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Amomi fructus is rich in volatile components and valuable as a medicine and
edible spice. However, the quality of commercially available A. fructus varies,
and issues with mixed sources and adulteration by similar products are
common. In addition, due to incomplete identification methods, rapid
detection of the purchased A. fructus quality is still an issue. In this study,
we developed qualitative and quantitative evaluation models to assess the
variety and quality of A. fructus using GC, electronic tongue, and electronic
nose to provide a rapid and accurate variety and quality evaluationmethod of A.
fructus. The models performed well; the qualitative authenticity model had an
accuracy of 1.00 (n = 64), the accuracy of the qualitative origin model was 0.86
(n = 44), and the quantitative model was optimal on the sensory fusion data
from the electronic tongue and electronic nose combined with borneol
acetate content, with R2 = 0.7944, RMSEF = 0.1050, and RMSEP = 0.1349.
The electronic tongue and electronic nose combined with GC quickly and
accurately evaluated the variety and quality of A. fructus, and the introduction
of multi-source information fusion technology improved the model prediction
accuracy. This study provides a useful tool for quality evaluation of medicine
and food.
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1 Introduction

Amomi fructus, also known as Sharen in China, is the dried fruit
of Amomum villosum Lour. and A. villosum Lour. var.xanthioides
T.L.Wu et Senjen and Amomum longiligulare T.L.Wu (Chinese
Pharmacopoeia Commission, 2020). The fruits are harvested in
summer and autumn when they are ripe and dried in the Sun or
at low temperatures using air blast drying box. Amomum villosum is
a tropical plant that prefers the warm and humid climate of the
southern subtropical monsoon rainforest and is grown in
Guangdong, Yunnan and Hainan provinces in China and in
Myanmar, Vietnam, and Thailand.

Amomi fructus contains rich volatile oil components including
borneol acetate, camphor, borneol, camphene, α-pinene, and β-
pinene (Chen et al., 2021; Huang et al., 2021). These components
have applications in the pharmaceutical and food industries,
earning the fruit the name “medicine food homology”. Amomi
fructus has been used for thousands of years as an important
traditional Chinese medicine with a wide range of pharmacological
effects such as anti-ulcer (Liu et al., 2022), anti-inflammatory,
analgesic, anti-diarrheal and anti-bacterial (Li et al., 2015). It has
significant effects in the treatment of diseases such as functional
digestive disorders, gastritis, Helicobacter pylori infection in
children, and acute lung injury (Suo et al., 2018; Zhao et al.,
2022) and it has significant potential for scientific research and
new drug development. It is used in proprietary Chinese medicines
such as the Xiangsha Yangwei Pill, Jianpi Pill, and Shenling Baizhu
Granules (Zhang et al., 2020; Zu et al., 2022), and directly used
when mashed in the form of a traditional Chinese medicine

decoction (Nie et al., 2018). Amomi fructus is also a food and
can be used as a spice which is finely ground into a sachet or
aromatherapy. The complete fruit or seed can be used as a
seasoning, with common A. fructus meals including A. fructus
stew ribs, A. fructus crucian soup (Yu and Gao, 2017), and A.
fructus porridge (Xue, 2019; Zhao, 2020), etc. In addition, a series
of A. fructus by-products such as A. fructus wine, A. fructus honey,
and A. fructus rice noodles have been developed in recent years.

The variety and quality of commercially available A. fructus vary
greatly due in part to the easy mixing of sources and doping of
similar varieties (Hou et al., 2015). Due to the lack of identification of
some samples sold and incomplete identification methods, the
quality of commercial A. fructus is uncertain. The traditional
identification methods of A. fructus, include tasting, sniffing, and
visual inspection (Hou et al., 2015), and although the identification
speed is fast, the resulting description is relatively vague, subjective,
and lacks objective quantitative criteria, which limits its practical
applications. Modern identification methods include GC (Xu et al.,
2018), GC-MS(Wang et al., 2021a; Gu et al., 2022), and DNA
barcoding (Huang et al., 2017; Lu et al., 2021) which have
accurate and reliable results; however, the sample pretreatment is
cumbersome, time-consuming and has high technical operational
requirements. Therefore, a rapid and accurate quality identification
method for A. fructus is urgently needed (Gui et al., 2023).

Bionic sensory technologies such as e-tongue and e-nose (Weng
et al., 2022; Gui et al., 2023), can be used to objectify the trait
characteristics of medicine or food. The integration of bionic sensory
and modern analysis instrumental yields the advantages of both
“fast” sensory response and “quantitative” instrumental analysis,
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affording fast analysis, high sensitivity, strong reliability, good
repeatability, and strong integrity (Xie et al., 2016). Multi-source
Information Fusion (MIF) technology was first used by the U.S.
Navy in the military field, and has become an emerging
multidisciplinary approach that can combine and optimize data
from multiple bionic sensory sources to obtain more detailed and
accurate reasoning than an individual source, and it is now being
used in the quality evaluation of medicine and food (Dai et al., 2018;
Xu et al., 2019; Lan et al., 2020; Jiang et al., 2021; Jing et al., 2022).

This study aims to qualitatively and quantitatively evaluate
the variety and quality of A. fructus using the combination of
GC, e-tongue, and e-nose to establish a rapid and accurate
method to evaluate the variety and quality of A. fructus and
to provide a reference for the quality evaluation of other foods
and medicines.

2 Materials and methods

2.1 Drugs and reagents

A total of 44 batches of A. fructus from four origins were
collected in this study, including AF-1 for Yunnan A. fructus
from China (S1-S21), AF-2 for Guangdong A. fructus from
China (S22-S34), AF-3 for Hainan A. fructus from China (S35-
S39), and AF-4 for Myanmar A. fructus (S40-S44). In addition,
10 batches of each of Alpiniae katsumadai semen (AK) and Alpiniae
oxyphyllae fructus (AO) were collected as counterfeit of A. fructus,
with AK for S45-S54 and AO for S55-S64.

Camphor, borneol, and borneol acetate were purchased from
Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai, China).
Anhydrous ethanol (analytical purity, Tianjin Yongda Chemical
Reagent Co., Ltd.); tartaric acid, potassium chloride (reference
solution); potassium chloride, pure water, potassium hydroxide
(positive cleaning solution); anhydrous ethanol, concentrated
hydrochloric acid (negative cleaning solution).

2.2 The percentage of peel analysis

Appropriate amounts of each batch of A. fructus samples were
taken, their peels and seeds were separated and weighed, and the peel
percentage by weight was calculated and recorded.

2.3 Volatile component content analysis

Control solutions of camphor, borneol, and borneol acetate at
concentrations of 0.942 mg mL-1, 0.870 mg mL-1, and 2.000 μL mL-1,
respectively, were made through dissolving and dilution by
anhydrous ethanol.

A 1 g sample of A. fructus seed/peel powder was added to a
conical flask with 25 mL anhydrous ethanol and extracted with
ultrasonic waves at 40 kHz for 30 min. After cooling to room
temperature, the processed samples were shaken well and
centrifuged at 5,000 r·min-1 for 15 min. Finally, the solution was
filtered using a 0.45 μm filter membrane to obtain the seed/peel
sample solution.

The GC system included an Agilent 7890A instrument (Agilent
Technologies Co., Ltd. United States of America) with a flame
ionization detector (FID): GC conditions: Agilent HP-5 column
(0.25 μm, 0.32 mm × 30 m). Nitrogen was used as the carrier gas at a
constant flow rate of 1.1 mL/min. The column was heated to 63 C,
then increased at a rate of 5°C/min to 130°C and held for 5 min. The
temperature was then further increased at a rate of 20 C/min to
230°C and held for 5 min. The column oven temperature was 300°C
and the injection volume was 1 μL.

2.4 Bionic sensory analysis

2.4.1 Measurement of bionic taste data by
e-tongue

To prepare the positive electrode cleaning solution, 7.46 g of
potassium chloride was accurately weighed and dissolved with
500 mL of distilled water. Then 300 mL of absolute ethanol
solution and 0.56 g of potassium hydroxide were added while
stirring. After dissolving, the solution was transferred to a
1,000 mL volumetric flask and the volume was adjusted to 1,000 mL.

The negative electrode cleaning solution was prepared bymixing
300 mL of absolute ethanol with 500 mL of distilled water by
shaking, then mixing in 8.3 mL of concentrated hydrochloric acid
followed by transferring to a 1,000 mL volumetric flask and
adjusting the volume to 1,000 mL.

The glass electrode immersion maintenance solution was
prepared by adding 248.2 g potassium chloride in 900 mL
distilled water, dissolving it completely by ultrasound, and
adjusting the volume to 1,000 mL.

The reference solution was prepared by first weighing 0.18 g
tartaric acid and 8.946 g potassium chloride in a 1 L volumetric flask,
then adding distilled water to fix the volume. Next, the solution was
shaken and poured into a 4 L container. Finally, add 3 L of distilled
water to the 4 L container with the volumetric flask.

The sample was prepared by taking 3 g of powder sample,
adding 100 mL of reference solution to dissolve, shaking for
10 min, sonicating for 10 min, filtering through, then placing in
a special beaker (about 35 mL) for measurement by the e-tongue.

The SA402 B e-tongue (Intelligent Sensor Technology, Inc.,
Japan) was used to test the bionic taste data of each sample. The
e-tongue included eight sensors: C00, AE1, CA0, CT0, AAE, AN0,
BT0 and GL1 (Table 1). A total of 11 taste information values are
output from 8 sensors, each representing a different type of taste
information, and the difference between the different taste
information is indicated by the level of the response value. The
type of measurement adopted in e-tongue is potentiometric
measurement. First, the sensors were cleaned for 90 s in a
cleaning solution, followed by 120 s with a reference solution,
and continued with another reference solution for 120s. The
sensors were zeroed in the equilibrium position for 30 s. After
reaching the equilibrium condition, the test started with a test
time of 30 s, and the sensors outputted the first taste value.
Then, the sensors were briefly cleaned in the two groups of
reference solutions for 3 s, and the sensors were inserted into the
new reference solution to test the aftertaste for 30 s. It was cycled
4 times. The result of the first cycle was removed, and the average
value of the last 3 times was considered the test result. Among them,
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the sweet taste sensor GL1 was tested for 5 times, and the first cycle
and the last cycle were removed, and the average data of the middle
three times were taken as the test results. Each cleaning,
equilibrating, and testing of the sensors were performed in
different sample cups (Liu et al., 2014; Li et al., 2023). The total
test time per sample was approximately 90 min when all types of
sensors were used.

2.4.2 Measurement of bionic olfactory data by
e-nose

The PEN3.5 e-nose (AIRSENSE Analytics GmbH, Germany)
included ten sensors: W1C, W5S, W3C, W6S, W5C, W1S, W1W,
W2S, W2W, W3S (Table 1). Different sensors can detect different
types of chemicals and indicate the level of compound content by
the level of response value. The type of measurement adopted in
e-nose is resistance measurement. The sample was weighed 3 g
and placed in a 50 mL centrifuge tube and sealed with a sealing
film. The sample odor information was collected by static
headspace sampling method and the headspace generation
time was 30 min.

After connecting the PEN3.5 e-nose to the computer, we ran its
supporting software and set the e-nose parameters for each test,
including sampling and cleaning time. We selected a folder and path
to save the results and the name of each sample to be tested and
started the test. The sample inlet flow rate was set to 400 mL and the
sampling time was 100 s. Three parallel measurements were taken,
and the data at 80 s inlet time was taken as the results. The
experiment was conducted at room temperature of about 24 C
and relative humidity of about 82%. The total time of
measurements for each sample is about 3 min.

2.5 Statistical analysis

A comparative analysis of the peel and seed samples was
conducted using Origin 2022. Principal Component Analysis

TABLE 1 Sensors information.

Sensor attribution Sensor name Sensor description and sensitivities

E-tongue C00 Bitterness, aftertaste-B

AE1 Astringency, aftertaste-A

CA0 Sourness

CT0 Saltiness

AAE Umami, richness

AN0 B-bitterness2

BT0 H-bitterness

GL1 Sweetness

E-nose W1C Aromatic organic compounds

W5S Nitrogen oxides, negative signal

W3C Ammonia, aromatic compounds

W6S Hydrogen gas

W5C Alkanes, aromatic compounds, and non-polar organic compounds

W1S Methane, broad range of organic compounds

W1W Inorganic sulfur compounds, terpenes and sulfur containing organic compounds

W2S Alcohol, aromatic compounds

W2W Aromatic compounds, inorganic sulfur and organic compounds

W3S High concentrations of methane and aliphatic organic compounds

FIGURE 1
The percentage of peel in Yunnan, Guangdong, Hainan and
Myanmar Amomi fructus.
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(PCA) was conducted using SIMCA 14.1, which is one of the most
frequently used unsupervised chemometric tools. It allowed the
projection of data from a higher to a lower-dimensional space so
that it simplifies the interpretation of variables between the
samples (Barbosa et al., 2020). Orthogonal Partial Least Square
Discriminant Analysis (OPLS-DA) (Wang et al., 2021b) was
conducted using SIMCA 14.1, Principal Component Analysis
Discriminant Analysis (PCA-DA) and Partial Least Squares
Discriminant Analysis (PLS-DA) were conducted using the
MATLAB R2016B software, which a supervised discriminant
analysis statistical method, and it is very beneficial to finding
relevant information related with particular samples and
variables of a dataset (Zhang et al., 2022). Partial Least
Squares Regression (PLSR) (Htet et al., 2021) was also
conducted using the MATLAB R2016B software, which is to
find a linear regression model by projecting predictive
variables and observed variables into a new space.

3 Results and discussion

3.1 The percentage of peel analysis

The percentage of peel results from the Yunnan, Guangdong,
Hainan, and Myanmar A. fructus are reported in Figure 1. The peel
percentage of A. fructus from Yunnan and Guangdong were around
0.2, while the peel percentage of Hainan and Myanmar A. fructus
was around 0.3, which represented a significant difference (p < 0.05).
Compared to Yunnan and Guangdong A. fructus, the peels of
Hainan and Myanmar A. fructus are shrunken and thicker,
consistent with the measurement results.

3.2 Volatile component content analysis

3.2.1 Establishment and analysis of GC fingerprints
The GC fingerprints and common patterns of 44 batches of A.

fructus seeds and peels are illustrated in Figure 2. A total of 6 common
peaks were extracted from the seed fingerprints. Among these peaks,
3 common peaks were identified by comparison to the reference
fingerprint, with peak 4 being camphor, peak 5 being borneol, and
peak 6 being borneol acetate. A total of 8 common peaks were extracted
from the peel fingerprints, two of which, peak 6 (camphor) and peak 7
(borneol acetate), were identified by comparison to the reference
fingerprint. The fingerprints of seeds and peels were analyzed for
similarity analysis with their common patterns, revealing that in
both seeds and peels the fingerprints of Yunnan and Guangdong A.
fructus significantly differed from those of Hainan and Myanmar (p <
0.01). The average fingerprint similarity was above 0.9 for Yunnan and
Guangdong A. fructus and below 0.7 for Hainan and Myanmar A.
fructus.

3.2.2 Comparative analysis of the content of
volatile components of seeds and peels

The volatile component content in seeds was significantly
higher than in peels (p < 0.01) (Figure 3). The content of borneol

FIGURE 2
GC fingerprints of 44 batches of Amomi fructus seed (A) and peel (C), common mode characteristic chromatogram of seed (B) and peel (D).

FIGURE 3
Contents of volatile components in Amomi fructus seed and
peel.
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acetate in the seeds of the Guangdong A. fructus was
significantly higher than in the A. fructus from Yunnan,
Hainan and Myanmar (p < 0.05), and the content of borneol
acetate in the Yunnan A. fructus seeds was higher than in those
from Hainan and Myanmar (p < 0.01). There was no significant
difference in seed-borneol content across the four origins (p >
0.05). The camphor content in the seeds from Hainan and
Myanmar was significantly higher than those from Yunnan
and Guangdong (p < 0.01). The content of all three volatile
components in the peels was higher in the sample from Yunnan
than from Hainan (p < 0.05), and the peel camphor and borneol
contents were higher in the Guangdong sample than in the
Hainan sample (p < 0.01).

Given the differences in the edible and medicinal parts of A.
fructus, in some cases, the intact fruits are used directly, and in other
cases, only the seeds are used after peeling. When using different
parts and varieties of A. fructus, the component content of seeds and
peels as well as peel percentage should be taken into account for
dosage calculations.

3.2.3 OPLS-DA of the seed components
To further investigate the quality differences among A. fructus

seeds from the four origins, OPLS-DA was performed using the data
of six common peaks extracted from the GC fingerprints of the seeds
as variables (Figure 4A). The model prediction parameter R2Y is the
explanation rate of the proposed model for the Y-matrix, and Q2 is
the predictive power of the model, and the closer their values are to
1 indicates a better fit of the model. The model predicted parameters
R2Y (0.526) and Q2 (0.395) indicated that the model was stable and
had some predictive ability. The Yunnan and Guangdong A. fructus
seeds are in one category and the rest are grouped together
(Figure 4A), consistent with the similarity analysis results. To
verify whether the model was overfitted, a 200X permutation test
was conducted using SIMCA 14.1 (Figure 4B). The model is valid
when all Q2 and R2 values on the left are lower than the original point
on the right, or when the blue regression line of Q2 intersects the
vertical axis (on the left) at or below zero. The intercepts of the
model validation parameters R2 and Q2 were 0.045, and −0.210,
respectively. The regression curve of Q2 intersected the Y-axis below

FIGURE 4
OPLS-DA analysis of Seed. Score plot (A) 200X permutation tests (B); VIP (C).

FIGURE 5
Electronic tongue (A), electronic nose (B) output information radar charts.
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zero, indicating that the model was not overfitted. Subsequently, VIP
(Variable Importance for the Projection) analysis was performed,
and the larger VIP value indicated that the difference of the peak has
a greater impact on the quality of A. fructus from different origins.
Using a VIP value greater than 1 as the screening criterion, a total of
4 common peaks were screened. The order of influence on sample
quality among the peaks was peak 4> peak 3> peak 2 > peak 1.

3.3 Bionic sensory analysis

3.3.1 Establishing qualitative models of Amomi
fructus authenticity and origin with e-tongue
3.3.1.1 Output information of taste sensor

A total of 11 bionic taste response values were obtained from the
measured samples, including B-bitterness2, H-bitterness, Sweetness,
Sourness, Bitterness, Astringency, Aftertaste-B, and Aftertaste-A
(Figures 5A). The response values of Bitterness, Umami, Richness,
and Saltiness for all samples and Sweetness, Aftertaste-A, and
Aftertaste-B for some samples were greater than 0. And compared
to the rest of the bionic taste response values that were less than 0, these
hadmore practical significance and reference value. The response values
of B-bitterness2 and Sourness were significantly higher for S61, which
was the only A. oxyphyllae fructus from Guangdong, and lower for
Umami compared to the other A. oxyphyllae fructus from Guangxi or
Hainan. Whether this data is a coincidence or not needs to be further
verified by using more samples from Guangdong, and this finding may
also provide an idea for the origin identification ofA. oxyphyllae fructus.

3.3.1.2 Establishing qualitative models of Amomi fructus
authenticity

PCA is an unsupervised data dimensionality reduction method
that does not consider sample group information. The
dimensionality reduction function of PCA is often used to
discover its potential inter-group differentiation trends and to
make a basis for subsequent multivariate statistical analysis for
classification or prediction (Se et al., 2018). Figure 6A shows a
plot of the sample principal component scores created using the
taste response values. The first two principal components could
explain 69.1% of the variance information of the original data. The
two-dimensional plot shows that except for S23, 44 batches of A.
fructus, 10 batches of A. katsumadai semen and 10 batches of A.
oxyphyllae fructus can be clustered into one category each.

Using the taste response values of the above samples as the
independent variable X) and the species classification of the samples
as the dependent variable Y), the PCA-DA and PLS-DA authenticity
discrimination models of A. fructus were established and validated
through leave-one-out cross-validation (Figures 7A, B). The A.
fructus samples are labeled ‘AF’ and the remaining samples as
‘AK/AO’. By preferring the number of principal components to
build a qualitative analysis model with better performance of PLS-
DA/PCA-DA, the two-dimensional plot shows that the first two
principal components can explain 69.07% and 78.39% of the sample
information, respectively. The accuracy of both models was 1.00 and
there were no assigned samples (Table 2). It shows that the
developed model can completely distinguish whether the sample
isAmomi fructus or not, and the model performs well.

FIGURE 6
Plots of PCA of the electronic tongue-Authenticity (A), electronic nose-Authenticity (B), electronic tongue-Origin (C), electronic nose-Origin (D).
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FIGURE 7
PCA-DA models of the electronic tongue-Authenticity (A), electronic nose-Authenticity (C), PLS-DA models of the electronic tongue-Authenticity
(B), electronic nose-Authenticity (D).

TABLE 2 Parameters of each model.

Technology Category Model Training Cross-validation

Error rate Accuracy Not assigned Error rate Accuracy Not assigned

E-tongue authenticity PCA-DA 0.00 1.00 0.00 0.00 1.00 0.00

PLS-DA 0.00 1.00 0.00 0.00 1.00 0.00

origin PCA-DA 0.17 0.91 0.00 0.21 0.86 0.00

PLS-DA 0.03 0.94 0.20 0.26 0.75 0.27

E-nose authenticity PCA-DA 0.00 1.00 0.00 0.00 1.00 0.00

PLS-DA 0.00 1.00 0.00 0.00 1.00 0.00

origin PCA-DA 0.07 0.75 0.00 0.38 0.75 0.00

PLS-DA 0.26 0.97 0.25 0.45 0.78 0.18

E-tongue + E-nose origin PCA-DA 0.05 0.98 0.00 0.22 0.82 0.00

PLS-DA 0.00 1.00 0.07 0.23 0.82 0.23

Note: Accuracy is the proportion of correctly classified samples to the participating classified samples. Not assigned samples is the participating modeling samples that cannot be classified.
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3.3.1.3 Establishing qualitative models of Amomi fructus
origin

PCA was performed on the taste response values of 21 batches
of A. fructus from Yunnan, 13 from Guangdong, 5 from Hainan,
and 5 from Myanmar. The first two principal components could
explain 71.9% of the variance information of the original data.
The results showed that A. fructus of each origin could not be
clearly clustered into a single category (Figures 6C), indicating
that the A. fructus taste information across origins was relatively
similar, and it was impossible to distinguish them effectively
through PCA alone.

Using the taste response values of the above samples as the
independent variable X) and the origin classification of the
samples as the dependent variable Y), the PCA-DA and PLS-
DA origin discrimination models of the A. fructus were
established and validated using leave-one-out cross-
validation (Figures 8A, B). The A. fructus from Yunnan were
labeled as ‘AF-1’, from Guangdong as ‘AF-2’, from Hainan as
‘AF-3’, and from Myanmar as ‘AF-4’. The accuracies of the
PCA-DA and PLS-DA models were 0.86 and 0.75, respectively,
but there were more unassigned samples in the PLS-DA model
(Table 2). The performance of the PCA-DA model established
by the taste response values was relatively good as it was
generally able to accurately distinguish A. fructus of different
origins.

3.3.2 Establishing the qualitative models of Amomi
fructus authenticity and origin by e-nose
3.3.2.1 Output information of olfactory sensor

A total of 10 bionic olfactory response values were obtained from
the measured samples, including W1C, W5S, W3C, W6S, W5C, W1S,
W1W,W2S,W2W,W3S (Figure 5B). The sensor response values for all
samples were all greater than 0, and the response values of W1W and
W2W were larger, indicating that the samples contained more
inorganic sulfur compounds, terpenes, sulfur-containing organic
compounds, aromatic compounds, and more organic compounds.

3.3.2.2 Establishing the qualitativemodels of Amomi fructus
authenticity

The PCA on the olfactory response values of 44 batches of A.
fructus, 10 batches of A. katsumadai semen, and 10 batches of A.
oxyphyllae fructus showed that the A. fructus were clustered into one
category except for S34, and A. katsumadai semen and A. oxyphyllae
fructus were clustered into one category (Figure 6B). The first two
principal components could explain 78.4% of the variance
information of the original data.

Using the olfactory response values of the above samples as the
independent variable X) and the species classification of the samples
as the dependent variable Y), the PCA-DA and PLS-DA authenticity
discrimination models of the A. fructus were established and
validated using leave-one-out cross-validation (Figures 7C, D).

FIGURE 8
PCA-DAmodels of the electronic tongue-Origin (A), electronic nose-Origin (C) and two-source fusion-Origin (E), PLS-DAmodels of the electronic
tongue-Origin (B), electronic nose-Origin (D) and two-source fusion-Origin (F).
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The two-dimensional plot shows that the first two principal
components can explain 65.93% and 77.82% of the sample
information, respectively. The A. fructus samples were labeled
‘AF’ and the remaining samples were labeled ‘AK/AO’. The
accuracy of both models was 1.00 and there were no unassigned
samples (Table 2), indicating that the established models could
completely distinguish between A. fructus and the others.

3.3.2.3 Establishing qualitative models of Amomi fructus
origin

The PCAmodel of the olfactory response values showed that theA.
fructus of each origin could not be clearly clustered into one category
each. This indicated that theA. fructus olfactory information, as with the
taste information, was similar across origins so their origins could not be
effectively distinguished by unsupervised PCA alone.

Using the olfactory response values of the above samples as the
independent variableX), and the origin classification of the samples as the
dependent variable Y), the PCA-DA and PLS-DA origin discrimination

models of the A. fructus were established and validated using leave-one-
out cross-validation (Figures 8C, D). The accuracies of the PCA-DA and
PLS-DA models were 0.75 and 0.78, respectively, but there were more
unassigned samples in the PLS-DA model (Table 2). The PCA-DA
model established by the olfactory response values was generally able to
accurately distinguish the A. fructus of different origins.

3.3.3 Establishing qualitative models of Amomi
fructus origin using e-tongue and e-nose

The accuracy of the qualitative models of A. fructus authenticity
established by a single type of bionic sensory data all reached 1.00, while
the accuracy of the qualitative originmodels was relatively low. In order
to improve data utilization and model performance, the PCA-DA and
PLS-DA origin identification models were established by fusing the
above two types of bionic sensory data, taking the fused data as the
independent variable X) and the A. fructus origin classification as the
dependent variable Y). The accuracy of the PCA-DA and PLS-DA
models was 0.82 (Figures 8E, F), and there were still unassigned samples

FIGURE 9
Predicted and actual values of PLSR models for two-source fusion + bronyl acetate.

TABLE 3 Parameters of PLSR models.

Model Optlv R-Square RMSEF RESRP

E-tongue + Camphor 4 0.7218 0.0585 0.0694

E-tongue + Borneol 1 0.2283 0.0207 0.0107

E-tongue + Bronyl acetate 1 0.4606 0.1732 0.1684

E-nose + Camphor 6 0.4993 0.0761 0.1362

E-nose + Borneol 5 0.3424 0.0181 0.0173

E-nose + Bronyl acetate 6 0.6470 0.1392 0.2809

Two-source fusion + Camphor 2 0.6901 0.0653 0.0658

Two-source fusion + Borneol 2 0.2973 0.0195 0.0140

Two-source fusion + Bronyl acetate 5 0.7914 0.1050 0.1349

Note: Optlv is the number of latent variables that reach the minimum RMSECV, by ten-fold interaction validation. R-Square is the coefficient of determination, and the closer R-Square is to

1 the better the model fit. RMSEF, is the root mean squared error of the training set; RESRP, is the root mean squared error of the prediction set.
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in the PLS-DA model. Compared to the qualitative origin model
established by bionic taste data, the accuracy of the PCA-DA model
was reduced, while the number of unassigned samples in the PLS-DA
model was reduced. Compared with the qualitative origin model
established by bionic olfactory data, the accuracy of both types of
models was improved, while the number of unassigned samples in the
PLS-DA model was increased.

3.3.4 Establishing quantitative models of Amomi
fructus using volatile component content and
bionic sensory data

A PLSR analysis of A. fructus was carried out with the fusion
of two types of bionic sensory data as the independent variable
X), and the contents of camphor, borneol, and bornyl acetate in
A. fructus as the dependent variable Y). Samples were divided
into a training set of 33 and a test set of 11. With an R2 of 0.7914,
the fusion model outperformed the PLSR models established by a
single type of bionic sensory data (Figure 9). The parameters of
PLSR models are reported in Table 3. This result illustrated the
strong correlation between borneol acetate and bionic sensory
data. This model can be used to evaluate the quality of A. fructus
and highlights the importance of borneol acetate in the variety
and quality evaluation of A. fructus.

4 Conclusion

The qualitative models of A. fructus authenticity were the
optimal model with an accuracy of 1.00. The qualitative origin
model using the PCA-DA established by the e-tongue was
optimal, with an accuracy of 0.86. The PLSR model
established by two types of sensory fusion data combined
with bornyl acetate content was optimal, with an R2 of
0.7914. Our study reveals that the use of e-tongue and e-nose
combined with GC can be used to evaluate the variety and
quality of A. fructus quickly and accurately, and the
introduction of MIF technology can improve the prediction
accuracy of the model to some extent. This study provides a
potential tool for the rapid and accurate evaluation of the variety
and quality of A. fructus and also provides a promising method
for evaluating the variety and quality of other traditional
Chinese medicines and foods.
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