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Designing fast and simple quantitative methods on cheap and disposable
electrodes for the early detection of HeLa cells is highly desirable for clinical
diagnostics and public health. In this work, we developed a label-free and sensitive
electrochemical cytosensor for HeLa cell detection based on the gated molecular
transport across vertically ordered mesoporous silica films (VMSFs) on the
disposable indium tin oxide (ITO) electrode. As high affinity for a folate
receptor existed on the membrane of HeLa cancer cells, folic acid (FA)
functionalized VMSF could regulate the transport of electrochemical probe
(Fe(CN)6

3−) by the specific recognition and adhesion of HeLa cells toward the
VMSF surface. In addition, VMSF, served as a solid skeleton, is able to effectively
prevent the direct contact of cells with the underlying electrode, remaining the
underlying electrode activity and favoring the diffusion of Fe(CN)6

3−. Once specific
adhesion of HeLa cells to the VMSF surface happens, Fe(CN)6

3− redox probe
exhibits impeded transport in the silica nanochannels, ultimately resulting in the
decreased electrochemical responses and realizing the quantitative determination
of HeLa cells with a broad linear range (101–105 cells/mL) and a low limit of
detection (4 cells/mL). The proposed electrochemical cytosensor shows a great
potential application for the early diagnosis of cervical cancer.
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1 Introduction

As one of the most common gynecological malignancy, cervical cancer has become the
lethal cause of death among women in low- and middle-income countries (Feikin et al.,
2006). Moreover, carcinoma cells can rapidly grow and spread to the adjacent parts or organs
of the body, producing severe impact on women’s health. Clinical research indicates that the
early detection and treatment of cervical cancer greatly contribute to improving cure rates
and survival rates (Hou et al., 2022). At present, histopathological examination of biopsy
specimens is the gold standard for the diagnosis of cervical cancer, which can acquire the
information about the premalignant and malignant status of the cervix (Kundrod et al.,
2019). However, biopsy specimens are obtained in an invasive way, which is inconvenient for
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clinical diagnoses (Li et al., 2020b). Morphological imaging
technologies, including X-ray computed tomography and
magnetic resonance technology, also play an important role for
early detection and treatment of cervical cancer (Brindle, 2008).
Nevertheless, these detection methods often depend on the
expensive large-scale instruments and professional operators
along with cumbersome operation steps (Wang et al., 2021).
Therefore, it is particularly important to develop fast and
sensitive detection methods for cervical cancer.

HeLa cells closely associated with cervical cancer are extremely
important, and their content is helpful for the diagnosis and therapy
of patients with cervical cancer (Gansukh et al., 2019). Traditional
detection methods for HeLa cells include polymerase chain reaction
(Lin et al., 2019), colorimetry (Chen et al., 2015; Teng et al., 2019),
electrochemiluminescence (ECL) (Zhang et al., 2018),
electrochemistry (Liu et al., 2021; Hu et al., 2022),
photoelectrochemistry (Fan et al., 2019), and fluorometry (Guo
et al., 2014). Electrochemical biosensors is equipped with prompt
response, high sensitivity, and easy miniaturization, which has
become one of the most powerful analytical techniques for
complex biological samples (Gong et al., 2022a; Cui et al., 2023).
In general, the specific recognition and electrochemical detection of
cancer cells are accomplished by the utilization of tumor markers
[folate receptor (FR), glycan receptors, and growth factor receptor]
(Soleymani et al., 2020) or aptamer (Zhang et al., 2017). FR, as a kind
of glycosyl-phosphatidylinositol-anchored cell-surface glycoprotein
(O’Shannessy et al., 2012; Scaranti et al., 2020), will overexpress on
the membrane of HeLa cells while limitedly express on that of
normal cells, which has high affinity for folic acid (FA) (Scaranti
et al., 2020). On the basis of the aforementioned case, FA has often
been used as the recognition element to construct various
electrochemical cytosensors for the detection of HeLa
cells(Soleymani et al., 2018).

Vertically ordered mesoporous silica films (VMSFs)
possessing ultrathin, ultrasmall and uniform pore size,
perpendicularly aligned nanochannels, and high porosity are
potential to provide high permeability and selectivity with
respect to the size, charge, lipophilicity, and structure, which
have attracted particular attention in the field of electrochemical
analysis (Yan et al., 2020a; Ma et al., 2020; Yan et al., 2021; Han
et al., 2022; Deng et al., 2023; Huang et al., 2023). With a high
density of silanol groups on the silica walls, VMSF can either
exhibit an electrostatic effect for the confinement of
electrochemical/ECL probes (Gong et al., 2022b; Gong et al.,
2022c; Zhou et al., 2023) inside the nanochannels or provide
functional sites for the immobilization of specific recognition
elements [e.g., antibody (Ma et al., 2022a; Ma et al., 2022b; Chen
et al., 2022], aptamer (Wu et al., 2015; Zhang et al., 2023), and
phenylboronic acid (Yan et al., 2020b) on the surface, which is
able to construct various electrochemical/ECL sensors based on
the surface-confined probes or the gated molecular transport of
probes in solution across the silica nanochannels of VMSF
(namely, “turn on” or “turn off” strategies) (Huang et al.,
2022; Luo et al., 2022). In comparison with the
immobilization of probes on the electrode surface, probes in
solution combined with recognition element functionalized
VMSF could realize all electrochemical reactions in a
homogeneous solution without the complex electrode

modification process. Moreover, compared to the antibody
and aptamer, FA that served as the recognition element has a
small size and long-term good stability, as well as high recognized
ability for FR overexpressed on cancer cells (Xu et al., 2013). To
the best of our knowledge, the utilization of FA functionalized
VMSF for the electrochemical analysis of cancer cells has not
been reported yet.

In this work, we report folic acid (FA) functionalized VMSF for
highly sensitive and label-free determination of HeLa cells based on
the gated transport of electrochemical redox (Fe(CN)6

3−) across the
nanochannels of VMSF. Cheap and disposable ITO electrodes are
employed as the supporting electrode to stably grow VMSF. As high
affinity for FR existed on the membrane of HeLa cancer cells, FA can
be covalently immobilized on the VMSF surface by using EDC/NHS
coupling agents. Once HeLa cells are specifically recognized and
attached to the VMSF surface, the impeded transport of Fe(CN)6

3−

in the silica nanochannels occurs, leading to the diminished
electrochemical signals related to the concentration of HeLa cell.
The quantitative analysis of HeLa cells can be realized by recording
the DPV signals, and the fabricated electrochemical cytosensor with
good biocompatibility shows a great potential application in the
early diagnosis of cervical cancer.

2 Materials and methods

2.1 Chemicals and materials

Tetraethyl orthosilicate (TEOS), 3-aminopropyltriethoxysilane
(APTES), hexadecyltrimethylammonium bromide (CTAB),
potassium ferricyanide (K3 [Fe(CN)6]), potassium ferrocyanide
(K4 [Fe(CN)6]), sodium phosphate dibasic dodecahydrate
(Na2HPO4•12H2O), potassium hydrogen phthalate (KHP),
bovine serum albumin (BSA), folic acid (FA), 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide (EDC) N-hydroxysuccinimide
(NHS), glucose (Glu), sodium chloride (NaCl), dopamine (DA), and
ascorbic acid (AA) were all purchased from Aladdin Chemistry Co.
Ltd., (China). Potassium chloride (KCl) and ethanol (EtOH) were
ordered from Hangzhou Gaojingchem (China). L-alanine and
sodium dihydrogen phosphate dehydrate (Na2H2PO4•2H2O)
were obtained from Macklin (China). PBS (0.01 M) was prepared
by mixing Na2HPO4•12H2O and NaH2PO4•2H2O into ultrapure
water. Ultrapure water (18.2 MΩ cm) obtained from a Millipore
water purification system was used to prepare all solutions.
Therefore, all reagents used in the experiment were of analytical
grade without further treatment. ITO-coated glasses were purchased
from Zhuhai Kavio Optoelectronic Technology (China).

2.2 Apparatus and characterization

A transmission electron microscope (HT7700, Hitachi, Japan)
was used to characterize the surface morphology of VMSF. VMSF
was scraped moderately from the ITO electrode surface and
subsequently dissolved in EtOH to obtain the transmission
electron microscopy (TEM) specimen, which could be employed
for the TEM observation operated at 100 kV. The Autolab
electrochemical workstation (PGSTAT302N, Metrohm,
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Switzerland) was utilized to carry out all electrochemical
experiments including cyclic voltammetry (CV) and differential
pulse voltammetry (DPV). The scan rate for CV tests was
50 mV/s, and the parameters for DPV tests were as follows: step,
0.005 V; modulation amplitude, 0.025 V; modulation time, 0.05 s;
and interval time, 0.2 s.

2.3 Modification of vertically ordered
mesoporous silica films on the indium tin
oxide electrode

The pretreatment of bare ITO was necessary to remove the
impurity from the electrode surface and improve the hydrophilicity
of the electrode surface for further VMSF growth. Briefly, bare ITO
electrodes (5 cm × 0.5 cm) were soaked into NaOH (1 M) overnight
and treated successively with acetone, ethanol, and deionized water
under ultrasonication for 30 min. VMSF with good biocompatibility
was grown onto the cleaned bare ITO electrodes by using
electrochemically assisted self-assembly (EASA) approach as
previously reported (Zhang et al., 2022; Zhou et al., 2022; Zou
et al., 2022). The directly obtained electrode remains templated
surfactant micelles (SM), termed as SM@VMSF/ITO. To remove SM
from the silica nanochannels, HCl-EtOH (0.1 M) was employed and
VMSF/ITO electrode was acquired.

2.4 Preparation of folic acid-
aminopropyltriethoxysilane/vertically
ordered mesoporous silica films/indium
tin oxide electrode

FA with high affinity for FR existed on the membrane of
HeLa cancer cells was functionalized on the surface of VMSF
according to the previous literature with a slight adjustment (Li
et al., 2020a), which is involved in the synthesis of FA
functionalized with APTES (FA-APTES) and its covalent
modification to the VMSF. First, FA (40 mg), EDC (20 mg),
and NHS (30 mg) were dissolved into DMSO (2 mL) and stirred
in the dark for 30 min to activate the carboxyl groups of FA and
form NHS ester. APTES (125 μL) was then added to the
aforementioned activated FA solution under stirring for 2 h
to replace the active NHS esters, eventually resulting in the
formation of the FA-APTES complex. Subsequently, the VMSF/
ITO electrode was placed into EtOH (10 mL) containing FA-
APTES (400 μL) and reacted for another 2 h. After being rinsed
thoroughly with EtOH to remove unreacted FA-APTES, FA-
APTES-modified VMSF on the ITO electrode was obtained
called FA-APTES/VMSF/ITO.

2.5 Cell culture

HeLa cells were cultured in Dulbecco’s Modified Eagle Medium
(DMEM) supplemented with fetal bovine serum (FBS, 10%) at 37°C
in a humidified atmosphere containing CO2 (5%). The cells were
trypsinized and subcultured every 2 days. The cell number was
detected using a Petroff-Hausser cell counter.

2.6 Electrochemical determination of HeLa
cells

The cells were separated from the medium by centrifugation at
2,000 rpm for 3 min and then washed twice with sterile PBS. The
sediment was carefully redispersed in PBS to obtain a
homogeneous HeLa cell suspension at a certain concentration.
Then, the FA-APTES/VMSF/ITO electrode was incubated with
various concentrations of HeLa cell suspension for 20 min. The
steric hindrance effect produced in the recognition process inhibits
the mass transfer of the probe through bulk solution to the
underlying ITO electrode, leading to the reduction of the
electrochemical signal and further realizing the detection of HeLa.

3 Results and discussion

3.1 The construction of the electrochemical
cytosensor

Figure 1 shows the fabrication of VMSF-assisted
electrochemical cytosensor for HeLa cell detection. As shown,
ITO modified with VMSF (VMSF/ITO) was first obtained by
using the EASA method and subsequent removal of SM, which
could provide a gated-controlled electrode substrate for FA-
APTES cross-linking and further HeLa cell recognition. Due to
the amino groups of APTES and carboxyl groups of FA, FA could
be functionalized with APTES through EDC/NHS activated
agents, followed by modification to the surface of VMSF/ITO
through the silanization reaction. Thus, FA possessing high
affinity to FR-riched HeLa cells has been successfully grafted to
the sensing interface, and the obtained sensor was termed as FA-
APTES/VMSF/ITO. Benefiting from the overexpression of FR on
the membrane of HeLa cells, HeLa cell could be specifically
recognized by the proposed FA-APTES/VMSF/ITO sensor and
attached to the electrode surface, producing a steric hindrance
effect and eventually inhibiting the access of the electrochemical
redox probe (Fe(CN)6

3-) to the underlying ITO electrode.
Therefore, the reduced electrochemical signals have a relation
to the concentration of HeLa cells, allowing the quantitative
determination of Hela cells. It should be noted that VMSF
acting as a solid skeleton is capable of preventing the direct
contact of cells with the underlying electrode, effectively
maintaining the electrode activity and effective diffusion of the
probe.

3.2 Morphology and electrochemical
characterization of vertically ordered
mesoporous silica films

The pore size and thickness of VMSF could first be confirmed
from the top-view and cross-sectional TEM images shown in Figures
2A,B. It can be seen that the prepared VMSF with hexagonally
oriented pores is intact without large defects, and the parallel
nanochannels are in long-range order. The diameter and
thickness are approximately 2–3 nm and 160 nm, respectively.
Electrochemical strategies including CV and EIS were used to
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FIGURE 1
Schematic illustration for the fabrication of VMSF-assisted electrochemical cytosensor for HeLa cell detection.

FIGURE 2
(A) Top-view and (B) cross-sectional TEM images of VMSF. Insets in (A) and (B) display the corresponding amplified TEM images. (C) CV curves
obtained at the SM@VMSF/ITO and VMSF/ITO electrodes in KHP (0.05 M) solution containing Fe(CN)6

3− (0.5 mM). (D)Nyquist plots of SM@VMSF/ITO and
VMSF/ITO electrodes obtained in a KCl (0.1 M) solution containing K3Fe(CN)6/K4Fe(CN)6 (2.5 mM).
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survey the integrity and permeability of VMSF. Figures 2C,D show
that the SM@/VMSF/ITO electrode only displays charging currents
and a large charge transfer resistance (Rct), which is attributed to the
hydrophobic environment inside the nanochannels of VMSF
formed by templated SM and further implies that the as-
prepared VMSF is unbroken. Upon SM removal, the entrance of
Fe(CN)6

3− through the silica nanochannels is unhindered and its
redox reaction occurs at the underlying ITO electrode surface,
exhibiting a pair of reversible redox peaks in the CV curve and a
minor Rct in the Nyquist plot. This is because the open nanochannels
of VMSF assembled on the ITO electrode are beneficial for charge
transfer. Previous results indicate the successful preparation of
VMSF attached to the ITO electrode surface, giving rise to the
suitable electrode interface for the immobilization of specific
recognition element and cell adhesion.

3.3 Construction of the proposed
electrochemical cytosensor

The cytosensor interface was constructed using FA as a recognition
element. Figure 3A shows the CV curves of VMSF/ITO, FA-APTES/
VMSF/ITO and HeLa/FA-APTES/VMSF/ITO electrodes in KCl
(0.1 M) solution containing Fe(CN)6

3− (0.05 mM). It could be found
that a pair of reversible redox peaks corresponding to the
electrochemical reaction of Fe(CN)6

3− is displayed at the VMSF/ITO
electrode. After themodification of FA-APTES composite on theVMSF
surface, the redox peak currents are significantly increased, which is
attributed to the electrostatic effect by protonated amino groups on the
FA-APTES composite. Once HeLa cells are identified by the FA-
APTES/VMSF/ITO cytosensor, the redox peak currents remarkably
decrease, which is due to the steric hindrance effect generated by cells

FIGURE 3
(A)CV curves of VMSF/ITO, FA-APTES/VMSF/ITO, andHeLa/FA-APTES/VMSF/ITO electrodes in KCl (0.1 M) solution containing Fe(CN)6

3− (0.05 mM).
Inset is the corresponding DPV curves. (B) Optimization of the incubation time for HeLa cells on the proposed FA-APTES/VMSF/ITO cytosensor.
Concentrations of Fe(CN)6

3− or HeLa cells are 0.05 mM and 104 cells/mL.

FIGURE 4
(A) DPV curves of the FA-APTES/VMSF/ITO cytosensor in 0.05 mM K3 [Fe(CN)6] and containing different concentrations of HeLa cells.
Concentration range is 101–105 cells/mL. (B) Corresponding calibration curves for the detection of HeLa cells.
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attached to the electrode surface and the inhibited mass transfer of
Fe(CN)6

3−. The corresponding DPV curves are shown in the inset of
Figure 3A, proving the successful construction of our FA-APTES/
VMSF/ITO cytosensor.

3.4 Condition optimization of the proposed
electrochemical cytosensor

As experimental condition has a crucial impact on the
electrochemical performance of the fabricated FA-APTES/VMSF/
ITO cytosensor, the incubation time for HeLa cells is optimized.

Figure 3B shows the electrochemical responses at the FA-APTES/
VMSF/ITO electrode under various incubation time periods for
HeLa cells. It could be found that the anodic peak current of
Fe(CN)6

3− depletes with an increase in the incubation time, and
no evident variation is observed after 20 min, suggesting that HeLa
cells have fully reacted with the binding site of the FA-APTES/
VMSF/ITO electrode. Therefore, 20 min is considered as the
appropriate incubation time in the following study. Moreover,
the kinetic of the Fe(CN)6

3− reaction at the VMSF/ITO electrode
was studied, and the results were shown in Supplementary Figure S1.
As seen, the equilibrium time is 20 min, which is enough for the
binding of HeLa cells on the FA-APTES/VMSF/ITO electrode.

3.5 Determination of HeLa cells

Figure 4 shows that when 0.05 mM Fe(CN)6
3− is present, the

dynamic concentration range is from 101 to 105 cells/mL, and the
obtained linear regression equation is ΔI/I0 = 0.082 log [HeLa] (cells/
mL)−0.013 (R2 = 0.996) with a limit of detection (LOD) of four cells/mL.
(ΔI and I0 are defined asΔI= IFA−IHela and IFA, respectively; IFA and IHela
represent the current values of the developed cytosensor before and after
the incubation with various concentrations of HeLa cells). As displayed
in Supplementary Figure S2, when the concentration of Fe(CN)6

3− is
0.5 mM, the dynamic concentration range is from 102 to 106 cells/mL,
and the obtained linear regression equation is ΔI/ΔI0 = 0.17 log [HeLa]
(cells/mL)−0.0042 (R2 = 0.991) with an LOD of 12 cells/mL. On the
contrary, a high concentration of Fe(CN)6

3− is able to produce the linear
range at the high concentration range, while the low concentration of
Fe(CN)6

3− generates high sensitivity and low LOD, which is more
suitable for practical applications. Table 1 shows the comparison
between previously reported electrochemical cytosensors with our
developed FA-APTES/VMSF/ITO cytosensor. By contrast, our
proposed electrochemical cytosensor is timesaving and has good
detection performances in terms of a wide linear range and a low LOD.

TABLE 1 Comparison with the existing electroanalytical techniques for the detection of HeLa cells.

Strategy Technique Incubation time (min) Linear range (cells/mL) LOD (cells/mL) Refs.

FA/Pt@BSA1/AuE DPV 120 28−2.8 ×106 9 Hu et al. (2022)

FA/MUA2/Au/GE3 EIS / 6−105 6 Wang et al. (2012)

FA/PAMAM4/Glu5/Cys6/AuNP/GCPE7 CV 60 102−106 100 Tepeli et al. (2015)

FA@UiO-668/GE EIS 60 102−106 90 Du et al. (2019)

FA films/PAH9/ITO EIS 60 50−106 4 Correia et al. (2021)

CV 102−105 19

FA/MUA/Au/BDD10 EIS 20 101−105 10 Weng et al. (2011)

FA-APTES/VMSF/ITO DPV 20 101−105 4 This work

1Bovine serum albumin.
211-Mercaptoundecanoic acid.
3Gold electrode.
4C12 dendrimer generation 4 solution.
5Glutaraldehyde.
6Cysteamine.
7Glassy carbon paste electrode.
8Zirconium MOFs.
9Poly(allylamine) hydrochloride.
10Boron-doped diamond.

FIGURE 5
DPV curves of the FA-APTES/VMSF/ITO cytosensor in the
absence and presence of HaCat (104 cells/mL) or HeLa cells (104

cells/mL).
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3.6 Selectivity of the electrochemical
cytosensor

The effect of potentially co-existed interfering substances including
glucose (Glu), Na+, K+, Cl−, dopamine (DA), ascorbic acid (AA), alanine,
and BSA, on the detection of HeLa cells was first evaluated using the FA-
APTES/VMSF/ITO cytosensor. As shown in Supplementary Figure S3,
onlyHeLa cells can produce an apparent signal at the FA-APTES/VMSF/
ITO cytosensor. Then, selectivity of the fabricated FA-APTES/VMSF/
ITO cytosensor was evaluated by comparing the DPV response of the
normal cell (HaCat cell). Figure 5 shows the DPV curves of the FA-
APTES/VMSF/ITO cytosensor toward the same concentration of HaCat
cell andHeLa cell. As displayed, no evident anodic peak current variation
is observed for the HaCat cell, while an evident decreased current for the
HeLa cell is observed, demonstrating the excellent selectivity of the as-
prepared FA-APTES/VMSF/ITO cytosensor.

To further examine the ability of the FA-APTES/VMSF/ITO
cytosensor to distinguish between cancer cells and normal cells,
HeLa cells with different concentrations were determined in the
presence of HaCat cells, and the results were shown in Figure 6. As
presented, in the range from 10 to 105 cells/mL, the anodic peak
current gradually decreases with the increasing concentration of
HeLa cells, and the fitting linear regression equation is ΔI/I0 =
0.075 log [HeLa] (cells/mL) + 0.0032 (R2 = 0.996). Hence, the LOD is
calculated as six cells per mL. The sensitivity for the detection of
HeLa cells in the presence of HaCat cells is very close to that in buffer
solution, further indicating that the FA-APTES/VMSF/ITO
cytosensor fabricated in this work has high selectivity. However,
our proposed cytosensor could not distinguish a specific kind of cell.

3.7 Reproducibility and stability of the
electrochemical cytosensor

The reproducibility of the FA-APTES/VMSF/ITO
electrochemical cytosensor was assessed by testing four sensors
prepared in parallel. Figure 7 shows the relative standard
deviation (RSD) of current values obtained from these four
cytosensors in the presence of 104 cells/mL HeLa cells is 3.8%,
confirming that the as-prepared FA-APTES/VMSF/ITO cytosensor
has satisfactory reproducibility. Moreover, after a 20-day storage, the
developed FA-APTES/VMSF/ITO cytosensor still shows a stable
signal for the detection of 104 cells/mL HeLa cells.

4 Conclusion

In summary, a label-free and sensitive electrochemical
cytosensor for HeLa cells has been constructed by grafting FA to
the VMSF surface. FA has high affinity for FR on the membrane of
HeLa cells and is able to confer VMSF with specific recognition
capacity. When HeLa cells are specifically attached to the VMSF
surface, the diffusion of Fe(CN)6

3− through the silica nanochannel is

FIGURE 6
(A) DPV curves of the FA-APTES/VMSF/ITO cytosensor in 0.05 mM K3 [Fe(CN)6] containing 103 cells/mL HaCat cells and different concentrations
(101–105 cells/mL) of HeLa cells. (B) Calibration curve for the detection of HeLa cells.

FIGURE 7
Anodic peak currents obtained from four different electrodes.
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excluded, leading to the decreased electrochemical response and
further allowing the quantitative analysis of HeLa cells with a wide
concentration range and a low LOD. Furthermore, the fabricated
electrochemical cytosensor has good selectivity, reproducibility, and
biocompatibility, which presents a great potential application for the
early diagnosis of cervical cancer.
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