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Editorial on the Research Topic
Synthesis of novel photosensitizers for cancer theranostics

Cancer has posed a tremendous threat to the health of human beings worldwide, and an
increasing number of people die of cancer every year (Siegel et al., 2022). Great efforts have
been devoted to developing new therapeutic modalities for cancer treatment (Li et al., 2019a;
Chen et al., 2019; Ma et al., 2019; Li L. et al., 2020; Wang et al., 2021; Li et al., 2023a).
Phototherapy, including photodynamic and photothermal therapy, utilizes the
photogeneration of reactive oxygen species (ROS) or heat to induce cell apoptosis (Zhen
et al., 2017; Li et al., 2019b; Li L. et al., 2019; Yang and Chen, 2019; Li et al., 2020; Zheng et al.,
2020; Zou et al., 2021a; Wu et al.). Solid tumors usually suffer from hypoxia which is strongly
associated with tumor propagation, malignant progression, and resistance to therapy.
However, several factors limit the widespread clinical use of photodynamic therapy
(PDT), such as O2 shortage induced hypoxia and insufficient tissue penetration depth
(Fan et al., 2016; Zhou et al., 2016; Liu et al., 2019; Qi et al., 2022). Therefore, new intelligent
photosensitizers should be designed and synthesized to achieve better phototherapeutic
efficacy. Apart from cancer therapy, PDT has been universally utilized in a variety of fields,
such as plastic and re-constructive surgery. Wu et al. from Shanghai Jiaotong University has
summarized the application of PDT in benign pigmented lesion, vascular malformation,
inflammatory lesion, etc.

In recent years, great efforts have been devoted to relieving hypoxia, for example, in situ
oxygen generation or delivering oxygen to the tumor (Yang et al., 2017; Lin et al., 2018; Shen
et al., 2022; Li et al., 2023b; Chen et al., 2023). Representative work by Jianlin Shi is the in situ
generation of oxygen, typically transition metal oxides, such as MnO2 in the TME. The
degradation of MnO2 not only releases oxygen but also leads to the metabolism of Mn2+ (Fan
et al., 2015). Another way is to deliver molecular oxygen to the tumor region, typical of which
is the utilization of Food and Drug Agency (FDA) approved perfluorocarbon capable of
carrying the oxygen (Cheng et al., 2015; WangW. et al., 2019). Perfluorocarbon proves to be
a safe drug with excellent bio-compatibility. In addition, the fractionated delivery of singlet
oxygen by chemical storage is an efficient approach to treatment of hypoxic tumors. In the
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process, singlet oxygen is usually captured by the moiety, such as
pyridione, anthracene with laser irradiation (Zou et al., 2020; Zou
et al., 2021b). Then it will be released when the laser is off.
Fractionated delivery of singlet is a kind of mild PDT and
diminishes the damage of blood vessels, thus contributes to
supplying oxygen during blood circulation. Apart from relieving
hypoxia, diminishing oxygen consumption with oxygen-
independent therapy is considered as another effective way, for
example, type I PDT (Ding et al., 2011; Wang Y. et al., 2019; Zhuang
et al., 2020). Different from type II PDT, type I PDT is based on the
sensitization of photosensitizers to generate superoxide/hydroxyl
radicals which may derive from not only molecular oxygen, but also
water or hydrogen peroxide. A classic example is the
radiosensitization of TiO2 by X-ray leads to the efficient
generation of hydroxyl radicals (Zhang et al., 2014). In recent
years, photosensitizers with NIR absorbance may also act
similarly. In the Research Topic, Cui et al. from Xiangyang
Central Hospital synthesized a semiconducting polymer (PDPP)
and encapsulated it with hydrophilic PEG-PDPA to enhance the
electron transfer for type I PDT. PDPP NPs show high superoxide
radical generation ability. Both in vitro and in vivo study
demonstrate PDPP NPs with considerably high phototoxicity
against human cervical cancer. Apart from hydrophilic PEG,
extracellular vesicles (EVs) can also be used as the platform for
the delivery of photosensitizers (Tong et al.). Tong et al. from
Shandong First Medical University have systematically
summarized the passive and active loading strategies of
photosensitizers into EVs, the advantages and disadvantages of
EV based delivery nanoplatform. According to their statistical
analysis, cancer cells (23.6%), stem cells (22.9%), and HEK293
(21.7%) derived EVs were most commonly used in preclinical
studies. This may be because researchers are trying to take
advantage of the homing and immune escaping properties of EV
pararenal cells, such as cancer cells and stem cells (Escude Martinez
de Castilla et al., 2021).

Activatable nano-platform for cancer therapy is attracting broad
interest (Turan et al., 2016; Hu et al., 2018; Zou D. et al., 2021).
Glutathione (GSH) with reductivity exists universally in cancer cells.
Designing nanomaterials for depletion of GSH may enhance the
therapeutic efficacy of PDT. Tang et al. from Guangdong Medical
University prepared a smart nanoplatform for enhanced photo-
ferrotherapy against hepatocellular carcinoma. Given that the
overexpression of hydrogen sulfide (H2S) in colorectal cancer
(CRC), Li et al. from the National Institutes of Health (NIH)
developed a novel metal-organic framework (MOF) composed of
meso-Tetra (4-carboxyphenyl) porphine (TCPP) and ferric ion

(Fe3+) through a facile one-pot process. The MOF is capable of
depredating in response to the high content of H2S in tumor
microenvironment of CRC.

NIR-II fluorescence imaging benefits from deeper penetration,
less tissue scattering and diminished auto-fluorescence (Hong et al.,
2017; Tian et al., 2019; Pei et al., 2021). Niu et al. from the First
Affiliated Hospital of Fujian Medical University reported a
biomineralized hybrid nanodots (CuxMnySz@BSA@ICG, ICG =
indocyanine green) for tumor therapy via NIR-II fluorescence for
photothermal therapy. CuxMnySz@BSA@ICG converts endogenous
hydrogen peroxide (H2O2) into highly active hydroxyl radical
(•OH) via Fenton reaction, and effectively produces reactive
oxygen species (ROS) after being exposed to 808 nm laser
irradiation. This results in eliciting a ROS storm, leading to the
regression of tumor.

This Research Topic has attracted extensive interest from
researchers who would like to seek new therapeutic methods for
better understanding the relationship between the structure and
therapeutic efficacy. The knowledge generated here not only benefits
the researchers focused on synthetic chemistry and biomaterials but
also adds to the understanding of cancer treatment for pre-clinical
application. Further investigation should still be continued for
cancer phototheranostics.
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