
350°C–500°C

Catalysts Trans-esterification of waste cooking oil for
biodiesel production

Sahu (2021)

47 Rice bran Dilute acid hydrolysis Catalysts and
feedstocks

Trans-esterification of hydrolysis rice bran Sutanto et al.
(2017)

(Continued on following page)
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functional groups, resulting in the uptake capacity increased from
41.2 to 112.3 mg/g, compared to the origin biochar (Pham et al.,
2022). Zhang et al. increased the surface area of biochar through
applying a higher pyrolysis temperature, which can significantly
improve the absorption performance of biochar towards heavy
metal, such as to reduce the concentration of arsenic and
cadmium in the aqueous phase of sediment (Zhang et al., 2020).
Yi et al. utilized stainless steel pickling waste liquor and rice straw to
synthesize magnetic biochar (Yi et al., 2021). The adhered iron
oxides (Fe3O4, Fe2O3, FeO) induced π-π interaction, hydrogen
bonding and electrostatic interaction, which could remarkably
enhance the adsorption capacity of biochar, e.g., up to
~111.5 mg/g toward crystal violet in wastewater (Yi et al., 2021).

Biochar with excellent adsorption capacity can also serve in soil
amendment to enhance soil organic carbon content, bulk density
and microbial activity (Shaheen et al., 2022). Singh et al. prepared
rice husk biochar with high surface area, rich micropores and
various composition (N, P, K, Si, etc.), which can effectively
increase the total N, C, and P elements in soil, regarding as a
potential amendment for nutrient-deficient soils (Singh et al., 2018).
Bu et al. further revealed that N leaching in biochar could be
effectively reduced through synthesis rice waste biochar at high
pyrolysis temperature (~650 °C), which is attributed to the
improvement of the net negative surface charge and the anion
exchange capacity of biochar (Bu et al., 2019). Furthermore,
biochar can immobilize heavy metals and herbicides to reduce
their bioavailability in the soil (Asadi et al., 2021). For example, Lu
et al. found that when 5% rice straw biochar treated the sandy loam
soil, it could effectively immobilize heavymetals of Cd, Cu, Pb and Zn,
thus reducing their mobility and bioavailability in contaminated soils
(Lu et al., 2017). Liu et al., found that the addition of proper amount of
biochar can reduce the concentration of Cd in lettuce shoots in the
lightly heavy-metal-polluted greenhouse soils by immobilize the Cd in
the biochar (Zhang et al., 2017).

As discussed above, the conversion of rice waste into biochar
provides a sustainable production of excellent adsorbents for water
treatment, the immobilization of heavy metals and herbicides, as
well as soil amendment for nutrient-deficient soils. Besides
increasing the nutrient elements in soil, biochar can be utilized
for water and fertilizer retention and adsorption of organic matter.

Moreover, the cost-effective biochar could be activated, and utilized
as activated carbon in water treatment, air purification, medical,
food industry and other fields, to remove pollutants, purify water
and air, detoxification and so on. Most of these applications of
biochar are strongly depends on its high surface area, which can be
enhanced via increasing the pyrolysis temperature but is energy
consuming. The preparation of biochar with high surface area at
relative low temperature by optimizing synthesis conditions, such as
gaseous atmosphere, could be interesting for future investigations.
Decoration of biochar with surface functional groups or introducing
metal active sites is promising to enhance their performance and
expand their applications, such as catalysts or beyond.

Biofuels

Biofuels are fuels derived directly or indirectly from renewable
biomass (Sharma et al., 2020). Liquid biofuels are of particular
interest in replacing fossil fuels, especially for transportation. The
two most common types of biofuels are bioethanol and biodiesel.
Other biofuels, such as methane gas and biogas are gaseous biofuels,
which can be derived from the decomposition of biomass in the
absence of oxygen. Through thermochemical and biotechnological
pathways, rice waste can be converted into liquid (biodiesel, bio-oil,
bioethanol, biobutanol, etc.) or gaseous (biohydrogen and
biomethane) biofuels (Abraham et al., 2016; Gupte et al., 2022).

Liquid biofuels

Zullaikah et al. conducted a non-catalytic method to produce
biodiesel in situ from rice bran using a subcritical water/methanol
mixture, achieving 67.4% of fatty acid methyl esters yield (200°C,
4 MPa). The high yield has been proposed by the subcritical
conditions promoting the hydrolysis of rice bran oil into free
fatty acids, followed by methyl-esterification (Zullaikah et al.,
2017). Generally, introducing catalysts can speeds up a chemical
reaction, or lowers the reaction conditions. Therefore, Chen et al.
employed a series of Ni/CeO2 catalysts to catalyze the hydro-
liquefaction of rice straw for the production of bio-oil, achieving

TABLE 1 (Continued) Summary of the valuable products from rice waste in recent years.

No. Resources Preparation routes Products Applications References

48 Rice bran Sulfonated carbonization at 180–250°C Catalysts Cellulose hydrolysis into glucose Wataniyakul et al.
(2018)

49 Rice husk Microwave-assisted sulfonated at 200°C and
fluorinated at 100°C

Catalysts In situ transesterification of Microalgae
Parachlorella kessleri biomass

Wadood et al.
(2019)

50 Rice husk Microwave-assisted acid dissolution and then
loaded Fe

Catalysts Toluene alkylation Franco et al.
(2018)

51 Rice husk Organic acid pre-treatment and calcination at
600°C

Catalysts As catalyst supports (silica production) Azat et al. (2019)

52 Rice husk Leaching with acids and then combusted at
600°C. Afterward, hydrothermal method for
MCM-41 production

Catalysts As catalyst supports (silica production),
preparation for magnetic mesoporous silica
MCM-41

Kamari and
Ghorbani (2020)

53 Rice husk Carbonation and loading with pyridine N,
graphite N, Fe-Nx and thiophene S

Catalysts Electro-catalytic reaction for oxygen reduction in
Zn-air battery

Wang et al. (2022)
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a maximum rice straw conversion of 89.08% and a bio-oil yield of
66.7% (290°C, 2 MPa) (Chen D. et al., 2018). Compared to
thermocatalytic process, microbial fermentation can produce
liquid biofuels from biomass at relative milder conditions.
Mihajlovski et al. processed waste rice grains through a pre-
saccharification step, followed by simultaneous saccharification
and fermentation using waste brewer’s yeast, achieving a
bioethanol yield of 4.69% (30°C, under atmospheric pressure)
(Mihajlovski et al., 2018). Valles et al. compared the efficiency of
the simultaneous saccharification and fermentation (SSF) process
and the hydrolysis and fermentation (SHF) process for biobutanol
production from rice straw by Clostridium beijerinckii DSM 6422,
revealing that SSF was more efficient than SHF with a biobutanol
productivity of 0.114 g L−1h−1 (37°C, under atmospheric pressure)
(Valles et al., 2020).

Gaseous biofuels

Biohydrogen and biomethane are the major renewable gaseous
biofuels generated from biomass. Xu et al. produced renewable
biohydrogen from catalytic reforming/cracking of rice husk, using
a Fe-Ni catalyst supported on the rice husk pyrolysis carbon, which
provides a biohydrogen concentration of 50.5% (Xu et al., 2018).
Recently, Zeng et al. prepared a bifunctional catalyst, Ce0.7Ni1Ca5,
for the efficient production of hydrogen-rich gas from steam
gasification of rice husk, achieving a higher biohydrogen
concentration of 85.81 ± 0.39 vol% and yield of 35.82 ±
0.28 mmol/g biomass (Zeng et al., 2022). Fermentation is a cost-
effective process that often be utilized in the production of biogases
in large scale. Solid-state fermentation was applied in producing
biohydrogen from rice husk by Tosuner et al., and they found that
the volume and yield of biohydrogen formation increased with
decreasing particle size of rice husk, the highest biohydrogen
formation volume was 29.26 mL under the particle size
of <74 μm (yield: 5.9 mL/g substrate) (Tosuner et al., 2019). In
producing biomethane from rice waste, optimizing the thermal
pretreatment, ozonolysis induction and anaerobic co-digestion
can enhance the productivity (He et al., 2017; Patil et al., 2021).
In anaerobic digestion process, high thermal pretreatment
temperature (e.g., 210°C) may cause longer biogasification period
due to the formation of byproducts, thus He et al. found a proper
thermal pretreatment temperature (150°C) achieving biomethane
yield of 134mL/(g-Volatile solid added) (He et al., 2017).Ozonolysis induction
could help in reducing the complexity of the substrates and
increasing accessibility to cellulose and hemicellulose during
thermal hydrolysis rice straw (Patil et al., 2021). The co-digestion
process can treat multiple waste in one facility that can keep a
balanced nutrient and sufficient feedstock supply, thus improving
the net biogas yield (Chen et al., 2015; Jha et al., 2021).

Biofuels is a renewable and carbon-neutral alternative to fossil
fuels; however, the direct use of biofuels also have shortcomings. For
example, ethanol has a lower energy density than gasoline, and the
use of ethanol to partially replace gasoline creates a net energy loss.
Therefore, using biofuels as feedstocks for producing bulk
chemicals, such as synthesis ethylene from bioethanol
dehydration, are value-added strategy (Wang et al., 2019).
Hydrogen and methane are also key feedstocks in various

chemical processes, such as ammonia synthesis and Fischer-
Tropsch process. Exploring efficient and energy saving process
for converting rice waste into biofuels is another important
strategy. Using renewable energies (e.g., solar) and developing
high-performance catalysts to reduce the reaction conditions are
promising. Moreover, synthesis microbial by biotechnology for the
efficient and selective conversion of rice wastes could promote their
applications in large-scale as renewable feedstocks.

Valuable chemicals

Besides biochar and biofuels, rice waste can also be converted
into valuable carbon-based chemicals through hydrolysis,
dehydration, oligomerization, decarboxylation/decarbonylation,
etc. The desired products include sugars, furan derivatives,
organic acids, and aromatic hydrocarbons that can be applied in
the pharmaceutical, biological, medical, energy, and chemical
industries.

Sugars

Typically, sugars such as glucose, fructose, xylose, etc., are the
primary products generated from the fermentation/hydrolysis of
cellulose, hemicellulose, and lignin that are the main components of
rice waste (Karimi et al., 2006). For the hydrolysis behavior of rice
straw using dilute sulfuric acid, Karimi et al. found that in the first
stage of the process, the acid-catalyzed hydrolysis of rice straw
mainly depolymerized xylan into xylose with a maximum yield of
80.8% (0.5% acid, 10min, 15 bar).Without further acid addition, the
yield of glucose from glucan only increased up to 26.6% in the
second stage. With the addition of more sulfuric acid (0.5%) prior to
the second stage, it can achieve a glucose yield of 46.6% from glucan
(3 min, 30 bar) (Karimi et al., 2006). Moreover, the pretreatment of
alkali could effectively remove lignin and increase the accessibility of
the substrate, and it can also change the structure of lignocellulosic
biomass and make it easier to be hydrolyzed (Qi et al., 2019).
Therefore, pretreatment via alkali could reduce the acid content
needed for the reaction. Qi et al. found that using alkali-pretreated
rice straw could significantly reduce the acid addition to 0.015 wt%
HCl required for hydrolysis, and also promote the formation of
glucose at a yield of 52.1% at 200°C for 60 min (un-pretreated:
13.06%) (Qi et al., 2019). Compared to the harsh conditions using
liquid acids, enzyme could convert rice waste into sugars under
milder conditions. For example, Park et al. have developed a facile
approach to recover glucose and fructose from enzymatic
saccharification of rice straw at 50°C under atmospheric pressure,
resulting in yields of 40.1% for glucose and 43.5% for fructose,
respectively (Park et al., 2009).

Furan derivatives

Furan derivatives can be directly produced from rice waste as
well (Bariani et al., 2020). For example, Bariani et al. synthesis
furfural from sulphuric acid-catalyzed hydrolysis of rice husk,
obtaining a furfural yield of 6.0 w/w% based on oven-dried rice
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husk weight under optimized conditions (200°C, 0.1% w/w of acid/
rice husk, and 40 min) (Bariani et al., 2020). By using boron-doped
biochar catalysts, Ofrasio et al. investigated the production of furan
and 5-hydroxymethylfurfural (HMF) from one-pot hydrolysis-
dehydration of rice straw, wheat straw or corncob, respectively,
and the highest yields of furan (12%) and HMF (21%) were achieved
with rice straw (Ofrasio et al., 2020). Yu et al. studied the one-pot
catalysis of food waste into HMF using tri/tetravalent metal catalysts
(Yu et al., 2017). SnCl4 offers the highest HMF yield of 22.7 wt%
generated from cooked rice, which is attributed to the high activity of
SnCl4 in the acid-catalyzed hydrolysis of starch into glucose,
followed by glucose isomerization and dehydration into HMF
(Yu et al., 2017; Wang et al., 2021). Further, Yu et al. reported a
higher HMF yield of 35.2 mol% through Al(Ⅲ)-organic acid system
in the conversion of rice waste to HMF, and the addition of maleic
acid can increase the HMF selectivity by suppressing the loss of
sugars and side reactions (Yu et al., 2019).

Organic acids

The conversion of rice waste to organic acids usually starts from
the degradation of rice waste to hemicellulose or oligosaccharides,
then transformed into sugars. The sugars, as the platform chemicals,
undergo a series of processes including isomerization, dehydration,
rehydration, etc. to reach the target products of organic acids.
Ukarde et al. utilized polyethyleneimine-functionalized acidic
ionic liquid catalysts for the conversion of rice straw into organic
acids (formic, acetic, and levulinic acids), and it was observed that
the catalyst with a [HSO4]

− counter ions exhibited superior
efficiency compared to other tested catalysts since it has the
highest hydrophilicity and Hammett acidity (Ukarde and Pawar,
2022). Moreover, the sodium hydroxide pretreated rice straw was
found to provide higher yields of levulinic acid (65.5%) and formic
acid (75.8%) than untreated rice straw (levulinic acid: 49.8%; formic
acid: 50.5%) (Ukarde and Pawar, 2022). Typically, these organic
acids are produced along with the furan derivatives (Wanninayake
et al., 2021). To convert these derivatives into acids, Peng et al.
developed a one-pot chemo-enzymatic reaction system utilizing Sn-
sepiolite catalyst and immobilized E. coli TS whole-cell biocatalyst
for the efficient synthesis of furoic acids from alkali pretreated rice
straw (Peng et al., 2019). The furfural generated at the initial stage
under Sn-loaded sepiolite at a yield of 42.2%, followed by the
completely converted into furoic acid under immobilized E. coli
TS whole-cell biocatalyst (Peng et al., 2019).

Aromatic hydrocarbons

Aromatic hydrocarbons, such as benzene, toluene, and xylene,
are commonly produced from rice waste through the catalytic fast
pyrolysis process (Zhang et al., 2018a; Li et al., 2019). H-ZSM-5 has
strong acidity and heat resistance as well as excellent selective
cracking catalysis and isomerisation catalytic properties, and thus,
is the most frequently used catalyst in the conversion of rice wastes
into aromatic hydrocarbon with high activity and selectivity (Zheng
et al., 2017; Zhang et al., 2018b; Li et al., 2020). The alkali
modification of ZSM-5 by potassium hydroxide could increase

mesoporosity and improve the mass transfer of ZSM-5, which
can significantly enhance the formation of aromatics during
pyrolysis of microcrystalline cellulose extracted from rice straw,
with a total aromatics relative peak area of 33.05% (0.4 M NaOH)
that was higher than ZSM-5 without modification (24%) (Nishu
et al., 2021). Li et al. compared the performance of HZSM-5 treated
using different types of bases in the microwave-assisted catalytic fast
pyrolysis of rice husk, which shows that the organic base treatment
outperformed the inorganic base treatment, resulting in a 4.3%
increase in monocyclic aromatic hydrocarbons and 4.6% reduction
in coke formation (Li et al., 2020). Besides the alkali pretreatment,
the aromatic product distribution and coke formation strongly
depends on the control of hierarchical mesoporous structure
(Zhang et al., 2018a; Li et al., 2019). It was found that
hierarchical structure is formed by adding a certain amount of
hexadecyl trimethyl ammonium bromide (0.01%) into ZSM-5,
which enhanced the yield of aromatics (26.8%) and decreased the
coke formation (39.2%) compared with the bare ZSM-5 (23.6%,
45.1%). (Zhang et al., 2018b). Moreover, incorporating suitable
metals or other ligands into mesoporous catalysts has been
shown to have an effect on the active sites of the catalysts which
may influence the production of aromatic hydrocarbons. For
instance, Nishu et al. synthesized Ni modified ZSM-5 for the
pyrolysis of rice straw, which offers a higher selectivity to
aromatics (47%) than unmodified catalyst (44%) due to the
improved acidity (Nishu et al., 2023). Nevertheless, the
introduction of ammonium ions in the organosilanes had a
negative effect on the catalytic property of ZSM-5 that led to a
lower yield (19.7%) of aromatics compared to unmodified catalyst
(25.6%) due to the decreased acidity (Chen H. et al., 2018).

Sugars, furan derivatives, organic acids, aromatic hydrocarbons,
etc., are generally produced from rice waste via thermocatalytic
process. Most of these chemicals are platform chemicals, such as
sugars, which could connect the conversion of rice wastes with the
current chemical process for producing valuable chemicals. For
example, glucaric acid or HMF derived from glucose can act as
renewable precursors to synthesize adipic acid (Wan and Lee, 2021).
The conversion efficiency strongly depends on the activity of
catalysts, such as acids, alkalis, enzymes, metal oxides, etc.
However, developing highly selective catalysts for specific
products production is still a challenge in biomass conversion,
including rice wastes, which often suffers from the lack
understanding of reaction mechanisms due to the comprehensive
reactions occurred.

Catalysts

Besides the catalytic conversion of rice waste into valuable
products, various catalysts can also be synthesized from rice
waste to drive chemical reactions. Carbon materials can be
synthesized from rice waste via hydrothermal carbonization,
which can be used as catalysts or as supports for functional
groups and metals (Wataniyakul et al., 2018). In some cases, rice
waste derived products could also be applied as feedstocks and
catalysts at the same time.

Sulfonate treatment is a common method used to introduce
strong acid sites on the hydrothermal carbon. For instance,
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sulfonated rice husk has been utilized for the in-situ
transesterification of microalgae at ambient temperature, obviated
the steps for oil extraction after the reaction and pre-treatment of
biodiesel before its application (Wadood et al., 2019). In the
hydrolysis of cellulose, sulfonated hydrothermal carbon catalysts
derived from defatted rice bran exhibits higher activity than the
commercial Amberlyst 16WT catalyst, with glucose andHMF yields
of 19% and 46%, respectively (Wataniyakul et al., 2018).

The incorporation of active metals is another commonly used
method to introduce active sites on hydrothermal carbon. Ni-loaded
rice husk derived biochar was utilized as catalysts for steam
gasification of food waste, exhibiting superior catalytic
performance (~68.88% gas yield) compared to Ni-loaded
commercial α-alumina support (~43.7% gas yield) (Farooq et al.,
2021). This is attributed to its high reducibility, high nickel
dispersion, abundant inherent K and Ca as co-catalysts, and
moderate surface area (Farooq et al., 2021). Similarly, the humins
generated from the reaction of starch-rich rice waste to HMF, can be
valorized as biochar-supported Lewis acid catalysts after
impregnation with AlCl3 followed by carbonization, which can
catalyze glucose-to-fructose isomerization with a fructose yield of
up to 14 Cmol% (Xiong et al., 2021). Moreover, Yuan et al.
synthesized a N-doped biochar supported MgFe2O4 catalyst
through one-pot pyrolysis of N-containing precursors, cooked
rice waste, and metal salts (Yuan et al., 2023). The catalysts
exhibit superior capacity (1,052.83 mg/g) for efficient low-
temperature desulfurization of H2S with high tolerance and
stability under harsh environmental conditions (Yuan et al., 2023).

The ash obtained from the combustion of rice waste contains a
high concentration of silica which can be utilized as an excellent
catalyst support. Franco et al. utilized microwave-assisted acid
dissolution to effectively remove metal ions from rice husk,
resulting in a highly pure amorphous mesoporous silica (>95%)
(Franco et al., 2018). The incorporation of iron oxide in this silica
framework could efficiently promote toluene alkylation with 100%
selectivity toward monoalkylated products (Franco et al., 2018).
Azat et al. developed an eco-friendly method for the production of
high-purity silica from rice husk, utilizing dry citric acid pre-
treatment and direct thermal treatment, which results in a silica
yield of 20% with a purity as high as 99% (Azat et al., 2019). Kamari
and Ghorbani synthesized magnetic MCM-41 with a highly ordered
hexagonal structure using the silica extracted from rice husk through
leaching with HCl (Kamari and Ghorbani, 2020). Benefitting from
the high silica content in rice husk, the Si-Fe/S/N-RH3

electrocatalyst exhibited high proportions of pyridine N, graphite
N and especially Fe-Nx and thiophene S for efficient oxygen
reduction reaction, demonstrating superior activity compared to
Pt/C benchmark electrocatalyst and other Fe-based electrocatalysts
(Wang et al., 2022). Additionally, self-doped Si can improve the
graphitization degree of the catalyst, leading to enhanced stability
and methanol tolerance ability (Wang et al., 2022).

The advantage of the rice waste derived catalysts is due to their
abundant and low cost. However, the purity limited their use as
catalysts or supports. Seeking suitable reactions requiring low
catalyst purity maybe expand their applications. Moreover, these
supports consists of other elements, such as K. Developing high-
performance catalysts with utilization of these elements as co-
catalyts could be promising.

Conclusion, chanlenges and future
perspectives

Biomass has attracted significant attentions in the fields of
biofuel and chemical conversions, as well as environmental
studies. In particular, utilizing rice waste as a biomass resource
holds tremendous promise for the agricultural industry. The
conversion of rice waste into valuable products not only
maximizes the economic benefits of agricultural biomass
resources but also plays a crucial role in mitigating energy and
environmental issues. This review provides a comprehensive
overview of the current advancements in converting rice waste
into useful products. Despite the progress made, commercializing
rice waste still encounters significant challenges.

Typically, the utilization of rice waste requires multiple
pretreatment processes including physical methods such as
mechanical crushing and grinding, ultrasound, microwave, etc.,
as well as chemical methods including catalytic hydrothermal
process with catalysts or enzymes and acid/alkali pretreatment.
The physical pretreatment methods can reduce the size and
increase the uniformity of rice waste, as well as enhance its
surface area. In comparison, chemical pretreatment methods such
as hydrothermal processing, acid-base treatment, and oxidation
treatment are essential for degrading organic substances in rice
waste. These methods break down complex organic compounds into
simpler or more easily processed substances to facilitate subsequent
processing steps. Despite the fact that chemical pretreatment can
enhance waste availability, the processing process requires a
significant amount of energy and water resources, resulting in
substantial wastewater generation. This necessitates post-
treatment, which increases treatment costs and environmental
pressure. Additionally, high-temperature and high-pressure
operating conditions pose equipment and safety risks. In order to
reduce energy and water costs while addressing environmental
concerns, the exploration of novel pretreatment methods utilizing
regenerated high-performance catalysts or biochemical processes
shows promise in achieving the pretreatment at lower costs and
milder conditions.

The conversion of rice waste into valuable chemicals has been
extensively studied. The current biofuel production process requires
harsh reaction conditions such as high temperature, high pressure,
catalyst participation and a non-oxygen environment, which is
energy-intensive. Furthermore, the yields of liquid and gaseous
biofuels are significantly lower than their theoretical yield. To
achieve efficient biofuel production from rice waste under milder
conditions, the development of high-performance catalysts and the
integrated application of multiple processes could be imperative. In
this case, an example of practical application could be the integration
of rice waste pyrolysis into liquid fuels at a relatively low temperature
and catalytic reforming of gaseous fuels for high hydrogen density.
In the conversion of rice waste to chemicals, compared to solid acids,
liquid acids, such as H2SO4 and HCl, can directly contact and react
with rice waste to promote catalytic reactions, but this results in
wastewater and environmental issues. Ionic liquid catalysts possess
high accessibility and activity, making them a potential candidate for
this process, however, they have not been extensively tested.
Reducing the cost and enhancing reusability are pivotal factors in
utilizing ionic liquids. Another viable approach could involve
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downsizing or breaking down waste into smaller components,
thereby augmenting the surface mass transfer of waste on solid
surfaces.

In practice, tailoring catalysts with high activity and stability is
essential, especially in complex processes like catalytic reforming where
multiple reactions occur simultaneously and rapid deactivation of
catalysts is common. To enhance catalyst activity and stability, it is
crucial to uncover transformation pathways and coke generation
mechanisms. However, due to the complexity of reaction
conditions, understanding of the reaction mechanism remains
limited. Therefore, greater emphasis should be placed on
investigating these reactions under in situ conditions to facilitate the
development of high-performance catalysts for large-scale applications.
With the development of efficient pretreatment techniques and an
improved understanding of reaction mechanisms for designing
catalysts with high activity and stability, we firmly believe that
sustainable production of valuable chemicals and fuels from rice
waste can be achieved, benefiting our society in the near future.
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