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Flexible electronic devices play a key role in the fields of flexible batteries,
electronic skins, and flexible displays, which have attracted more and more
attention in the past few years. Among them, the application areas of
electronic skin in new energy, artificial intelligence, and other high-tech
applications are increasing. Semiconductors are an indispensable part of
electronic skin components. The design of semiconductor structure not only
needs to maintain good carrier mobility, but also considers extensibility and self-
healing capability, which is always a challenging work. Though flexible electronic
devices are important for our daily life, the research on this topic is quite rare in the
past few years. In this work, the recently published work regarding to stretchable
semiconductors as well as self-healing conductors are reviewed. In addition, the
current shortcomings, future challenges as well as an outlook of this technology
are discussed. The final goal is to outline a theoretical framework for the design of
high-performance flexible electronic devices that can at the same time address
their commercialization challenges.
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1 Introduction

After years of research and development, electronic products based on organic materials
have made significant progress in performance, stability, and production costs compared to
traditional materials, such as organic field-effect transistors (OFET) (Vissenberg et al., 1998;
Meijer et al., 2003; Payne et al., 2005; Muccini, 2006; Wang et al., 2012; He et al., 2014),
organic photovoltaic cells (OPVs), and organic solar cells (OSCs) (Siebbeles, 2010;
Gruverman et al., 2011; Zhang et al., 2012; Bredas, 2014; Cnops et al., 2014; Tumbleston
et al., 2014). With the efforts of scientific researchers, the above products have achieved good
practical use efficiency and have great commercial prospects. Most organic electronic devices
are assembled from several components, which ensure that the device exhibits good
functionality and performance. For example, OFET is typically composed of gate
electrodes, drain electrodes, organic semiconductor layers, insulating layers, and grid
electrode. Although these components provide performance, these materials typically
have great rigidity, which resulting in the inflexibility of electronic devices, and limits
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the development of stretchable and skin like electronic products
(Shcherbina et al., 2017; Etiwy et al., 2019; Bent et al., 2020). With
the progress of the organic electronics industry, the research of
flexible electronic materials is also advancing.

The emergence of electronic skin (flexible electronic devices)
represents the phased significance of stretchable, flexible, and
dexterous electronic products. Electronic skin, also known as a
new wearable flexible bionic tactile sensor, is a new type of
electronic material that can simulate human skin and provide
biocompatibility. The simple structure of electronic skin can be
processed into various shapes, which attracting increasing
attention. To simulate the good performance of human skin
during actual use, corresponding materials need to have a
certain degree of flexibility and self-healing ability (Kim et al.,
2011; Jeong et al., 2012). So far, some work has been done on
stretchable and self-healing organic electronic devices, and
significant progress has been made (Liang and Stephen, 2010;
Kuribara et al., 2012; Hammock et al., 2013; Bauer et al., 2014;
Kim et al., 2014; Son et al., 2014; Xie and Wei, 2014; Kim and Lee,
2015; Minev et al., 2015; Larson et al., 2016). In this review, we
summarize the methods used to develop stretchable and self-
healing materials and their synthetic devices.

2 Stretchable semiconductors

The flexible function of some electronic devices is necessary, for
example, sometimes it is necessary to attach electronic materials to
surfaces with complex shapes, which requires materials to have good
flexibility to adapt to different usage scenarios. Compared to traditional
inorganic crystalline materials (such as silicon), most polymer materials
are inherently more flexible, and semiconductor polymer films are the
basic elements of soft electronic products for wearable and biomedical
applications (Hsin-Chiao et al., 2021; Dimov et al., 2022; Mei, 2022).
However, semiconductor polymers with high mobility are often brittle
and prone to brittle fracture under small strains, which limits their
application in electronic devices. Recently, Bao’s team (Kang et al.,
2022) constructed a dynamic noncovalent cross-linked network Tl
bond between semiconductor thin films and substrates (Figure 1A),
which allows for high interfacial toughness between layers, inhibits
delamination and strain delocalization, and enables crack initiation and
propagation to occur significantly at higher strains. Specifically, the
crack strain of high mobility semiconductor polymer films has
increased from 30% to 110%, and there are no significant
microcracks. In other semiconductor polymers, the Tl strategy
changes the thin film from brittle fracture to ductile fracture (Wang

FIGURE 1
(A) Schematic of a TI between a semiconducting film and an elastic substrate. The TI bonding is enabled by two essential chemical components: (1)
SM and (2) siloxane-based SHP capable of self-recoverable energy dissipation. A TSP is composed of a mixture of 90 wt% SHP as the energy-dissipating
matrix and 10 wt% SM as the crosslinker. Schematic of the fracture conditions of a polymer thin film under various conditions. Under the freestanding
condition (1), a polymer thin film undergoes brittle fracture separated into two pieces by stretching. When the thin film is attached onto an elastic
polymer substrate (2), microcracks form in the polymer thin film instead of complete fracture. This work shows that embedding a TI layer delay crack
initiation and propagation (3) (Kang et al., 2022). (B)Chemical structure of terpolymers used in this study. Based on the TVT unit fraction, terpolymers were
named asDPP-0TVT (0 mol% TVT) ~DPP-10TVT (100 mol% TVT). Mobility of the terpolymersmeasured from top-contact-bottom-gate transistors given
in the top left corner (measured in air). Error bars represent SD. Crack onset strain of the terpolymers. Our terpolymers showed tremendous crack onset
strain >100% strain. Error bars represent SD (Mun et al., 2021). (C)Design of intrinsically stretchable semiconducting polymers (Liu et al., 2021). (D) Scheme
illustrating how the polymer film is deformed on the supported PDMS substrate. Transfer curves of spin-coated polymer thin films (PDPPTT and PIDT-3T-
OC12-10%) in rigid transistor configuration (the red lines are fitted for mobility and threshold voltage) (Liu et al., 2021).
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et al., 2017), greatly improving the flexibility of the material. During the
design process of organic semiconductor materials, their mechanical
properties and carrier mobility are inversely proportional (Oh et al.,
2016; Zheng et al., 2020), which means that the improvement of tensile
properties will reduce carrier mobility. Bao et al. (Mun et al., 2021)
developed a trimer based stretchable polymer semiconductor
(Figure 1B) (taking DPP, TVT, and BT terpolymers as examples).
The ternary polymers maintain short-range aggregation, reducing the
overall crystallinity and average crystal domain size, compared to
conventional polymer structures with only one comonomer unit, the
resulting polymer maintains a high mobility (>1 cm2·V−1·s−1), while
having better extensibility (>100% strain) and mechanical reversibility
(Figure 1B).

To increase the flexibility of semiconductor materials, flexible
conjugated destruction groups can be introduced into the
conjugated backbone of semiconductor polymers (Zhao et al.,
2015; Savagatrup et al., 2016; Galuska et al., 2020). These groups
can reduce the overall rigidity of the polymer skeleton and the
crystallinity of the polymer film, thereby improving tensile
properties. However, most of these groups are not conjugated,
which structure can have a negative impact on the transfer of
carriers in the conjugated polymer skeleton, and would reduce
the electrical properties of organic semiconductor materials. To
solve this problem, starting from the side group is an effective
strategy. Liu et al. (2021) introduced rigid conjugated side groups
into the polymer skeleton. Firstly, this rigid side group can induce
the formation of amorphous domains and help to improve tensile
properties (Figure 1C). Secondly, this side group is conjugated,
which can still keep the polymer main chain conjugated, the

rigidity and coplanarity of the side groups also facilitate the
transport of carriers on the polymer skeleton. In addition, the π

conjugated extended molecular structure can increase the
probability of overlapping π-π orbitals between molecules,
thereby facilitating charge transfer between molecular chains and
improving carrier mobility. In fully stretchable transistors, the
polymer exhibits a mobility of 0.27 cm2·V−1·s−1 at 75% strain and
maintains its mobility after undergoing hundreds of stretch release
cycles at 25% strain (Figure 1D). So far, researchers have reported
some rigid fusion ring molecules with excellent electrical properties
(Hideaki et al., 2007; Hakan et al., 2009; Kazuki et al., 2011; Toan
et al., 2012; Zhang et al., 2010; Wei et al., 2013; Jeong-Il et al., 2015;
Yamamoto et al., 2017; Okamoto et al., 2020).

3 Self-healing conductors

Human skin can face very complex situations in practice. In
addition to being stretchable, being able to self-repair when injured
is the most important ability. To better simulate human skin, electronic
skin needs to have the ability to self-repair to face possible damage
during actual use. To improve the lifespan and working conditions of
electronic skin, and as people become increasingly interested in self-
repair materials, developing its self-healing ability is the key to the next-
generation of electronic skin. Hence, this article will provide an
overview of the development of self-healing conductors for
electronic skin. Some progress has been made in the study of
artificial mechanical self-healing. Cordier et al. (2008) demonstrated
the first room temperature self-healing elastomer by combining

FIGURE 2
(A) Fabrication of the transparent skin-like conductor. Schematic structure of the self-healing Zn-Bpy-PDMS polymer and the interfacial bonding of
the Zn-Bpy-PDMS/AgNWs conductor (Ye et al., 2019). (B) Resistance change test of materials after self-repair Photos to demonstrate the self-healing
capability of Zn-Bpy-PDMS: cut, self-healing (herein, 24 h at room temperature), and stretching after healing (offside) (Ye et al., 2019). (C) Electron
microscope images and schematic diagrams before and after conductor self-healing (Li et al., 2012). (D) Schematic diagram of the crack plane
where the microcapsule and liquid metal have been released to the healing specimen (Blaiszik et al., 2011).
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hydrogen bonds into a polymer matrix. Wudi et al. developed a plastic
that can self-repair under thermal action using the dynamic covalent
bond between furan and maleimide (Chen, 2002). However, most of
these polymers are insulated. To obtain an ideal electronic skin, it is
necessary to combine the self-healing ability and conductivity of the
material. Introducing dynamic reversible bonds into conductive
polymers is the most direct method for manufacturing self-healing
conductors (Williams et al., 2007). In addition, combining conductive
materials with polymer substrates that provide self-healing ability is an
effective strategy, which is like the method for preparing stretchable
conductors. Ye et al. (2019) prepared a transparent, stretchable, and self-
healing conductor (Figure 2A) by semi embedding silver nanowires
(AgNWs) into an elastic substrate based on PDMS. The elastomer was
modified with a bipyridine (Bpy) ligand and further crosslinked by
adding Zn2+ as a coordination agent (Zn-Bpy-PDMS). This material
exhibits excellent electrical conductivity (76.2Ω/sq) and retains its
properties significantly after self-healing at room temperature
(Figure 2B). Due to the Ag-N dynamic bonding formed between the
conductive material and the elastic substrate, the diffusion of AgNWs is
increased and the performance is further improved. Similarly, Li et al.
(2012) demonstrated a simple method for producing a highly
conductive film with self-healing ability by depositing an AgNW
layer on a heatable bPEI/PAA-HA film (Figure 2C). After adding
deionized water, the PEM film will expand and promote the healing of
the fractured surface during recombination of dynamic ionic bonds. In
addition, hydrogen bond interactions occur between the carboxylic acid
groups on the surface of bPEI/PAA-HA films and the pyrrolidone
groups of PVPONmodified AgNWs, and this strong interaction drives
the movement and contact of the conductive layer, helping to restore
conductivity. In addition, it is a novel method to prepare self-healing
conductors by encapsulating conductive substances. White’s team has
developed two materials, one is a self-healing conductor with charge
transfer salt capsules. Polyurea formaldehyde core shell microcapsules
are respectively loaded into TTF-TCNQ solutions in different solvents
(Odom et al., 2010). The mixed capsule is then plated into the gap
between the gold electrodes. After mechanical damage, the polymer
capsule ruptures, and the TTF and TCNQ components are mixed to
form a conductive charge transfer salt to fill the gap, thereby restoring
conductivity. Using a similar method, Blaiszik’s group (Blaiszik et al.,
2011) developed another self-healing conductor using EGaIn as a
therapeutic agent (Figure 2D). Compared to the previous method,
liquid metal does not require mixing, simplifying the preparation
process.

Obviously, the strategy of capsule repair agents is effective and
fast, but with the consumption of the number of capsules in the same
region, the repetitive self-healing ability of the same region will be
limited, which requires further exploration.

4 Conclusion

In summary, this review focuses on the development and design
strategies of stretchable and self-healing conductors in electronic
skin, while the development of intrinsically stretchable conductors is
relatively blank.

Based on the current progress in artificial intelligence technology
and the concept of sustainable and environmentally friendly materials,
developing biodegradable flexible devices is a good idea. In addition, the
demand for flexible electronic devices such as electronic skin in the
pharmaceutical, aerospace, and new energy industries will increase day
by day, making it a promising field in the future.
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