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Efficiently luminescing spherical polymer particles (beads) in the nanoscale regime
of up to approximately 250 nm have become very valuable tools in bioanalytical
assays. Eu3+- complexes imbedded in polymethacrylate and polystyrene in
particular proved to be extraordinarily useful in sensitive immunochemical and
multi-analyte assays, and histo- and cytochemistry. Their obvious advantages
derive from both, the possibility to realize very high ratios of emitter complexes to
target molecules, and the intrinsically long decay times of the Eu3+-complexes,
which allows an almost complete discrimination against bothersome
autofluorescence via time-gated measuring techniques; the narrow line
emission in conjunction with large apparent Stokes shifts are additional
benefits with regard to spectral separation of excitation and emission with
optical filters. Last but not least, a reasonable strategy to couple the beads to
the analytes is mandatory. We have thus screened a variety of complexes and
ancillary ligands; the four most promising candidates evaluated and compared to
each other were β-diketonates (trifluoroacetylacetonates, R-CO-CH-CO-CF3,
R = - thienyl, -phenyl, -naphthyl and -phenanthryl); highest solubilities in
polystyrene were obtained with trioctylphosphine co-ligands. All beads had
overall quantum yields in excess of 80% as dried powders and lifetimes well
beyond 600 µs. Core-shell particles were devised for the conjugation to model
proteins (Avidine, Neutravidine). Their applicability was tested in biotinylated titer
plates using time gated measurements and a Lateral Flow Assay as practical
examples.
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1 Introduction

As the rare earth molecular markers and the bead-labels discussed in the following live
off the same luminescence principles, we first give a brief introduction on rare earth
complexes followed by an outline on rare earth containing beads and applications.
Knowledgeable readers may decide to leap over some of the introductory paragraphs.
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1.1 Complexes

The luminescence of aromatic β−diketonates of Europium has
caught the attention of scientists more than 80 years ago; a plethora
of complexes and properties has been investigated in the meanwhile.
The impetus of these on biomedical research is particularly
impressive; dating back to the early eighties, rare earth complexes
and applications have been commercialized as very sensitive
immunoassays, in which the inherently long decay times of
numerous complexes could be exploited to detect antibodies or
hormones in minute concentrations (Siitari et al., 1983; Soini and
Kojola, 1983; Bailey et al., 1984; Bertoft et al., 1984; Hemmila et al.,
1984; Diamandis, 1988).

Power and success of the rare earth complexes in photonics are
obviously associated with the underlying, unique luminescence
mechanisms. They have been analyzed and described extensively
in the literature (de Sá et al., 2000; Selvin and Lakowicz, 2003;
Binnemans, 2005; Bünzli et al., 2011; Bünzli, 2016) and shall be
summarized only briefly here: Excitation of, e.g., Eu3+ and Tb3+ via
(intrashell) f-f transitions is possible but very inefficient due to their
quantum mechanically forbidden nature. One attractive
workaround is the use of rare earth complexes, in which a
strongly absorbing ligand is attached to the central ion and acts
as an antenna. Hence, after singlet excitation of the ligand (1S→ 1S*)
the ligand undergoes intersystem crossing into a triplet (1S* → 3T,
promoted by spin-orbit coupling), from which intramolecular
energy transfer occurs typically to (5D0 (Eu3+) or 5D4 (Tb3+),
respectively, also termed resonance levels. The energetic
difference (ΔE) between 3T and 5D0 or 5D4 is most significant: if
the ligand triplet is less than roughly 2000 cm-1 above 5D0 (Malta
et al., 1997) or 5D4 (Latva et al., 1997), energy back transfer will
increasingly go at the cost of efficiency. However, if ancillary ligands
with low lying triplets below the antenna are present, resonant
energy back transfer may occur and can even enhance the overall
quantum yield (Kitagawa et al., 2022). Additionally, non-radiative
deactivation by co-coordinated, high frequency oscillators like H2O
must be suppressed for high efficiency, which can be accomplished
by the employment of ancillary ligands to avoid H2O-coordination.
Dibenzylsulfoxide, triphenylphosphinoxide (TPPO),
trioctylphosphinoxide (TOPO) or bidentate phenanthroline and
bipyridine are well known examples (Malta et al., 1998; e Silva
et al., 2000; Teotonio et al., 2008), whereby the bypyridine co-ligands
are less efficient in the Eu-diketonates under discussion (Faustino
et al., 2005; Thejo Kalyani et al., 2019). For Eu3+, which is in focus
here, β-diketones are among the most investigated and attractive
ligands, especially with fluoro-substituted alkyl groups and aromatic
substituents (Binnemans, 2005; Brito et al., 2009; Wang, 2010).

One outstanding feature of Eu-β-diketonates, again a
consequence of the forbidden f-f transitions, is the very long
decay time of the luminescence of up to 1 ms and more, which
compares to nanoseconds or less of “conventional” organic
luminophores. This property is now extensively used in time-
gated analyses, as the time of emission measurement can be
delayed until all auto- and background fluorescence have long
faded. A neat depiction of the time gated luminescence technique
in biomedical labelling has been reproduced in a review by
Matsumoto and coworkers, for example, which has been updated
recently (Nishioka et al., 2007; Matsumoto et al., 2020), the latter

including a paragraph on luminescence microscopic imaging. An
added benefit of Eu-β-diketonates is the excitability of the Eu3+-
emission in the near UV range, typically down to 350 nm, which
matches the emission of modern high power LEDs and helps to
avoid costly quartz optics.

Due to the stability requirements imposed by the aqueous
biomatrix and the encounter with potentially adverse reactands
such as enzymes, phosphates and the like, rare earth biolabelling
remains a challenging task. To function reliably, the complexes must
therefore possess high kinetic and chemical stabilities to withstand
the biological ambience. At the same time, high brightness, i.e., high
overall quantum yields and high optical absorption, must be
granted, which puts another challenge to the design of the
antenna-ligands. Considerable effort has thus been devoted to
design stable and efficient complexes, from which numerous
successful compounds have emerged as luminescent labels (Yuan
et al., 1998; Yuan et al., 2001; Bünzli and Hull, 2005; Nishioka et al.,
2006; Pandya et al., 2006; Nishioka et al., 2007; Bünzli, 2015).

1.2 Beads

The need for high complex stabilities and protection from water,
especially for simple Eu-β-diketonates, had been realized at a very
early stage in the search for sensitive biolabels. An elegant way to
circumvent the obstacles in stability and synthesis implied above,
was conquered by the imbibition of the complexes into polymer
beads, as documented in a Eastman Kodak patent, already filed in
1979 (Frank and Sundberg, 1981a). Next to screening, the use of
beads offers an unbeatable advantage over molecular labels in a
variety of applications, which is the amplification factor: a single
polystyrene bead of 100 nm in diameter and a load of 1% wt of label
complexes [e.g., Eu(ttfa)3(TOPO)2, see below] would contain
nominally 2000 luminescing molecules. In practice, more than
one analyte molecule per bead will be needed to enable ELISA
analyses for instance, of course. However, along with very high
efficiencies of beads, including extinction coefficents of the
complexes in excess of 50,000 M−1·cm−1, a tremendous intensity
increase is possible and observed. Thus, luminescent polymer beads
comprising rare earth complexes have been developed in the most
interesting size range of approximately 10 to a few hundred nm; as
bead matrix materials predominantly polystyrene but also PMMA,
or both, are employed [(Huhtinen et al., 2008; Aikawa et al., 2016;
Shin et al., 2016)]. Typically, the beads are synthesized first by
micro-emulsion polymerization and then activated by incubation of
the particles in rare earth solutions, although polymerization of the
matrix in the presence of the complexes is also known (Ando and
Kawaguchi, 2005; Desbiens et al., 2012).

The diketonate used originallywas Eu(thenyltrifluoroacetylacetonate)3,
Eu(ttfa)3 (Frank and Sundberg, 1981a; Frank and Sundberg, 1981b),
however, soon Eu(naphthyltrifluoroacatylacetonate), Eu(ntfa)3, was
preferred (Hemmila et al., 1984; Soukka et al., 2001; Huhtinen
et al., 2005; Huhtinen et al., 2008) and commercialized (Seradyn
“Fluoromax”/Thermo Fisher Scientific). TOPO, originally employed
in dissociation-enhanced lanthanide fluorescence immunoassays
[DELFIA® (PerkinElmer, 2023)], still seems to be the ancillary
ligand of choice for the incorporation into beads as well (Ando
and Kawaguchi, 2005; Aikawa et al., 2016), the majority of beads
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being based on polystyrene, although pure PMMA is also of interest
(Moudam et al., 2009; Li et al., 2013; Cardoso Dos Santos et al.,
2019). Last but not least, to act as biolabels, the surface of the beads
has to exhibit functional groups that can readily be conjugated to the
analyte under question; numerous protocols for the conjugation
have been reported, protruding carboxylates and amines being the
most prominent functional groups (Petri et al., 2004; Hermanson
and Hermanson, 2013; Sapsford et al., 2013; Sasaki et al., 2022):
Depending on the specific method of preparation of the
beads—especially the choice of the catalyst in the radical
microemulsion polymerization—the beads “naturally” assume a
high surface charge already (>+30 mV for 2,2′-Azobis(2-
amidinopropane) dihydrochloride, AAPH, and of ca., −40 mV for
Potassium peroxodisulfate, KPS). This surfcace charge is responsible
for the good dispersion stability of the beads in water. The surface
charge of the beads can further be altered using suitable co-polymers
either in the polymerization process itself or on deposition of a shell
after the concluded first polymerization of the core. We have made
good experience in using acrylic acid for negative and aminoacrylate
for positive charge effects. These additives are also indispensible for
the subsequent coupling to proteins etc. if covalent rather than
adsorptive linkage is desired.

1.3 Applications

After the very early recognition of the value of rare earth biolabel
complexes (Soini and Hemmilä, 1979) and the proof of principle of the
dissociation enhanced fluorescence immuno assay (DELFIA) (Siitari
et al., 1983) for antigens, the method was rapidly extended to the
analysis of proteins and antibodies, enzymes, polypeptides, DNA,
hormones, drugs and to FRETs and more (Bailey et al., 1984;
Parnham and Tarbit, 1987; Christopoulos and Diamandis, 1992;
Selvin, 2002; Matsumoto et al., 2020). Time resolved luminescence
imaging and time resolved flow cytometry (Jin et al., 2009; Chen et al.,
2020) are furthermethods, which have of recent drawn attention.While
the research on molecular labels still persists due to their unambiguous
potential, bead labels have become valuable assets in quite a number of
analyses in nucleic acid hybridizations and immunological and
histological analyses, see the preceding paragraph.

Point of care testing (POCT) has become an important field for
luminescent beads (Zhang et al., 2019), including tests for viral and
bacterial infections. Although ELISA-type investigations have also
been employed, Lateral Flow Immuno Assays (LFIA) are a key part
of the POCT strategies, will be outlined briefly and, dealt with in the
applicatory focus of this report.

LFIA is essentially a chromatographic method on a porous
nitrocellulose strip (ca. 5 mm wide, 100 mm long, 0.5 mm thick)
onto which at the starting part nanoparticles (gold or polymer
beads) equipped with an antibody on their surface have been
enriched; if the dissolved analyte (e.g., a protein) couples to the
antibodies on these nanoparticles, the formed analyte-antibody-
particle-composite is mobilized and flows through the strip, driven
by capillary forces. After a few centimeters, the flow front has to pass a
narrow line perpendicular to the flow direction, consisting of antibodies
anchored to the strip. If analyte is present, the composite is captured and
gives an optical response (red colour if nano-gold particles were
employed, or red emission, if Eu3+-complexes contained in polymer

beads were used). Particularly high sensitivity can be obtained, if the
longevity of the excited rare states of Eu3+ (or Tb3+) is taken advantage of
and time resolved luminescence from the capture line is measured. A
control line, detecting particles without adhering analyte, serves as test
validation. Traditionally based on gold nanoparticles (as known from
pregnancy tests, for example), rare earth polystyrene and PMMA
particles (beads) are increasingly emerging as notably more sensitive
substitutes (Rundstrom et al., 2007; Juntunen et al., 2012; Ham et al.,
2015; Song et al., 2015; Zhang et al., 2015; Shao et al., 2017; Salminen
et al., 2019; Natarajan and Joseph, 2022) and are also applied to tackle
the recent threat of COVID-19 (Feng et al., 2020). Prominent
complexes used are aromatic diketonates like tris(2-thenoyl-3,3,3-
trifluoroacetone)Eu(III)-di(tri-n-octyl phosphine oxide),
Eu(ttfa)3(TOPO)2 (Aikawa et al., 2016), and tris(1-(2-Naphthoyl)-
3,3,3-trifluoroacetone)Europium(III)-di(tri-n-octyl phosphine oxide),
Eu(ntfa)3(TOPO)2 (Huhtinen et al., 2008; Li et al., 2013; Shin et al.,
2016); in these complexes the coordination of TOPO is granting high
concentrations in the polymers.

Most of the aspects raised above have been documented in a large
number of scientific and technical papers and patents. However, we
have in recent years continued the screening for complexes suitable for
incorporation in polymer beads, among them awide variety of aromatic
carboxylates and β-diketonates, with a focus on long decay times, high
brightnesses and excitability in the near UV above ca. 350 nm. As may
have been expected, in general aromatic carboxylates proved to be
superior for green emitting Tb3+ beads and mentioned aromatic
trifluoroforo-β-diketonates for red emitting Eu3+ beads. The Eu3+

beads form the very core of the present comparison. Some useful
green emitting complexes shall be mentioned (Assunção et al., 2021;
Kasprzycka et al., 2021; Rochowiak et al., 2022; Assunção et al., 2023),
however, green emitting beads will be dealt with elsewhere. Next to
Eu(ttfa)3, Eu(btfa)3 and Eu(ntfa)3, we include a novel Eu(3-
phenanthtryl-trifluoro diketonate), complex, Eu(ptfa)3, and compare
the corresponding TOPO complexes’ properties as well as polystyrene
beads containing them from “one hand”; the chemical structures of
above complexes are reproduced in Figure 1. A detailed procedure for
evaluating Eu(ttfa)3(TOPO)2-beads in an ELISA-type as well as a lateral
flow experiment is given.

2 Materials and methods

Spectroscopies, materials and syntheses: A detailed description of
the spectroscopic apparatus employed (FTIR, Absorption, Reflectance,
Excitation, Luminescence, Phosphorescence) and Fluorescence
Microscopy, particle size and ς-potential determination as well as
materials employed, and details for the syntheses, analyses and
characterization including full IR-spectra are provided in the
Supplementary Material (in the following abbreviated as “ESI”).

3 Results and discussion

3.1 Eu(diketonate)3(TOPO)2 complexes

The binary complexes Eu(diketonate)3(H2O)2 have all been
discussed in the literature before, hence we shall refrain from
commenting on them here. However, their spectral data will be
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given for comparison. All TOPO-complexes possess an oily
consistency but show bright red luminescence under irradiation
with 365 nm, whose intensity is not distinguishable with the bare
eye. To cope with the oily consistencies and yet obtain comparable
spectral results it was necessary to prepare powderous mixtures with
KBr (1% wt of complex); these were then characterized by IR
spectroscopy, reflectance, excitation and emission measurements.
The IR-spectra clearly confirm the coordination of the ancillary
TOPO-ligands by their C=O valence vibrations at 1,600–1,630 cm−1,
the disappearance of the water bands above 3,000 cm−1, the
appearance of strong alkyl C-H vibrations (2,800–3,000 cm−1)
and the P=O valence vibration, which is redshifted from
1,146 cm−1 to 1,135–1,137 cm−1 in the TOPO-complexes. In
these, the P=O frequencies coincide with C=O vibrations or
appear as shoulders. Assuming c1 symmetry, or c2v at most, all of
the six C=O vibrations would be IR-active, however, due to the
wealth of absorptions in that spectral regime, an unambiguous
assignment of the other absorptions is almost impossible.
Nevertheless, the spectra are identical to previous reports (Tran
et al., 2011; Tran Thanh et al., 2014). The FTIR-spectra are
reproduced in full in the ESI (Supplementary Figures S1A–D).

Reflectance, excitation and emission spectra of the TOPO-
complexes as KBr-mixtures are assembled in Figure 2. The spectra
are inconspicious: in emission the maxima of the hypersensitive
5D0→7F2 transitions appear at 614 nm, Eu(ttfa)3)(TOPO)2
additionally showing a Stark component at 617.5 nm as a shoulder
(see caption for Figure 2 for further assignments). The complexes yield
absorbances near 100% at wavelengths just below their excitation
maxima. The spectral intensities are normalized to Eu(ttfa)3)(TOPO)2
with the highest excitation; it should be noted that Eu(btfa)3(TOPO)2
has its excitation maximum at 373 nm as compared to the other
complexes, which optimally responded at 385 nm. The overall

quantum yield of the KBr-mixtures as measured under 365 nm
excitation (ligand excitation) are assembled in Table 1. Under
these conditions, Eu(ttfa)3)(TOPO)2 has a slight advantage over
the other complexes, but given the lower excitation wavelength of
Eu(btfa)3(TOPO)2 it may be speculated that it might take the lead at
optimum excitation. Other authors found yet lower overall quantum
yields for Eu(btfa)3(TOPO)2 but comparably high quantum yields of
Eu(ttfa)3(TOPO)2, however no data on the identity of the compounds
were reported (Ohashi et al., 1990). The comparison of the decay
times in KBr (fitted as monoexponentials) supports this assumption:
here Eu(btfa)3(TOPO)2 has the longest lifetime of the excited state.
We should also point out that mortaring the TOPO-complexes with
KBr may lead to ligand exchange to some degree, and hence
compromise the determination somewhat. However, the decays of
the pure complexes are in fair agreement with the KBr-mixtures,
except for Eu(ptfa)3(TOPO)2. We speculate that here, bromide may
enter the coordination sphere, which would comply with the
experimental observation that TOPO is easily lost from the
complex on exposition to smaller donors. The sterically
demanding phenanthryl-moiety complex seems less compatible
with the equally demanding TOPO, such that it can partially be

FIGURE 1
Complexes under investigation for incorporation into polystyrene
beads. R = ttfa, 1-(2-thienyl)-4,4,4-trifluoro-1,3-butandion, btfa = 1-
phenyl-4,4,4-trifluoro-1,3-butandion, ntfa = 2-naphthyl-4,4,4-
trifluoro-1,3-butandion, ptfa = 3-phenanthryl-4,4,4-trifluoro-1,3-
butandion.

FIGURE 2
Reflectance, excitation and emission spectra of
Eu(diketonate)3(TOPO)2 complexes in KBr (1% wt): F0→5D2 (465 nm),
5D0→7F0 (579 nm), 5D0→7F1 (593 nm), 5D0→7F2 (614 nm), 5D0→7F3
(654 nm), 5D0→7F4 (701 nm).
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substituted, by ethanol for an example. For comparison and to further
confirm that our measurements are in a good regime, we calculated
the intrinsic quantum yields and radiative lifetimes, i.e., the quantum
yield for intra-shell f-f–excitation and subsequent decay of the 5D0-
level, which is readily accessible from corrected emission spectra using
Eqs 1–3 (Werts et al., 2002):

Φtot � ηsens × Φint (1)
Φint � τobs

τr
(2)

1
τr

� AMD,0 × n3 ×
Itot
IMD

( ) (3)

Here, Φtot is the overall quantum yield, ηsens, Φint and τr are the
sensitization efficiency, the intrinsic quantum yield and the radiative
(or natural) lifetime of the emitting 5D0-state, respectively. AMD,0 is
the spontaneous emission probability for the 5D0→7F1 transition in
vacuo (= 14.65 s−1), n is the index of refraction of the medium
(nKBr = 1.5598), Itot is the integrated intensity of the corrected
emission spectrum, IMD the (corrected) intensity of the magnetic
dipole transition 5D0→7F1 and τobs the measured decay time (on
ligand excitation). The calculated values are in very good agreement
with the experimental data given in Table 1 and confirm the high
sensitization efficiencies (>80%).

3.2 Beads

In view of the applications of the beads, for this comparison we
refrained from the use of additives and emulsifiers, which may
interfere with subsequent coupling protocols, although size and

concentrations are easier to control in the presence of additives
(Ando and Kawaguchi, 2005), especially for the size regime below
100 nm (Desbiens et al., 2012). We chose polystyrene as the matrix
material, as it is the dominant matrix in this context, it proved to be
more compatible than polymethylmethacrylate (PMMA) with the
complexes with respect to efficiencies, and not the least because in
PMMA the surface control and corresponding analyses posed severe
problems. We tested several analytical techniques to determine
carboxlate and amine concentrations on the surface of PMMA,
but the results for various methods described in the literature (Labib
and Robertson, 1980; Kawaguchi et al., 1995; De Stefano et al., 2000;
Dai et al., 2009; Su et al., 2010; Hennig et al., 2011) were
contradictory throughout, which is most likely a consequence of
the “fuzzy” surface neatly depicted in Figure 3 (Hennig et al., 2012).
Levers to affect particle size and complex concentration in the
micro-emulsion polymerization of polystyrene were the amounts
of alcohols to some extent and the amount of complex itself. Also,
for the sake of comparability for this part of the investigation, the
synthesis parameters were always kept constant and the amount of
complex in the synthesis set to 10% wt unless indicated otherwise.
This procedure inevitably led to varying complex contents of the
eventual beads as well as to varying particle sizes, but reflects the
compatibility with micro-emulsion polymerization syntheses and
the polystyrene matrix. The resulting bead contents are summarized
in Table 1; the contents were determined by dissolution of the beads
in THF and subsequent analysis by standard addition of complex
and its Eu3+-emission signals (see ESI).

Table 1 reveals that Eu(ntfa)3(TOPO)2, efficient as it may be, is the
least suitable for additive-free syntheses, and furthermore, that higher
contents of complexmay be possible for some species without significant
alteration of their properties, Eu(ttfa)3(TOPO)2 in particular.

TABLE 1 Relevant data for the complexes and corresponding beads (bead data from synthesis with 10%wt complex; final concentrationsmay be taken from Figure
6) Φtot = overall (experimental) quantum yields, τobs = experimental decay times; all experimental data are obtained with 365 nm excitation from powderous
samples, except for the beads’ lifetimes in (aqueous) dispersions. τr = calculated radiative lifetime, Φint = intrinsic quantum yields, ηsens = sensitization efficiencya.

Complex Eu(ttfa)3(TOPO)2 Eu(btfa)3(TOPO)2 Eu(ntfa)3(TOPO)2 Eu(ptfa)3(TOPO)2

Absorptionb 365 nm, % KBr >0.95 0.84 0.81 >0.95

In beads 0.91 0.83 0.83 0.9

Diameter beads, nm 150 128 146 110

Quantum yield, (Φtot), % 1% wt in KBr 81 78 75 72

Powderous beads 90 (94c) 86 83 91

Decay times (τobs), µs Pure complex 630 675 567 449

1% wt in KBr 649 662 594 521

In beads 731 704 627 680

Dispersions 717 722 633 650

Calculateda τr, µs 655 717 664 618

Φint, % 99 92 89 84

ηsens 0.82 0.86 0.84 0.85

Zeta pot., mV (Beads) +47 +43 +46 +34

aSee text and Werts et al. (2002).
b(1-Reflectance).
cFrom synthesis with 20% wt complex.
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Figure 4 assembles reflectance, excitation and emission spectra
of the beads from the synthesis employing 10% wt of complex. The
spectral features of the complexes in KBr are practically retained
completely, only the excitation maxima are shifted to lower
wavelengths by ca. 5 nm. Again, Eu(ttfa)3(TOPO)2 proves to be
the winner with respect to intensity at 376 nm, immediately followed
by Eu(ptfa)3(TOPO)2. The somewhat lower excitation (and
emission) intensity of Eu(ntfa)3(TOPO)2 is obviously a
consequence of the lower concentration of the imbedded
complex. All quantum efficiencies as well as the decay times are
greatly increased on imbedding into the polymer (see Table 1).
Brightness being a decisive factor, the beads range near the physical
limit [quantum yield >90%, absorption >90%; the dimensionless
term brightness is in this context (powderous samples) to be
understood as the quantum yield multiplied by the absorption
(1-Reflectance) as determined in an integration sphere (Wong
et al., 2020)]. However, the picture changes dramatically in
aqueous dispersions.

Figure 5 shows the Eu(ttfa)3(TOPO)2-beads in 0.1, 0.01, and
0.001% wt aqueous dispersions. The excitation maxima shift from
374 nm in powderous beads to 345 nm on diluting the 0.1% dispersion
to 0.01%, further dilution does not alter the excitationmaximum. At the
same time, the intensity drops by a factor of 1.3 only rather than a factor
of 10, while the second dilution step (0.01–0.001) affords an intensity
decrease by a factor of 8. These factors are clearly due to inner filter
effects at too strong absorbances and scattering by the beads. This
behaviour is hard to unravel quantitatively in turbid media: next to the
inner filter effect the spatial directions of scattering of both, excitation
and emission are wavelength-dependent (Rayleigh-Gans-Debye
scattering). Thus, we were not able to determine the efficiencies in
dispersions reproducibly and refrain from reporting these. However, the
decay times (Table 1) do not change with the concentration of the
dispersions and are in good agreement with the data reported for the
powderous beads. This holds true for a commercial dispersion as well
(right), where the discontinuity of the intensity in the dilution series is

FIGURE 3
Sketch of the surface of a PMMA-bead, showing multiple and
irreproducible coordination sites for ions, complexes and other
species. Reprinted with permission from Andreas Hennig, Heike
Borcherding, Christian Jaeger, et al., Scope and Limitations of
Surface Functional Group Quantification Methods: Exploratory Study
with Poly (acrylic acid)-Grafted Micro- and Nanoparticles, J. Amer.
Chem. Soc., 2012. 134(19): p. 8268-8276. Copyright 2023 American
Chemical Society.

FIGURE 4
Reflectance, excitation and emission spectra of
Eu(diketonate)3(TOPO)2 complexes in polystyrene beads, syntheses
carried out with 10% wt relative to styrene. Spectra are normalized
relative to Eu(ttfa)3(TOPO)2.

FIGURE 5
Excitation of 0.1, 0.01, and 0.001% wt aqueous bead dispersions.
(A): “as made” Eu(ttfa)3(TOPO)2–beads (final content of complex in
beads 2.94% wt, diameter 150 nm). (B): Eu(ttfa)3(TOPO)2–beads with
shell from styrene-4-sulfonte (NaSS) and PMMA (“method 2”, ESI;
final content of complex in beads 6.8% wt, diameter 223 nm). (C)
Commercial Fluoro-Max—beads (201 nm).
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even more pronounced [core-shell-beads (5b) and Fluoro-Max-beads
(5c) are elucidated in detail in the following paragraph]. It therefore
seems safe to assume that the quantum efficiencies established for the
dry beads prevail in dilute dispersions. Figure 6 shows the comparison
of the various bead-imbedded complexes in 0.001% wt dispersions,
Eu(ttfa)3(TOPO)2 here too exhibiting the highest efficiency. It is worth
pointing out that the high positive ζ-potentials of the beads (Table 1)
synthesized by the protocol given in the ESI are responsible for the
stability of the dispersions.

3.3 Surfaces

For eventual applicability, next to the stability of the dispersions,
the surface of the beads needs to carry functional groups suitable for
coupling to the analyte. We pursued several strategies to accomplish
either amino- or carboxylate-surfaces employing co-polymers in
one-pot-syntheses or as surface layers. For this purpose,
p-aminostyrene, vinyl benzyl amino hydrochloride,
vinylbenzylchoride and subsequent aminolysis, acrylic acid,
divinylbenzene, 2-aminoethylmethylacrylate (AEMH) and others
were used. All attempts of exploiting the ease of one-pot-syntheses
failed insofar as they were notoriously accompanied by losses in
efficiency. Although for our purposes, negatively charged
carboxylate-surfaces proved to be more successful, in principle,
positively charged amine-surfaces can be obtained as well, of
course; experimental details for a succesive core-shell procedure
for amino-beads are provided in the ESI for completeness.

For the investigations to follow, Eu(ttfa)3(TOPO)2 was chosen
for its obvious suitability with respect to physical and optical
properties as evident from Table 1. Two principle methods for
the preparation of negatively charged core-shell beads were
developed and tested (ESI, method 1 and method 2), both
methods utilizing potassium peroxodisulfate (KPS) for the core,

which is very compatible with the Eu-complexes. In method 1,
after the formation of the core, which takes approximately 1 h for
the desired sizes, a 1:1 mixture of acrylic acid and
methylmethacrylate was added without previous isolation of the
core. The subsequent second polymerization step was initiated
with ACVA-initiator (4,4′-azobis-(4-cyan-veleric acid) and
continued for 4 h. A slight drop in quantum yield (see Table 2;
Figure 7) indicates that the ACVA-initiator or acrylic acid may be
able to diffuse into the core, where it destroys part of the complex,
an observation that we had seen in numerous other experiments
before, e.g., in core-syntheses using ACVA as the initiator. The
quality of core shell beads from this method may also be inspected
in Figure 8.

The somewhat lower quantum yield and absorption from
method 1 prompted us to develop method 2, which was able to
carry 20% wt of the complex in the synthesis and led to beads
containing 6.08%wt. For method 2 we employed amixture of acrylic
acid, styrene-4-sulfonic acid sodium salt (NaSS), and

FIGURE 6
Excitation and emission spectra of
Eu(diketonate)3(TOPO)2–beads in 0.001% wt aqueous dispersions,
complex final content of beads in brackets: (A) Eu(ttfa)3(TOPO)2
(2.94% wt); (B) Eu(ptfa)3(TOPO)2,(1.99% wt); (C) Eu(ptfa)3(TOPO)2
(1.2% wt); (D) Eu(btfa)3(TOPO)2 (2.67%wt); (E) Eu(ntfa)3(TOPO)2 (0.82%
wt). Spectra are normalized relative to Eu(ttfa)3(TOPO)2.

TABLE 2 Properties of carboxylated core-shell beads.

Eu(ttfa)3(TOPO)2 core-shell beads Method 1 Method 2

Complex content theor., (weight-in) experimental 10 20

2.08 6.80

Diameter beads, nm 190 223

1-Reflectance (absorption), 365 nm, % 89 95

Qantum yield, 365 nm, % 93 90

Decays, µs, dry beads 700 768

Decays, µs, 0.01% dispersion 697 663

Zeta potential, mV −46.3 −50.8

FIGURE 7
Excitation and emission of aqueous 0.0025% wt dispersions.
Note that (D), “naked”, and (C), core-shell, have practically the same
complex contents. Particle sizes were 190 nm (E), 150 nm (D), 223 nm
(C), 201 nm (B); agglomerated-bimodal 334 nm and 147 nm (A).
(B) is the producer’s value for Fluoro-Max.
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methylmethacrylate for the shell, strictly avoiding acidic pH-values
by neutralization and reaction inMOPS-buffer. The main properties
of the beads obtained by the two methods are collected in Table 2.
Hence, the best emerging shell materials were acrylic acid/
methylmethacrylate and acrylic acid/styrene-4-sulfonate/
methylmethacrylate, as described below. We should mention that
very bright core-shell beads with yet higher complex-content (13.3%
wt) could be obtained (see Figure 7). However, these were partly
agglomerated as shown by a bimodal size distribution (see the
description for method 1 and Supplementary Figure S2 in the
ESI for more details).

It is at this stage useful to compare the bead’s properties with
commercially available particles. Among the commercial beads, the
reference gold standard for our purposes was Fluoro-Max with Eu3+-
chelate imbedded particles of 200 nm diameter and roughly
500,000 surface carboxylate groups per bead: the so called
“parking area” (area available for one carboxy group) varies from
batch to batch between 22 and 32 Å2 (ThermoFisher-Scientific,
2023). Determinations of active surface groups of our own beads
typically ranged around 450,000 –COOH per bead (parking area
25 Å2). The procedure for analysis involved EDC/NHS activation,
followed by reaction with hexylamine and titration of hexylamine
remaining in the mother liquor with o-phthalaldehyde (Roth, 1971)
(details in the ESI). In any case, these numbers of surface
carboxylates by far exceed the number of, e.g., proteins that can
be attached for sterical reasons: assuming a diameter of 5 nm of a
folded protein, a maximum of roughly 1,600 protein molecules can
be accomodated. Due to the high price (ca. 10 €/mg; furthermore,
presuming a concentration of 2% wt of complex in the beads, only
20 µg would be contained) it was prohibitive for us to completely
analyze the dispersions in all respects. Therefore, the exact amount
of complex and its chemical nature as well as the radial composition
of the beads is not known to us with certainty, but all observations
indicate that roughly 2% of complex (based on the calibration of the
emission intensity after dissolution in THF) are contained. The
stability of the beads in DMSO further indicates that the polystyrene
is probably a crosslinked polymer, as opposed to the beads prepared

for this work, which showed considerable swelling or dissolution.
Furthermore, while the emission spectra of the Fluoro-Max-
dispersions coincide with practically all the diketonates and
provide no positive proof, the decay time of 653 µs and the
excitation maximum at 338 nm suggest that the complex might
be Eu(nta)3(TOPO)2 (see Figure 6; Table 1). Figure 7 shows a direct
comparison of Eu(ttfa)3(TOPO)2-beads without shell, core-shell
beads after “methods 1 and 2” and Fluoro-Max in 0.0025%
dispersions, where inner filter effects are absent.

Figure 7 confirms that the brightness seems to scale with the
concentration of complex in the beads. But it also reveals that the
equipment with a shell proved to not only be crucial for subsequent
coupling reactions, but also for the optical performance of the beads
in dispersion, which was another important lesson to be learned:
while all dry bead powders show high efficiencies, in aqueous
dispersions corresponding core-shell-beads exhibit a considerable
intensity-increase over “naked” particles (see Figure 7D, “naked,”
and Figure 7C, core shell). Screening of surface-complexes or
surface-near complexes against water, prevents quenching and
decomposition. Hence, the brightness of “naked” beads amounted
to only 60% of the core-shell beads. The quenching of surface-
complexes may even affect parts of the core efficiency, if energy
transfer from core-excited species to outer complexes occurs. The
fact that the shelled beads (C) in Figure 7 with almost ideal quantum
yield, near complete absorption and an optimized shell are yet still
outperformed by Fluoro-Max beads is astounding on first sight.
Either the complex content in Fluoro-Max-beads is notably higher
(which contradicts our analyses), a different complex is occluded
(which contradicts spectra and decay times) or the shell is more
perfect (e.g., crosslinked polymer as the shell). Additionally, reduced
scatter, i.e., stronger absorption, due to a higher concentration of
complexes in surface-near areas may also contribute, although post-
infiltration experiments to simulate this were not successful with our
beads.

Finally, we should mention that the commercial dispersion may
contain larger particle due to agglomeration, as suggested by
fluorescence microscopy (see Figure 10, “Fluoro-Max”), possibly
originating from prolonged storage or insufficient cooling.

3.4 Protein conjugation, ELISA and LFIA

The evaluated optical and surface properties obviously require
further characterization to decide on the qualification of the beads
for immunological analyses. We have therefore exemplarily coupled
Avidine and Neutravidine as model proteins to the (carboxylated)
beads, with which the very strong bonding to Biotin can be
exploited. Neutravidine was chosen for the lower isoelectric point
(i.e.p. = 6.4), as Avidin (i.e.p. = 9.4) might give rise to stronger
adsorptive interaction rather than covalent coupling to the
negatively charged beads and falsify the general picture for
proteins with lower, i.e.p. The coupling routine proceeded via
EDC-NHS activation as laid out in detail in the ESI and
subsequent coupling with the proteins. A parallel experiment was
run with non-activated beads onto which the proteins can only be
adsorbed rather than covalently linked, thus informing on non-
specific interaction, which would compromise the analysis. The
number of Neutravidin molecules coupled to the surface was

FIGURE 8
Core-shell beads with imbedded Eu(ttfa)3(TOPO)2 with a
carboxylate shell (core shell method 1); secondary emission image
from a Hitachi 8230 Field Emission Gun Scanning Electron
Microscope, 30 kV).
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determined by titration with 4′-hydroxyazobenzene-2-carboxylic
acid (HABA) as described in the ESI. HABA forms a weak
complex with Neutravidin; on addition of Biotin it is released
and can be determined photometrically in solution. This analysis
showed that roughly 2300 Neutravidin molecules resided on the
beads corresponding to 88% coupling efficiency. This number is
fairly close to the maximum amount of ca., 2,700 molecules/bead as
estimated from the hydrodynamic diameter of 7.4 nm for

Neutravidin (Langer et al., 2014), even though we had refrained
from employing excess Neutravidin.

We tested two core-shell beads prepared by employing method
1 and method 2 (see previous paragraph). After covalent coupling
and (unspecific) adsorptive coupling with Avidin or Neutravidin, to
the shelled beads were tested in biotinylated titer plates by time-
resolved determination in a Victor 4 spectrometer with time
windows set between 300 and 1,100 µs. Figures 9A, B summarize

FIGURE 9
Time-gated luminescence intensity measurement of covalently and absorptively bead-coupled Neutravidin in biotinylated titerplates; volume
added to vials was 200 µl. (A) Core-shell-beads from method 1 {[Eu(ttfa)3(TOPO)2/polystyrene/KPS]core[acrylic acid/methylmethacrylat/ACVA]shell)}; (B)
core-shell-beads from method 2 {[Eu(ttfa)3(TOPO)2/polystyrene/styrene-4-sulfonate/KPS]core[acrylic acid//styrene-4-sulfonate/methylmethacrylat/
KPS]shell}. Adsorptive means shelled beads without EDC/NHS-activation.

FIGURE 10
Lightness profiles and images from Lateral Flow strips along the chromatograpic flow direction from left to right. L is the approximate length from
the chromatography start to the test line; the magnification was set to ×10, the exposure time was set to 10 ms. Further details on running media and
microscopy may be found in the ESI.
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the results for the core-shell-methods. The figures show the present
limit to be 2.5 × 10−4% wt beads (ca. 1,000 beads/well), which
conservatively recalculates into a 3 × 10−18 mol detection limit and
even lower, if less than complete coverage of the bead surface with
protein is required—which is most likely. Additionally, the amount
of unspecifically adhering protein is between 11% (beads method 1)
and 6% (beads method 2) only.

Last but not least, an important test method in this context is the
performance in Lateral Flow Immunoassays. Using the fluorescence
microscope, we were able to follow the chromatography in LFIA
strips. For this purpose, we used strips having a biotinylated test line to
capture the Neutravidin-equipped beads; the more even and intense
the response, the more useful the beads will be in LFIA. After
“loading” of the strips with beads dispersed in a dedicated flow
medium (running buffer), washing and drying, they were inspected
microscopically and their relative lightness evaluated (the term
lightness here meaning that the brightest sample signal was used
to set the microscope settings below saturation of the camera, see ESI
for details). Core-shell beads according to methods 1 and 2 and
Fluoro-Max reference beads are reproduced in Figure 10. Beads from
method 2 proved to be most superior: the lightness at the test line is
almost identical to Fluoro-Max beads, but their trace is practically free
from the “debris” seen in the Fluoro-Max chromatography, which
obviously shows appreciable agglomeration in the runningmedium. It
is obvious that method 1 had the weakest luminescence response in
this experiment, but was almost free from left-behind debris. Hence,
since exposure time and excitation intensity may be increased largely,
the beads can still be useful. Finally, another independent and
relatively simple semi-quantitative method—Fluorescence
“Microscopy-Titration”—to estimate the Neutravidin-load of the

beads was devised as follows: Avidin and Neutravidin are known
to have 4 docking sites for Biotin. Hence, the addition of 4 equivalents
molecular Biotin will completely block the protein sites such that the
beads cannot adhere to the biotinylated test line on the Lateral Flow
strip anymore. In other words, the intensity signal from the test line
will decrease on incubating the test solution with higher concentration
of Biotin, and the onset of signal permanence marks the Neutravidin
saturation with Biotin as visible in Figure 11. The recalculation for
beads from method 2 gave ca. 4000 Biotin molecules or roughly
1000 Neutravidin on the surface of the beads, i.e., the same order of
magnitude as the HABA-titration above.

4 Conclusion

A plethora of rare earth complexes useful for immuno-assays
have emerged during the last three decades, often with considerable
preparative effort; originally employed, relatively simple β-
diketonate complexes have long been outperformed by recent
developments. Bottlenecks in the pursuit of suitable complexes
were the screening against water and excitation energies compatible
with suitable light sources, like high power UV-LEDs. While β-
diketonates show a good match with, e.g., present 365 nm LEDs,
their functionalization for subsequent conjugation to obtain
biomarkers and protection from ambient water at the same time
is not a trivial task. This had been realized at an early stage in this
research already. Imbeddings into submicron-polymer particles
soon proved to be an elegant solution to circumvent the
drawbacks. Nowadays the toolbox for immunological beads
contains various complexes and strategies for functionalization.
We have ventured to directly compare very popular and efficient
trifluoro-substituted, aromatic β-diketonates of Eu3+ with respect to
their efficiencies as co-coordinated TOPO-complexes and in
polymer beads; a novel aromatic system comprising 3-
phenathrytrifluorodieketonate was also included. For methods
with additive- and emulsifier-free polymer synthesis we found
Eu(ttfa)3(TOPO)2 to be most suitable. We have therefore taken
beads with occluded Eu(ttfa)3(TOPO)2 and elaborated two
methods for applying shells in order to preserve the cores’ high
efficiencies in aqueous dispersions and concurrently to provide
anchoring groups for subsequent protein conjugation. The beads
thus obtained were exemplarily tested for ELISA-like analyses and
for Lateral Flow Immunoassyas; high-end commercial beads were
compared as contol. The beads, taking advantage of a large
amplification factors and ultimate brightnesses, enabled
determinations in the attomol regime and beyond; in Lateral
Flow experiments they proved to be superior to existing
commercial materials accessible to us. With respect to efficiency,
the beads are close to the physical limit. Further improvements in
dispersions will presumably be restricted to the optimization of
their scattering behaviour.
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FIGURE 11
Fluorescence “Microscopy-Titration”: Results from lightness
evaluation of the Biotin-testline of Lateral Flow strips after blocking
the adherence of the analyte (Neutravidin) with increasing additions of
Biotine prior to the chromatography. Both, Neutravidin
covalently and adsorptively coupled are represented. Each data point
corresponds to one individual chromatography experiment. Samples
evaluated were core-shell particles after method 1. Microscope
settings: excitation at 365 nm, emission 610 nm, 6% LED power,
exposure time 50 ms. Further details on microscope and chemical
procedures are given in the ESI.
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