
Spiral growth of multicomponent
crystals: theoretical aspects

Alexey Redkov*

Laboratory of Structural and Phase Transitions, Institute for Problems in Mechanical Engineering RAS,
Saint-Petersburg, Russia

This paper presents recent advances in the theory of multicomponent crystal
growth from gas or solution, focusing on the most common step-flow
mechanisms: Burton-Cabrera-Frank, Chernov, and Gilmer-Ghez-Cabrera.
Analytical expressions for the spiral crystal growth rate are presented, taking
into account the properties of all species involved in the growth process. The
paper also outlines theoretical approaches to consider these mechanisms in
multicomponent systems, providing a foundation for future developments and
exploration of previously unexplored effects. Some special cases are discussed,
including the formation of nanoislands of pure components on the surface and
their self-organization, the impact of applied mechanical stress on the growth
rate, and the mechanisms of its influence on growth kinetics. The growth due to
chemical reactions on the surface is also considered. Possible future directions for
developing the theory are outlined. A brief overview of numerical approaches and
software codes that are useful in theoretical studies of crystal growth is also given.
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1 Introduction

In the past century, the field of crystal growth has emerged as a distinct and important
branch of materials science, driven by the increasing demand for crystals in various
technological applications such as electronics, optics, semiconductors, and more. While
silicon formed the basis of modern electronics in the 20th century, high-tech industries are
gradually transitioning towards more complex crystalline materials that can facilitate the
creation of devices with superior characteristics. These materials include widebandgap
semiconductors such as gallium and aluminum nitrides (GaN, AlN), which are widely used
in optoelectronics (Kour et al., 2019), perovskite solar cells (Ansari et al., 2018; Jagadamma
and Wang, 2021), prospective superconductors (Troyan et al., 2022), thermoelectric
materials (Tohidi et al., 2022), and other functional compounds (Ramirez Reina et al.,
2013; Wang et al., 2022), most of which consist of multiple components. A rapidly growing
area of research is the development of metal-organic and other types of frameworks (Freund
et al., 2021; Altaf et al., 2022) for gas capture, separation, storage (Wang et al., 2017), catalysis
(Wang and Astruc, 2019), and various other applications. These materials are crystalline-like
in structure and their growth mechanisms are similar to those of crystals, albeit more
complex (See Figure 1B). They exhibit the same growth phenomena and in certain cases can
be described by the same models and equations.

Note that there are various regimes of crystal growth, such as step-flow/spiral,
nucleation, dendritic, and rough growth (refer to Figure 1A), and the realization of each
depends on crystal properties and growth conditions. The growth regime determines the
growth rate, crystal purity, defect concentration, and homogeneity, and a deep
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understanding of all the processes that occur during growth in
different regimes is crucial for controllable synthesis of crystals with
desired properties. This necessity has led to the rapid development
of crystal growth theory and the detailed study of the growth
regimes, especially step-flow/spiral and nucleation, since they are
mostly used in the industry. The classical work by Burton, Cabrera,
and Frank (BCF) (Burton et al., 1951) is a cornerstone of the theory
that explains step-flow growth from vapors at low supersaturations
due to screw dislocations. It revolutionized the understanding of
crystal growth and allowed for the quantification of theoretical
models and experiments. Since then, the theory has progressed,
and various phenomena and effects have been investigated, such as
the influence of elastic stresses (Van der Hoek et al., 1982),
advacancies (Pimpinelli and Villain, 1994; Kosolobov, 2019; Rost
et al., 2019), and impurities (Sangwal, 1996), among others.
Analytical descriptions of different growth regimes and
instabilities (Politi et al., 2000) have been proposed, including the
formation of dendrites (Alexandrov and Galenko, 2021), the impact
of island formation on terraces (Myers-Beaghton and Vvedensky,
1991), various types of self-organization, and other factors. There
are numerous reviews and books which summarize the results
(Bennema, 1984; Chernov, 2004; Uwaha, 2016) and different
aspects of the theory, evolution of steps (Jeong and Williams,
1999) and kinks (Vekilov, 2007) on the surface. The BCF model
has stimulated the development of other important growth models
such as the Chernovmodel for growth from solutions or gas phase in
the presence of a carrier gas (Chernov, 1961) and the mixed theory

of Gilmer-Ghez-Cabrera (Gilmer et al., 1971). Together with
nucleation theory (Dubrovskii, 2014), these models have
facilitated the quantitative description of most gas or solution
growth processes used in industry and accelerated the
development of technologies and methods for obtaining low-
defect crystalline materials like silicon. However, the majority of
theories were developed using the classical model of the Kossel
crystal. While it works well in single-component cases, it cannot
always describe the growth of multicomponent crystals due to the
different properties of the atoms (diffusion coefficients, atomic
volumes, etc.). This calls for the extension of existing growth
models and theory to describe crystal growth in multicomponent
systems, which is in high demand in modern technology.

This perspective aims to discuss our recent developments in the
theory of crystal growth in multicomponent systems via step-flow/
spiral mechanisms, specifically focusing on the BCF (Burton et al.,
1951), Chernov (Chernov 1961), and Gilmer-Ghez-Cabrera (Gilmer
et al., 1971) models. We note that the multicomponent growth via
the second important mechanism - nucleation, both classical and
non-classical, is summarized elsewhere (Karthika et al., 2016;
Kukushkin and Osipov, 1998). The article is organized as follows:
In Section 2, a description of the mechanisms and their applicability
limits is provided to help readers better understand which model is
best suited for their experiments. Section 3 covers various aspects
and effects that arise during growth via the step-flow mechanism. In
Section 4, a discussion of growth mechanisms and effects is
presented. The final expressions for the crystal growth rates are

FIGURE 1
Dependence of the crystal growth rate on supersaturation in different growth regimes (A); example of GaN and MOF-5 crystalline structures (B);
schematic representation of the spiral growth (C); difference between the growth mechanisms on the example of 2-component AB crystal: BCF,
Chernov and Gilmer-Ghez-Cabrera (D).
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summarized in Supplementary Table S1. For the convenience of the
readers, classical single-component expressions are also included.
Additionally, the article provides a rigorous mathematical
formulation of the models and a brief course on their solution in
the Supplementary Materials, allowing readers to modify the models
for their specific purposes if necessary. It should be noted that
examples of the application of the proposed models to describe the
growth of specific materials are provided in our referenced papers.

2 Crystal growth mechanisms

The problem of multicomponent spiral growth was formulated
in (Redkov and Kukushkin, 2020) based on the classical BCF model.
In this formulation, the crystal growth process involves the
incorporation of building units into kinks at the spiral steps (see
Figure 1C) on the surface in accordance with the following reaction:

ν1A1 g,s( ) + ν2A2 g,s( ) + . . . + νNAN g,s( ) ↔ C (1)

where Ai(g,s) represents the pure components (or building units), C
is the solid crystalline phase; νi is the stoichiometric coefficient. The
subscripts g) and s) denote the gas phase and solution, respectively,
and N is the number of components. As previously mentioned, the
mass transfer of components from the media to the kinks on the
steps can occur through various mechanisms (as illustrated in
Figure 1D), which will be discussed in detail later.

2.1 Burton-Cabrera-Frank mechanism

The Burton-Cabrera-Frank (BCF) model is commonly used to
describe step-flow and spiral crystal growth from vapor. In the
multicomponent version of this model (Redkov and Kukushkin,
2020), all components Ai(g) that constitute the crystal are delivered
to the terraces via uniform gas fluxes over the entire crystal surface.
These components adhere to the surface and become adatoms (or
admolecules), which then diffuse over the terraces towards existing
steps and incorporate into them, thereby ensuring step motion and
crystal growth. Adatoms can also evaporate back to the gas phase.
Each type of adatom on the surface has unique properties, such as
the surface diffusion coefficient and lifetime before evaporation. The
strict mathematical formulation of this and the following models is
presented in the Supplementary Materials. Here, we do not focus on
mathematics, which is presented in detail in (Redkov and
Kukushkin, 2020), and instead provide only the resulting
analytical expression for the growth rate R (Supplementary Table
S1). It turns out that the process of growth of a multicomponent
crystal may be described by the same equation as a single-
component crystal, using the so-called generalized coefficients of
diffusion Dg and incorporation βg, and generalized supersaturation
ξg. These coefficients are determined by the properties of the
individual components and their surface concentration ratios. It
can be seen from the definition of the generalized coefficients that
the growth process is typically limited by the component that has the
smallest product of diffusion or incorporation coefficient and
concentration. It should be noted that this model assumes that:
1) reaction 1) occurs only and directly at the kinks, and not in the gas
phase or on the terrace, which is valid for many growth processes; 2)

the surface coverage is low, and the adatoms do not affect the
diffusion or deposition of other atoms; 3) the step is always fully
covered with kinks and is therefore a good sink for adatoms; note
that the mechanisms of incorporation into kinks are presented in
detail in the review (Vekilov PG. 2007); and 4) the rate of
advancement of the step is sufficiently slow to neglect the
convective flux of the adatoms towards the step.

2.2 Chernov mechanism

The Chernov model (Chernov, 1961) is commonly used to
describe crystal growth from solution, but it is also applicable for
growth from intrinsic vapors highly diluted by the carrier gas.
Compared with the BCF model, the Chernov model has two key
differences. First, the mass transfer in the volume is insufficient to
maintain constant pressures/concentrations directly at the crystal
surface, resulting in a depleted diffusion layer of some thickness δ in
the mother liquid (or gas) phase. Second, incorporation occurs
directly from the volume into the steps, bypassing the
intermediate state on the terrace; thus, there is no surface
diffusion. In the multicomponent version of this model, the
crystal still grows in accordance with Reaction 1). At one of the
boundaries of the depleted diffusion layer, constant concentrations
of the components are maintained due to mixing or stirring (see
Figure 1D). The components then diffuse through this layer and are
incorporated directly into the steps one after another, resulting in
crystal growth. The assumptions behind this model are almost the
same as those in the BCF model (see section 2.1). However, it is
important to note that this model fully neglects surface diffusion and
is therefore only valid for systems with slow surface kinetics (e.g.,
owing to high surface diffusion barriers, surface reconstruction,
coverage of the surface by an arbitrary adsorbate layer interfering
with the surface diffusion of components, or other reasons).
Furthermore, the thickness of the boundary layer is typically of
the order of 10−3 to 10−5 cm, which is much smaller than the typical
size of the growing crystal. As a result, some macro-diffusional fields
may arise during growth, which must be considered to correctly
describe the crystal growth over the entire surface.

2.3 Gilmer-Ghez-Cabrera mechanism

The Gilmer-Ghez-Cabrera model (Gilmer et al., 1971) is a
significant generalization of the Burton-Cabrera-Frank and
Chernov models. While the BCF and Chernov models consider
only one type of diffusion, the Gilmer-Ghez-Cabrera mechanism
takes into account both surface diffusion and volume diffusion of
substances to the steps in the presence of a solvent or carrier gas.
This is particularly important for multicomponent systems, where
the flux of some components to the steps may be limited by volume
diffusion, whereas for others, it may be limited by surface diffusion.
The BCF and Chernov models may yield incorrect results in such
cases because they consider only one type of flux (refer to
Figure 1D). Notably, in the Gilmer-Ghez-Cabrera mechanism,
adatom incorporation occurs through an intermediate adsorbed
state on the terrace because there is no direct incorporation, as
in the Chernov mechanism. It is worth mentioning that the Van Der
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Eerden model (Van Der Eerden, 1982) is the most complex model
that accounts for both direct and indirect incorporation. However,
this model has not yet been extended to multicomponent systems.

3 Different effects inherent to
multicomponent systems

3.1 Nucleation of pure components on the
crystal surface

In (Redkov and Kukushkin, 2020), the authors demonstrated
that nucleation of islands consisting of pure components on the
terraces between the steps is possible during step-flow growth,
similar to the process of dew formation (refer to Figure 2A). In a
subsequent study (Redkov and Kukushkin, 2021), it was shown
that the precipitation of such islands can significantly impact the
growth process, resulting in the formation of undesirable defects
and inclusions in the crystal, and even cause different types of
morphological instability (Bales and Zangwill, 1990). This
phenomenon may occur when the surface concentration
nai(x) of a particular component on the surface between the
steps exceeds the equilibrium single-component concentration
n0ai(x) required for nucleation. The authors also developed a
dynamical criterion for determining whether nucleation of the
ith component will occur during the BCF growth mode in a train
of advancing steps.

τinucleation
τistep

< 1 (2)

where τinucleation represents the time required for the formation of a
single island at the surface concentration maintained at the terrace
between subsequent steps, and τistep, is the time required for the
multicomponent step to traverse the terrace width and “sweep” it
from adatoms, allowing for the nucleation process to restart.

3.2 Impact of chemical reactions

The growth of crystals in the presence of chemical reactions is
common in modern synthesis techniques. For example, the metal-
organic chemical vapor deposition (MOCVD) process used for GaN
crystal growth typically involves surface chemistry (Tan et al., 2022).
In (Redkov and Kukushkin, 2020), the authors investigated BCF-
type growth in the most general case:

ν1A1 g,s( ) + ν2A2 g,s( ) + . . . + νNAN g,s( ) ↔ C + νN+1B1 g,s( ) + . . .

+ νN+MBM g,s( ) (3)

when both the initial reagents and reaction products Ai(g,s), Bi(g,s) are
present and do not correspond to the building units of the crystal
(see Figure 2B). It was shown, that in this complex case, the reaction
must be broken down into sub-reactions, each bringing the building
units/adatoms of the crystal to the surface. The growth in this case
can still be described by the same single-component formula (see
Supplementary Table S1), but if the thermal desorption of adatoms
is slow and can be neglected in comparison to the fast reaction rate,
the mean free paths and lifetimes of adatoms on the surface are
primarily determined by reverse chemical sub-reactions, that is, by
the pressures of the reaction products. Simultaneously,
supersaturation will depend on the chemical reaction affinity,
ξg � K

Keq
− 1, where Keq is the equilibrium constant of the

reaction, and K � ∏N

1
Pνi
Ai/∏

M

1
PνN+i
Bi . This provides additional

control levers for the crystal growth process.

3.3 Impact of mechanical stress and
advacancies

Previous studies have established that mechanical stress may
have a significant effect on crystal growth (Cabrera and Levine,
1956). In (Redkov and Kukushkin, 2022), it was demonstrated
from a thermodynamic point of view that stress affects the

FIGURE 2
Illustrations for considered peculiarities of growth on the example of 2 component AB crystal: (A) nucleation of pure phase islands when one
pressure exceeds the critical value, (B) adatom arrival on the surface through a chemical reaction, and (C) growth in the presence of advacancies, whose
concentration is stress-dependent. Additionally, the figure displays different diffusion lengths of adatoms and advacancies due to recombination and
evaporation.
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growth of multicomponent crystals in the same way by reducing
the effective supersaturation according to: ξg(σ) � ξg(0)(1 − σω

kBT
),

where σ is the isotropic elastic stress and ω is the volume of the
crystalline cell. This reduction factor can be crucial for the
epitaxial growth of semiconductor or MOF-on-MOF
heterostructures. Another important factor is the emergence
and diffusion of vacancies on the crystal surface, which can
recombine with adatoms and significantly affect the crystal
growth or evaporation (Hirth, 1965; Pimpinelli and Villain,
1994; Sitnikov et al., 2017; Kosolobov, 2019). In (Redkov
et al., 2020b; Redkov and Kukushkin, 2022), the authors
extended the BCF model to the multicomponent case and
accounted for the formation of additional vacancies resulting
from applied stress (see Figure 2C). In this case the characteristic
diffusion length, which determines the growth rate, is limited by
the lowest diffusion lengths of adatoms and advacancies due to
evaporation and recombination (see Figure 2C). It was
demonstrated that the processes of adatom deposition,
diffusion, and incorporation into the steps due to
supersaturation in the gas phase are similar to the same
processes for advacancies but due to applied tensile loads.

3.4 Morphological instability in
multicomponent systems

The phenomenon of morphological instability was first
introduced by Mullins and Sekerka (Mullins and Sekerka,
1963). It typically results in a change in the shape of a
growing crystal or thin film, leading to irregular dendritic
shapes or other inhomogeneities at a specific spatial
wavelengths. In (Redkov et al., 2015; Kukushkin et al., 2014)
the authors expanded the Mullins-Sekerka morphological
stability theory to the growth of multicomponent strained thin
films and spherical multicomponent particles. Their research
showed that once a certain level of supersaturation is
exceeded, the aforementioned shapes become unstable, leading
to the emergence of irregular dendritic or undulating shapes.
Analytical criteria were developed for this phenomenon, which
connect the properties of different components (e.g., diffusion
coefficients and atomic volumes), ratio of concentrations, and
total supersaturation. This allows the selection of stable growth
conditions for the crystal surface.

4 Discussion

The models presented here allow for the description of a
wide range of growth processes from gases or solutions. They
also provide a means for the experimental determination of all
the kinetic coefficients for each component in complex
multicomponent systems. As demonstrated in (Redkov and
Kukushkin, 2020), the reaction 1) between adatoms at the
kinks places a constraint only on the product of equilibrium
concentrations n0ai which should equal to the equilibrium
constant Keq; ∏

N

1
n0ai � Keq, and on the stoichiometry of the

fluxes of the components from terrace to kink and back, but it
does not determine n0ai themselves. This is in contrast to single-

component systems, in which the equilibrium concentration is
fixed at a constant temperature. Therefore, there are many
possible pressure (or concentration) equilibrium sets at
which a multicomponent system can exist. By selecting a set
in which the pressure of one component is much lower than that
of the others, one can ensure that this component limits the
generalized coefficients Dg and βg, which describe the
dependence of the growth rate on supersaturation (see
Supplementary Table S1). This means that by measuring this
dependence at a series of different equilibrium pressure sets, it is
possible to determine the individual kinetic coefficients of each
component and use them to describe the growth at any other
combination of pressures.

The criterion 3) presented in Sec. 3.1 shows that to eliminate
the undesirable nucleation of pure components, the crystal
should be grown at a pressure set where the surface
concentrations of adatoms of each component do not exceed
its critical value. This phenomenon can also be used for the
controlled formation of self-organized quantum dots or
nanowire growth in certain systems (Redkov and Kukushkin,
2021). In Sec. 3.2, BCF-growth when different types of adatoms
are delivered to the surface by chemical reactions is considered. It
differs from simple growth from vapor because chemical
reactions alter the surface diffusion lengths of each component
in comparison to thermal desorption, providing additional
means to control the growth process. During a chemical
reaction, the partial pressures of the reagents can be changed
independently, allowing for individual control of supersaturation
(chemical affinity), the mean free path of adatoms of each type,
and their equilibrium concentrations. This enables control of the
impact of each component on the generalized coefficients to
ensure the maximum growth rate or to avoid undesirable
phenomena, such as nucleation or instabilities. In Sec. 3.3, the
impact of mechanical stress on the growth is considered. It is
worth noting that mechanical stress are often present during the
epitaxial growth of semiconductor thin films and
heterostructures. The stress not only affect thermodynamics
but also impact the kinetics of growth by determining the
concentration of vacancies on the surface.

5 Future work

Although the mechanisms considered above are capable of
describing numerous growth processes, significant gaps in
knowledge and issues must be resolved to fully understand
the multicomponent growth process. Further theoretical
investigations could focus on several areas, including the
impact of surface coverage of different components on mass
transport (diffusion) both on the surface and in solution; the use
of different adsorption isotherms for components to modify the
relationship between surface supersaturation and pressure/
concentration; the variation of Schwoebel barriers for each
component, potentially affecting the distribution of adatoms;
the detailed study of adatom incorporation into kinks, including
the statistics of multicomponent kinks; the effect of surface
reconstruction on diffusion mechanisms, which may depend on
component concentration and growth rate; various
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morphological instabilities in multicomponent systems; the
influence of impurities on incorporation or mass transfer of
different components; anisotropic phenomena; the impact of
convective flow of components during growth at higher
supersaturations, when the step advancement rate cannot be
ignored; and many other effects and their combinations.

6 Computer modeling

We note that in recent years, significant advancements have
been made in high-performance modeling methods for
multicomponent crystal structures and their growth. Some of
these techniques include ab initio quantum mechanical (QM)
modeling and stable structure prediction (Glass et al., 2006),
molecular dynamics (MD) simulations (Salvalaglio et al., 2015;
Joswiak et al., 2018), kinetic Monte Carlo (kMC) simulations
(Andersen et al., 2019), phase-field modeling (PF) (Pierre-Louis,
2003; Gomez et al., 2019), and the level-set approach (Ratsch
et al., 2002; Gibou and FedkiwOsher, 2018), among others. Each
of these methods has its own temporal and spatial scales,
strengths, and weaknesses (Miller, 2015), but all can be used
to deepen our understanding of the growth process in
multicomponent systems. For example, the quantum
mechanical approach can be used to find the stable crystalline
structure with a given composition and its surface reconstruction
under specific growth conditions. See, e.g., the USPEX code
(Glass et al., 2006; Kvashnin et al., 2019). The latter may
significantly affect the diffusion of the different components
on the surface. The QM approach is also commonly used to
find in silico the activation energy of surface diffusion and
desorption of atoms of various components (Won et al.,
2009), which is needed to use the formulas provided in the
previous sections. QM can also be used to analyze the
formation energies of kinks of different types (Kuvadia and
Doherty, 2011). Note that the concentration of kinks mainly
determines the incorporation coefficients used in the theoretical
models. The next scale is molecular dynamics, which may be used
to analyze the statistics of kinks, steps, nucleation (Anwar and
Zahn, 2011; Sosso et al., 2016), and the rates of incorporation of
different components into the crystalline cell. We note that such
phenomena can now be measured using experimental techniques
(Dong et al., 2020). MD is also often used for the prediction of
diffusion coefficients of components in solution (Celebi et al.,
2021), which may be useful in the case of growth from solution by
the Gilmer-Ghez-Cabrera and Chernov mechanisms. Note that
for an accurate description of the processes using the MD
method, machine learning potentials are often used, which are
trained on quantum modeling data, even for crystals containing
several components. See, for example, the MLIP code (Novikov
et al., 2020). The Monte-Carlo method is capable of describing
larger time and spatial scales, up to micrometers and
milliseconds, respectively, even on personal computers. Precise
modeling requires knowledge of all the probabilities of atomistic
events occurring on a surface, which can be obtained through
quantum mechanics or molecular dynamics. Recently, the
authors of the CrystalGrower package (Anderson et al., 2017)
implemented a unified kinetic three-dimensional partition model

that can model the crystal habit and surface topology of any
crystalline structure or MOF in different growth regimes,
including nucleation and spiral growth. Note that various
method combinations have also been developed, including a
combination of Monte Carlo simulations with cellular
automaton (Załuska-Kotur et al., 2021), which, while less
accurate, can significantly speed up the performance and
detect various macro-phenomena on the surface, such as
different types of step instabilities and growth regimes. The
phase-field approach is also noteworthy, as it allows for the
effective study of macrosurface kinetics and spiral growth
(Miura, 2015; Miura and Kobayashi, 2015; Nie et al., 2018).
To provide a complete in silico description of macroscopic crystal
growth or dissolution, a multiscale approach is often used,
involving all the aforementioned techniques (Vvedensky, 2004;
Miller, 2015) from nano-to microscale, simultaneously coupled
with finite-element models. In (Elts et al., 2017), this approach
was applied to the growth of multicomponent organic crystals.
Furthermore, machine learning methods are being actively
developed and hold promise for various applications, such as
the search for stable crystalline structures (Kang et al., 2022),
determination of kinetic parameters of adatoms on the surface
(Martynec et al., 2021), and optimization of growth chambers
(Schimmel et al., 2022). These new digital tools provide extensive
information for the theoretical understanding of growth in
multicomponent systems while also offering opportunities to
discover new collective phenomena and effects and study them.
They can also be successfully applied to solve the problems
mentioned above.

7 Conclusion

In conclusion, we have summarized several growth
mechanisms and effects involved in the growth of
multicomponent crystals from vapors or solutions. Our findings
demonstrate that growth can be described by the same equations as
in the single-component case, with the use of generalized diffusion
and incorporation coefficients based on the properties of each
component. The results presented herein can be applied to a wide
range of complex multicomponent systems, allowing the
prediction of the growth rate based on growth conditions or,
vice versa, the determination of individual kinetic properties of
different components based on the dependence of the growth rate
on conditions. We have also discussed the effects and peculiarities
inherent to multicomponent systems, including the precipitation
of nanoislands, effect of stresses, chemical reactions, and
morphological instabilities. These phenomena can have a
significant impact on the growth of multicomponent crystals or
MOFs, making it crucial to understand their roles and the
opportunities they provide for controlling the growth process in
such complex systems. We presented approaches for accounting
for new effects in theoretical equations, which enable the
modification and extension of the theory to include additional
factors. Lastly, we discussed some of the available numerical
approaches and software packages, which make it possible to
deepen knowledge and simplify the theoretical consideration of
the crystal growth process.
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