AUTHOR=Patel Vivaan , Dato Michael A. , Chakraborty Saheli , Jiang Xi , Chen Min , Moy Matthew , Yu Xiaopeng , Maslyn Jacqueline A. , Hu Linhua , Cabana Jordi , Balsara Nitash P. TITLE=Cycling of block copolymer composites with lithium-conducting ceramic nanoparticles JOURNAL=Frontiers in Chemistry VOLUME=11 YEAR=2023 URL=https://www.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2023.1199677 DOI=10.3389/fchem.2023.1199677 ISSN=2296-2646 ABSTRACT=
Solid polymer and perovskite-type ceramic electrolytes have both shown promise in advancing solid-state lithium metal batteries. Despite their favorable interfacial stability against lithium metal, polymer electrolytes face issues due to their low ionic conductivity and poor mechanical strength. Highly conductive and mechanically robust ceramics, on the other hand, cannot physically remain in contact with redox-active particles that expand and contract during charge-discharge cycles unless excessive pressures are used. To overcome the disadvantages of each material, polymer-ceramic composites can be formed; however, depletion interactions will always lead to aggregation of the ceramic particles if a homopolymer above its melting temperature is used. In this study, we incorporate Li0.33La0.56TiO3 (LLTO) nanoparticles into a block copolymer, polystyrene-