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In comparison to metal complexes, organic photosensitive dyes employed in
photocatalytic hydrogen production exhibit promising developmental prospects.
Utilizing the organic dye molecule TA+0 as the foundational structure, a series of
innovative organic dyes, denoted as TA1-1 to TA2-6, were systematically designed.
Employing first-principles calculations, we methodically explored the modifying
effects of diverse electron-donating groups on the R1 and R2 positions to assess
their application potential. Our findings reveal that, relative to the experimentally
synthesized TATA+03, the TA2-6molecule boasts a spatial structure conducive to
intramolecular electron transfer, showcasing the most negative reduction
potential (Ered = −2.11 eV) and the maximum reaction driving force
(△G0

2 = −1.26 eV). This configuration enhances its compatibility with the
reduction catalyst, thereby facilitating efficient hydrogen evolution. The TA2-6
dye demonstrates outstanding photophysical properties and a robust solar energy
capture capacity. Its maximum molar extinction coefficient (ε) stands at 2.616 ×
104 M−1·cm−1, representing a remarkable 292.8% improvement over TATA+03. In
conclusion, this research underscores the promising potential of the TA2-6 dye as
an innovative organic photosensitizer, positioning it as an efficacious component
in homogeneous photocatalytic systems.

KEYWORDS

photocatalytic hydrogen production, organic photosensitizer, DFT/TDDFT, redox
potential, absorption spectrum

1 Introduction

Hydrogen energy is a renewable and clean substitute for coal and oil. Direct combustion
of hydrogen energy will not cause environmental pollution or produce greenhouse gases
(Alvarez and Cervantes, 2011; Karadag et al., 2014; Melián et al., 2016; Cha et al., 2017; Moon
et al., 2018). Using visible light to drive the decomposition of water can turn solar energy into
hydrogen energy, which has great potential to solve the growing global energy crisis and
environmental problems (Kerr, 2005; Wang M. et al., 2009; Han and Eisenberg, 2014; Zhang
et al., 2015; Yuan et al., 2017). The homogeneous photocatalytic system for hydrogen
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production from water decomposition is composed of a
photosensitizer, catalyst, and sacrificial electron donor, and has
low construction cost and better industrial production prospects
(Rau et al., 2007; Ozawa and Sakai, 2011; Frischmann et al., 2013;
Halpin et al., 2013). Due to the structural variability of the multi-
component catalytic hydrogen production system, the activity and
stability of the system can be optimized by adjusting its composition.
Sufficient light absorption and efficient electron transfer are
important factors for the establishment of a high-performance
photocatalytic water decomposition hydrogen production process
(Wang X. et al., 2009; Artero et al., 2011; Wang et al., 2011; Duf and
Eisen Be Rg, 2012; Eckenhoff and Eisenberg, 2012; Han and
Eisenberg, 2014). Photosensitizers play an important role in the
photocatalytic hydrogen production system by collecting light,
generating excited electrons, and promoting intermolecular
charge transfer (Rangan et al., 2009; Deponti and Natali, 2016;
Yuan et al., 2017).

At present, the dominant photosensitizer is the photosensitizer
containing rare metal elements such as Ru, Ir, Pt, Rh, and noble
metal elements (Cline et al., 2008; Metz and Bernhard, 2010;
Khnayzer et al., 2013; Stoll et al., 2014). The long-term development
of hydrogen production fromphotolysis water has been greatly limited by
factors such as their high cost, difficulty in acquisition, and instability in
solution (Khnayzer et al., 2013; Stoll et al., 2014). Comparedwith precious
metal complexes, organic dyes have abundant raw materials and low
synthesis cost, and have been successfully used in homogeneous
photocatalytic hydrogen production systems in the past decade, which
has a better development prospect. Examples include fluorescein (Han
et al., 2012; Das et al., 2015), Eosin Y(Lazarides et al., 2009; Orain et al.,
2014), and rhodamine (McCormick et al., 2010) dyes in the
xanthanthraquinone group, acridine (Kotani et al., 2006; Kotani et al.,
2007; Fukuzumi, 2008; Gong et al., 2011) and proflavine (Krasna, 1979;
1980) in the azacyclic group, and BODIPY dyes (Sabatini et al., 2011;
Durá et al., 2015; Sabatini et al., 2016). Here, Gueret et al. reported that in
a homogeneous photocatalytic system consisting of triazatriangulenium
(TATA+) photosensitive dye, [CoⅢ(CR14)Cl2]

+ catalyst, and ascorbic acid
(HA) electron donor, the intermolecular electron transfer mechanism
follows the principle of photosensitizer reduction quenching (Gueret
et al., 2018). Shao et al. designed a series of TATA+organicmoleculeswith
different side chains based on the TATA+ derivative parent (Shao et al.,
2020a). Leung et al. conducted a comparison of the turnover numbers
(TON) ofH2 for photosensitizers in the realm of photocatalytic hydrogen
production. Their findings indicate the reduced form of TATA+ dye in
acidic solution stability and hydrogen production performance is much
higher than the benchmark noble metal photosensitizer [Ru(bpy)3]

2+

reduced form, which is currently the most active organic photosensitizer
in the photocatalytic hydrogen production system (Leung and Lau, 2021).
The exceptional visible light photocatalytic hydrogen production
performance can be attributed to the flat structure of TATA+, the
presence of three electron-donating nitrogen atoms, and the
promotion of free radical delocalization, all of which enhance the
stability of TATA+ dyes and prevent their degradation during the
photocatalytic process.

The absorption of light energy by photosensitizers serves as a crucial
energy source for the photocatalytic hydrogen production reaction,
effectively initiating the reaction. Given that the absorption range is
concentrated in the visible light region, enhancing the molar extinction
coefficient of the dye can significantly augment its visible light absorption

capacity, thereby enhancing the overall activity of the hydrogen
production system. In the reduction quenching of the excited state
photosensitizer, the evolution of the Co catalyst reduced by the reduced
state photosensitizer H+ to generate H2 is the second step of reduction
quenching, and also the step of H2 generation in the hydrogen
production reaction. The reaction free energy at this stage, denoted
as△G2

0, directly influences the efficiency of H2 evolution. The negative
reduction potential plays a crucial role in reducing the H2 evolution
catalyst during the photocatalytic hydrogen production experiment,
facilitating the reduced form of the photosensitizer to transfer
electrons to the catalyst, thereby enhancing hydrogen production
performance. Consequently, reducing the reduction potential of the
photosensitizer holds great significance in promoting the photosensitizer
reduction of the Co catalyst.

Organic photosensitizers offer greater molecular-level tunability
compared to precious metal complexes (Han and Eisenberg, 2014).
The introduction of suitable functional groups based on the
structure-activity relationship enables the adjustment of their
redox properties and light absorption capacity (Li et al., 2018).
As shown in Figure 1, we have designed a series of organic dyes
without metal elements based on TATA+ dyes and explored their
potential ability to be used as light-driven hydrogen production
materials relative to the experimental parent.

2 Computational details

Considering the computational cost, we designed a series of new
organic dye molecules by screening some functional groups according
to the induction effect and conjugation effect of the group itself. In
Figure 1, TA1-1 to TA-6 denote n-propyl, isopropyl, methyl carboxyl,
amino, methylamino, and dimethylamino, respectively. Functional
groups were introduced into the nitrogen position (R1 position) and
R2 position of the TA+0 molecule, respectively, to optimize the
ground state structure of the molecule, reduce its reduction
potential, and improve its photophysical properties. It is of positive
significance to the efficiency of capturing sunlight as a photosensitizer
for hydrogen evolution systems and the ability of reducing the Co
catalyst in the reaction.

All the calculations in this paper are carried out in the Gaussian
09 software package (Patterson, 1989; Frisch et al., 2009). Different
exchange correlation functions (XC) usually have a significant effect
on charge transfer excitation. Compared with the experimental
results, these methods are considered to be reliable (Shao et al.,
2020b). Based on density functional theory (DFT) and HCTH
function combined with the 6-311+G (d, p) basis group, the
ground state geometry of dye molecules was optimized in the
conductor polarized continuum model (CPCM) in acetonitrile
solvent (Frisch et al., 1984; Patterson, 1989; Hamprecht et al.,
1998). Using Gauss View 5.0.8, the HOMO-LUMO front
molecular orbital electron density and energy level analyses were
performed on the ground state optimization results. The excited
states were calculated in the conductor polarized continuum model
(CPCM) of acetonitrile solvent by using the time-dependent density
functional theory (TD-DFT) and the 6-311+G (d, p) basis group
combined with the HCTH function to predict the photophysical
properties of dyes (Frisch et al., 1984; Bauernschmitt and Ahlrichs,
1996; Hamprecht et al., 1998).
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3 Results and discussion

3.1 Electrochemical and photophysical
properties

Using the spatial characteristics of electron transfer to regulate
the redox potential of photosensitive dyes is beneficial to improve
the photocatalytic performance and build efficient hydrogen
production systems. After ground state structure optimization
using DFT, HOMO and LUMO levels of dye molecules can be
obtained, as shown in Table 1. Formulas (1) and (2) reflect the

electrochemical relationship between energy level and redox
potential:

ELUMO� −4.5eV− Ered + 0.24( ) (1)
EHOMO� − 4.5eV− Eox + 0.24( ) (2)

where Ered and Eox are the reduction potential and oxidation
potential of the dye, respectively, representing the relationship
with the saturated calomel electrode (SCE). The more negative
reduction potential is favorable for the photosensitizer to transfer
electrons to the catalyst. In all the designed molecules except for the
carboxyl methyl group substituted TA1-3 and TA2-3, the absolute

FIGURE 1
Molecular structures of TA1-1 to TA2-6 simplified model.

TABLE 1 Calculated electrochemical data for dyes: highest occupied molecular orbital energy level (EHOMO), lowest unoccupied molecular orbital level (ELUMO),
excited state energy (E0-0), reduction potential (Ered), first oxidation potential (Eox), and excited state reduction potential (E*red) by HCTH/6-311G+(d, p) and TD-
HCTH/6-311G+ (d, p).

Dyes HOMO/eV LUMO/eV E0-0/eV Ered/V Eox/V E*red/V

TA+0 −5.54 −3.43 2.39 −1.31 0.80 1.08

TATA+03 −5.58 −3.52 2.34 −1.22 0.84 1.12

TA1-1 −5.47 −3.38 2.36 −1.36 0.73 1.01

TA2-1 −6.00 −2.71 2.41 −2.03 1.26 0.38

TA1-2 −5.42 −3.45 2.25 −1.29 0.68 0.97

TA2-2 −5.84 −2.94 2.44 −1.80 1.10 0.64

TA1-3 −5.75 −3.68 2.36 −1.06 1.01 1.30

TA2-3 −5.63 −3.52 2.37 −1.22 0.89 1.16

TA1-4 −5.58 −3.50 2.37 −1.24 0.84 1.13

TA2-4 −5.26 −2.76 3.08 −1.98 0.52 1.10

TA1-5 −5.44 −3.45 2.30 −1.29 0.70 1.01

TA2-5 −5.09 −2.64 2.74 −2.10 0.35 0.64

TA1-6 −5.51 −3.48 2.36 −1.26 0.77 1.10

TA2-6 −5.04 −2.63 2.68 −2.11 0.30 0.57
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value of the reduction potential was improved to some extent, and
the reducing ability of the dye was enhanced. The reduction
potential of the excited state of the dye can be obtained from
formula (3) (Prier et al., 2013; Yuan et al., 2017):

Ered
* � Ered + E0−0 (3)

where E0-0 represents the vertical excitation energy of the dye
calculated by TD-DFT method. The redox potentials of all dyes
are shown in Table 1.

Only when the reduction potential of the excited dye is higher
than the oxidation potential of the electron donor can the excited
photosensitizer be reduced and quenched by the electron donor. In
this hydrogen production system, the oxidation potential of ascorbic
acid as the sacrificial electron donor is EHA•/HA- = 0.11 V (vs. SCE)
(Eckenhoff and Eisenberg, 2012; Gueret et al., 2018). For the second
step of reduction quenching, the reduction potential Ered of the dye
should be negative to the reduction potential of the Co catalyst,
where ECo

Ⅱ
/Co

Ι = −0.85 V (vs. SCE) (vs. SCE) takes the experimental
value of CoⅡ/CoΙ in an aqueous solution (Gueret et al., 2018). As
shown in Table 1, the redox potentials of all dyes meet the level
matching condition in reduction quenching.

According to the Rehm–Weller equation, the reduction driving
forces △G1

0 and △G2
0 of the reduction quenching of the excited

photosensitizer are given by formula (4) and (5) (Rehm and Weller,
1970; Lomoth and Ott, 2009; Wang et al., 2012):

ΔG0
1 eV( ) � EHA·/HA− − EPS/PS− − E0−0 − C (4)

ΔG0
2 eV( ) � EPS/PS− − ECoⅡ/CoΙ (5)

where C represents the sum of the solvation effect and Coulomb
energy of the ion pair in solution, which is ignored as 0.

As shown in Table 2, the reaction driving forces△G1
0 and△G2

0

of all dyes are less than 0, which indicates that within the range of

thermodynamic tolerance, electron transfer can be carried out
spontaneously from the sacrificed-electron donor to the excited
state photosensitizer and from the reduced-form photosensitizer to
the Co catalyst to complete the reduced-quenching photocatalytic
hydrogen production reaction. The more negative the reduction
driving force△G2

0 shows that the stronger the reduction capacity of
the Co catalyst, the more favorable the charge transfer from
photosensitizer to catalyst. By proper modification of the R1 and
R2 sites of the molecule, more negative Ered and △G2

0 can be
obtained, which helps the photosensitizer to reduce the catalyst to
further have a positive significance for hydrogen generation.

As the main body of light collection, the photosensitizer can
improve the utilization rate of light energy and contribute to the
design of low-cost and efficient hydrogen production reactions.
Figure 2 shows the absorption spectra of all the dyes calculated
in acetonitrile solution. The light capture ability and excited
photophysical properties of dye molecules are regulated by
modifying their structure. Table 2 shows the photophysical data
we calculated using TD-DFT, including the maximum molar
extinction coefficient and the position of the absorption peak.
Compared with the parent structure TA+0, the maximum molar
extinction coefficients of the dye molecules modified by weak
electron-donating groups at R1 and strong electron-donating
groups at R2 were significantly improved.

3.2 The role of weak electron-donating
groups

The side chains at the R1 and R2 positions of dyes will have a
strong effect on their hydrogen production performance in visible-
light-driven hydrogen production (Shao et al., 2020b; Lin et al.,
2021). When the functional groups were modified at different

TABLE 2 Calculated maximum absorption wavelengths (λmax), maximum molar extinction coefficient (ε), oscillator strength (f), and injection driving force (ΔG0
1,

and ΔG0
2) of all the dyes.

Dyes λmax/nm ε/(103·M−1·cm−1) f △G1
0/eV △G2

0/eV

TA+0 519.6 3.56 0.0439 −0.97 −0.46

TATA+03 530.00 6.66 0.0822 −1.01 −0.37

TA1-1 525.20 6.82 0.0843 −0.90 −0.51

TA2-1 514.00 3.74 0.0463 −0.27 −1.18

TA1-2 550.40 6.26 0.0773 −0.86 −0.44

TA2-2 508.00 3.66 0.0470 −0.53 −0.95

TA1-3 526.00 7.00 0.0867 −1.19 −0.21

TA2-3 522.40 3.72 0.0472 −1.05 −0.37

TA1-4 522.40 5.10 0.0629 −1.02 −0.39

TA2-4 410.00 16.57 0.1611 −0.99 −1.13

TA1-5 543.00 6.43 0.0838 −0.90 −0.44

TA2-5 437.40 22.79 0.1931 −0.53 −1.25

TA1-6 529.60 6.37 0.0793 −0.99 −0.41

TA2-6 460.80 26.16 0.2844 −0.46 −1.26

Frontiers in Chemistry frontiersin.org04

Yu et al. 10.3389/fchem.2023.1210501

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1210501


FIGURE 2
Calculated UV−visible absorption spectra by TD-HCTH/6-311+G (d, p) in acetonitrile (A) TA1-1~TA2-3, (B) TA1-4~TA2-6, (C) TA+03, TA+0, and TA2-6.

FIGURE 3
The optimized structures of TA2-4, TA2-5 and TA2-6 by HCTH/6-311G+ (d, p).
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positions of TA+0 matrix, the molecular orbital energy level, light
absorption capacity, and reduction potential level of the dye were
significantly affected.

TA1-1, TA1-2, and TA1-3 are obtained when the weak electron-
donating group is connected to the R1 position of TA+0 and the
R2 position retains the H atom. Their maximum molar extinction
coefficients were 6.82×103·M−1·cm−1, 6.26×103·M−1·cm−1, and
6.26×103·M−1·cm−1, which were higher than the
3.56×103·M−1·cm−1 of the parent molecule TA+0. When the
R2 position is connected to the substituents and the R1 position
retains H atoms, the reduction potential Ered and the reduction
driving force △G2

0 of the TA2-1 and TA2-2 dyes become more
negative, indicating that these dyes have stronger reduction ability
and are more favorable to the activation of catalysts. However, the
energy level and free energy of TA2-3 dye do not change to a more
negative direction, because the methyl carboxyl group has weak
electron-donating ability and does not show a good electron-
donating effect after connecting with the TA+0 matrix.
Nevertheless, they are not suitable for photocatalytic hydrogen
production system, because the molar extinction coefficient of
these three dyes is too small to absorb visible light well. We
found that the modification of R1 position by the weak electron-
donating group can effectively improve the photophysical properties
of dyes based on the TA+0 matrix.

3.3 The role of strong electron-donating
groups

However, on further investigation, we found something even
more interesting. When we attached more electron-donating groups
at R1 and R2, substituting R1 and R2 had different effects on the
parent molecule than substituting weak electron-donating groups.

For the functional groups added by the latter six dye molecules, the
relationship between the electron-giving ability is as follows:
NCH3CH3 (dimethyl amino) > -NHCH3 (methyl amino) > -NH2

(amino).
When they are connected at R1 position, they have no obvious

effect on the negative change of the orbital energy level and
reduction potential of the photosensitizer. This may be due to
the orbital overlap and interaction between the nitrogen atoms
on these three groups and the nitrogen atoms at the
R1 replacement position, resulting in the failure of the three
strong electron-donating groups to show outstanding electron-
donating effects. Compared with TATA+03, the absolute value of
TA1-4, TA1-5, and TA1-6 reduction potentials only increased by
0.02 eV, 0.07 eV, and 0.04 eV, respectively. Compared with the
parent molecule TA+0, its molar extinction coefficient also
increased, but the calculated value of the same level did not
exceed that of the experimental synthesis TATA+03 dye.

When they were connected to the carbon atom in R2 position,
TA2-4, TA2-5, and TA2-6 showed the most negative reduction
potential and the strongest reaction driving force. Compared with
TATA+03, they respectively had a larger negative reduction
potential of −1.98 eV, −2.10 eV, and −2.11 eV, and a more
negative reduction potential of 62.3%, 72.1%, and 73%. The
△G2

0 of the three dyes reached −1.13 eV, −1.25 eV,
and −1.26 eV, respectively, showing a stronger ability of reducing
the Co catalyst. This is because the structure modification of the
strong electron-donating group increases the density of the electron
cloud on the parent molecule, showing a strong electron-donating
effect. As shown in Figure 3, their geometries optimized in the
ground state are studied. It can be seen that the functional group and
the benzene ring structure of the parent molecule show excellent
flatness. The nitrogen atoms of the substituent group and the
benzene ring plane of the parent molecule are located in the

FIGURE 4
Isodensity plots for the HOMO and LUMO levels and calculated energy levels of TA+0, TA2-4, TA2-5 and TA2-6.
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same plane, which is more conducive to promoting the charge
transfer inside the molecule.

As shown in Figure 3, we found that TA2-4, TA2-5, and TA2-6
exhibit excellent absorption of light energy because these
substituents are also chromophores. The molar extinction
coefficient of TATA+03 is 6.66 × 103·M−1·cm−1. The molar
extinction coefficients of dyes TA2-4, TA2-5, and TA2-6 were
1.657 × 104·M−1·cm−1, 2.279 × 104·M−1·cm−1, and 2.616 ×
104·M−1·cm−1, respectively, with increments of 148.8%, 242.2%,
and 292.8%. The high molar extinction coefficient shows the
excellent light capture ability of dyes, which can effectively
absorb solar energy and improve the utilization rate of light
energy for movable hydrogen reaction of optical drive and
photocatalytic performance. Figure 4 shows the isodensity plots
for the HOMO and LUMO levels and calculated energy levels of
TA+0, TA2-4, TA2-5 and TA2-6. Although their absorption peak
positions have a certain blue shift phenomenon, this is because the
increase of the LUMO energy level of the dye makes the dye have
more negative reduction potential, which also increases the band gap
of the molecule, resulting in the required increase of the electron
transition.

In contrast, the absorption peak position of TA2-6 dye is
460 nm, and the absorption range covers more visible regions
and has the highest molar extinction coefficient, the most
negative reduction potential, and reduction driving force.
Considering that △G1

0 = −0.46 eV, although it is not good for
the electron donor reduction of an excited state photosensitizer, the
reduced dye is still very favorable for the activation of a catalyst,
which is favorable for H2 release. Therefore, TA2-6 is considered to
be the most promising organic photosensitive dye, which can be
combined with ascorbic acid and [CoⅢ(CR14)Cl2]

+ to construct
efficient photocatalytic hydrogen production systems.

4 Conclusion

In this study, leveraging the organic dye molecule TA+0 as the
foundational matrix, we conducted a systematic exploration of
R1 and R2 positions through the introduction of electron-
donating groups with varying intensities. Subsequently, a series of
meticulously designed dye molecules, denoted as TA1-1 to TA2-6,
were synthesized. Employing first principles, we meticulously
investigated the ground state structure, energy gap, reduction
potential, reaction driving force, and UV-visible absorption
spectrum of these novel dye molecules. The findings elucidate
that the augmentation of both the reduction ability and light
absorption in the dye was achieved by strategically incorporating
three potent electron-donating groups at the R2 position for
structural refinement. Notably, in contrast to TATA+03, TA2-6
exhibited a spatial configuration conducive to intramolecular
electron transfer. Furthermore, the observed highly negative
reduction potential (Ered = −2.11 eV) and substantial reaction
driving force (△G2

0 = −1.26 eV) in TA2-6 are particularly
advantageous for the progression of the reduction catalyst and
efficient hydrogen generation. The exceptional photophysical

properties of TA2-6, characterized by a molar extinction
coefficient of 2.616×104·M−1·cm−1, represent a remarkable 292.8%
increase over TATA+03. These compelling results underscore the
potential of TA2-6 as a promising organic dye, positioning it as a
novel organic photosensitizer for the development of a highly
efficient homogeneous photocatalytic system. Beyond these
immediate implications, our study is poised to offer crucial
theoretical support for the advancement of more efficient
homogeneous non-noble metal photocatalytic hydrogen
production systems.
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