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This paper focused on the synthesis of phenylthiocarbamide-grafted graphene
oxide (GO)-supported Cu complex (Cu-PTC@GO) as a highly efficient and
recyclable catalyst synthesis by various analytical techniques such as TG, FT-IR,
XRD, BET, N2 adsorption–desorption isotherms, SEM, EDX, and elemental
mapping analysis. Cu-PTC@GO showed outstanding results in preparing
various imidazoles with higher yields, reduced reaction time, ease of product
separation, and a simple procedure. In addition, the catalyst demonstrated
appreciable recyclability up to five successive runs, and there was no
substantial loss in catalytic performance. The result indicated that the
heterogeneous base GO catalyst performed high activity and excellent
recyclability in synthesizing various imidazoles and their derivatives, owing to
the unique state of the GO-supported copper complex.
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1 Introduction

Benzimidazoles are some of the most effective heterocyclic organic compounds
used as valuable intermediates in organic synthesis (Tejada-Casado et al., 2016; Li
et al., 2020; Duan et al., 2020). Benzimidazole derivatives were synthesized from the
condensation of aldehydes and 1,2-phenylenediamine with aromatic aldehydes under
oxidative or strongly acidic conditions (Hisano et al., 1982; Czarny et al., 1996; Bello
et al., 2019; Li et al., 2020). To date, various heterogeneous catalysts have been reported
for benzimidazole design by utilizing the oxidative cyclization pathway (Hisano and
Nanda, 2018; Marzouk et al., 2018; Shi et al., 2018; Fang et al., 2019). The
heterogenization synthetic process is carried out by attaching the desired newly
homogeneous catalyst to proper support via the non-covalent or covalent
interactions (Lopez and Liu, 2020). Many efforts have been made on the
heterogenization of copper catalysts on the surface of different supports, including
mesoporous materials (Costa et al., 2021), functionalized polymers (Chaudhary and
Sharma, 2021), resins (Xiong et al., 2021), carbon nanotubes (Şen and Gokagac, 2007;
Mohd Nurazzi et al., 2021), and silica (Farhadian et al., 2021). However, few works
have reported on using graphene oxide (GO) as support for the attachment of this type
of catalyst and its catalytic performance (Maleki et al., 2021; Rezaei-Seresht et al., 2021;
Boroumand et al., 2022; Laffafchi et al., 2022). Compared with different supports, GO
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is an appealing two-dimensional carbon-based material with
attractive properties like mechanical stability and excellent
thermal stability (Khojastehnezhad et al.,2019; Lee et al.,
2021). GO possesses a unique nanostructure (just a few
stacked layers or a monolayer), thermal stability, a large
specific surface area, and great oxygen-carrying
functionalities (Gilliland et al., 2018; Chakraborty et al.,
2019). A new type of carbon nanomaterial, including a
monolayer of sp2 carbon atoms, GO sheets are prominent
due to their unique chemical properties. GO has a vast
domain of applications, such as photocatalysts, catalysts,
sensors, supercapacitors, wastewater treatment, energy
storage, hydrogen storage, biomedical devices, and drug
delivery (Daşdelen et al., 2017; Rana et al., 2019;
Zarnegaryan et al., 2019; Deng et al., 2021; Kargar et al.,
2021; Niakan and Masteri-Farahani, 2021; Rana et al., 2021;
Xu et al., 2021; Zarnegaryan and Dehbanipour, 2021).

We report herein the synthesis of a new nanocatalyst Cu-
PTC@GO, where copper complexes are immobilized on a GO
support (Scheme 1). The catalytic potential of the new
nanocatalyst is also demonstrated, for the first time, in the
synthesis of a series of pharmaceutically important
benzimidazoles from aldehydes and 1,2-diaminobenzenes,
under the optimized reaction conditions.

2 Experiments

2.1 Synthesis of GO-Cl

GO was prepared by a suitable modification reported by
Hummers and Offerman. (1958). The chloro-functionalized GO
was prepared by a slightly modified procedure (Zhang et al.,
2014). In the first step, 1.0 g GO was entirely dispersed in
toluene (18 mL) at 60°C. Then, (3-chloropropyl)
triethoxysilane (0.5 g) was slowly added to a solution and
stirred for 24 h under reflux. The GO-Cl obtained was
washed with ethanol and dried under a vacuum.

2.2 Synthesis of PTC@GO

To immobilize a phenylthiocarbamide (PTC) ligand on GO-Cl,
in a stirred solution GO-Cl (2.50 g) in CH3CN solvent (18 mL) at
80°C, a solution of a phenylthiocarbamide ligand (1.5 g) in ethanol
(15 mL) was added dropwise. The reaction was stirred at 75°C for
24 h. Finally, the material was washed with ethanol four times and
dried at 50°C overnight.

2.3 Synthesis of Cu-PTC@GO

To immobilize Cu metal on (PTC)@GO, a stirred solution
(PTC)@GO (0.20 g) in ethanol solvent (10 mL) at 80°C, a
solution of CuCl2 (0.1 g) in EtOH (8 mL) was added

SCHEME 1
Schematic diagram of the preparation of the Cu-PTC@GO nanocatalyst.

FIGURE 1
FT-IR spectra of (A) GO, (B) GO-Cl, and (C) Cu-PTC@GO.
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dropwise. The reaction mixture was stirred at reflux for 24 h.
The nanocatalyst was then isolated by vacuum filtration.
Finally, the material was washed with ethanol four times and
dried at 40°C overnight. The ICP demonstrates loading of
0.52 mmol g−1 Cu for Cu-PTC@GO.

2.4 Catalytic tests

The general procedure for preparation of imidazoles: a mixture
of aldehyde (1 mmol), phenylenediamine (1 mmol), and Cu-
PTC@GO (12 mg containing 0.0062 mmol Cu(II)) in CH3CN
(12 mL) was heated to 80°C. The reaction progress was
monitored by thin-layer chromatography (TLC) using a mixture
of ethyl acetate and hexane (1:2). During workup, the nanocatalyst
was separated by filtration, and 5 mL of H2O and 5 mL of CH2Cl2
were added.

3 Results and discussion

In this paper, a copper phenylthiocarbamide complex was
covalently grafted onto chloro-functionalized GO sheets. The FT-
IR spectra of the synthesized GO, GO@ Cl, and Cu-PTC@GO
catalyst are shown in Figure 1. The spectrum of GO (Figure 1A)
demonstrates characteristic bands at 3382, 1717, 1621, 1223, and
1059 cm–1 (Figure 1A), corresponding to the presence of hydroxyl
groups (O–H, H2O, and COOH), edge carbonyls C=O), sp2-
hybridized aromatic compounds in a plane (C=C), and bonds of
epoxides (COC and C–O), respectively (Jing et al., 2015;
Ramezanzadeh et al., 2015). This issue indicates that a partial
reduction process occurred by the oxidation of graphite, thus the
GO fabrication. The peaks at 2839 and 2936 cm–1 are assigned to the
vibrations of the C–H bonds of the -CH2 and the C–N stretching
vibration (1223 cm–1) (Figure 1B). In addition, the observation of
vibration bands 1066 and 3418 cm–1, assigned to Si–O–Si, and O–H
vibration, respectively. The vibration band of Cu–N and Cu–S
appeared at 654 and 540 cm–1 in the spectrum of the catalyst
(Figure 1C) (Khojastehnezhad et al., 2019).

FIGURE 2
FE-SEM image of (A) GO and (B) Cu-PTC@GO.

FIGURE 3
EDX analysis of Cu-PTC@GO.

FIGURE 4
SEM-EDX element mapping of Cu-PTC@GO.
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SEM studied the surface characteristics and morphology of the
synthesized GO and Cu-PTC@GO nanocatalyst; the results are
illustrated in Figure 2. As shown in Figure 2A, there are large
flakes of GO with macroscopic wrinkling. Compared to the GO
sheets, the FE-SEM image of Cu-PTC@GO (Figure 2B) exhibited
that the nanocatalyst roughly comprises a wrinkled layered
structure.

Figure 3 shows the corresponding EDX spectrum of Cu-
PTC@GO (Figure 3). The presence of Cu, O, Si, Cl, S, and N
in the texture of Cu-PTC@GO was confirmed by the EDX
spectrum.

Figure 4 represents the element mapping images of the Cu-
PTC@GO catalyst surface, with different colors indicating the
presence of various elements after supporting Cu (PTC) onto
surface GO.

Figure 5 represents the thermal gravimetric analysis (TGA) of
the GO and Cu-PTC@GO nanocatalyst. The TGA analysis was
performed using the heating rate of 10°C min−1 from 25°C to 600°C
in an argon flow at a rate of 100 mL min−1. The weight loss (Figures
5A, B) for GO and Cu-PTC@GO below 140°C is assigned to
decomposing oxygen-carrying functionalities and evaporation
adsorbed water (Li et al., 2014a; Du et al., 2018). As the

FIGURE 5
TGA curves of (A) GO and (B) Cu-PTC@GO.

FIGURE 6
Nitrogen adsorption–desorption isotherms of (A) GO and (B) Cu-PTC@GO.
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temperature increased, the disintegration of GO appeared from
150°C to 350°C, resulting from the pyrolysis of the oxygen
involving functions such as epoxy, carboxyl, and hydroxyl groups
(Zhang et al., 2009; Wu et al., 2012). The other two weight loss
processes (Figure 5B) observed in the temperature at around
230°C–384°C and 385°C–490°C are mainly related to the

degradation of the grafted urethane chains, respectively (Kumar
et al., 2019).

N2 physisorption experiment results of GO and the Cu-PTC@
GO nanocatalyst are shown in Figure 6. The specific surface area of
GO before modification was 84.73 m2g−1, and the average pore
diameter was 26.53 nm.

The isotherms of the Cu-PTC@GO nanocatalyst match well
with the type V BET catalysts with hysteresis loops in the relative
pressure range of 0.2–1.0. The surface area was 28.4 m2 g−1 for the
Cu-PTC@GO nanocatalyst.

X-ray diffraction (XRD) patterns of GO and Cu-PTC@GO are
exhibited in Figure 7. In the primary GO (Figure 7A), the peak at
2θ = 11.1° belongs to the (001) reflection of graphene oxide (Li et al.,
2014b; Zhang, et al., 2009). In contrast, the XRD powder patterns of
Cu-PTC@GO (Figure 7B) do not present a peak characteristic of
GO, while a broad band centered at ca. 2θ = 30.58° is observed.
However, for Cu-PTC@GO, the peaks shifted to lower angles, owing
to the support of the copper complex and increasing the spacing
between the nanosheets.

3.1 Catalytic tests of Cu-PTC@GO

To investigate the catalytic activity of the synthesized Cu-
PTC@GO catalyst, after wide characterization by different
techniques, it was evaluated as a catalyst for the fabrication of
imidazole. Afterward, various factors were investigated to

FIGURE 7
XRD patterns of (A) GO and (B) Cu-PTC@GO.

TABLE 1 Optimization of reaction condition.

Enter Solvent Name of the catalyst T [°C] Catalyst [ mg] Yield [%]

1 CH3CN Cu-PTC@GO 80 12 98

2 Toluene Cu-PTC@GO 80 12 67

3 EtOH Cu-PTC@GO 80 12 57

4 CH3OH Cu-PTC@GO 80 12 53

5 EtOAc Cu-PTC@GO 80 12 48

6 Solvent-free Cu-PTC@GO 80 12 -

7 CH2Cl2 Cu-PTC@GO 80 12 71

8 THF Cu-PTC@GO 80 12 79

9 CH3CN PTC@GO 80 12 43

10 CH3CN CuCl2.2H2O 80 12 65

11 CH3CN Cu-PTC@GO 80 6 78

12 CH3CN Cu-PTC@GO 80 18 98

13 CH3CN Cu-PTC@GO 60 12 82

14 CH3CN Cu-PTC@GO 40 12 71

15 CH3CN Cu-PTC@GO 85 12 98
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achieve the standard condition for this reaction. The catalytic
activity was explored with phenylenediamine (1 mmol),
benzaldehyde (1 mmol), and Cu-PTC@GO (12 mg) in CH3CN

as the solvent under reaction conditions (Table 1). Regarding the
solvent effect, the model reaction employed various solvents,
ethanol, toluene, acetonitrile, methanol, tetrahydrofuran,

TABLE 2 Investigation of the substrate scope.a

Entry Aldehyde Benzimidazole Time [h] Yield [%] Found MP [°C]

1 2 98 293–295

2 4 89 238–240

3 3 87 319–321

4 3.5 86 >300

5 3 81 293–296

6 2.5 85 291–292

7 5 73 172–174

8 6.5 77 154–156

aConditions: catalyst (12 mg), aldehyde (1 mmol), phenylenediamine (1 mmol), CH3CN (12 mL), and 80°C.
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n-hexane, and dichloromethane ethyl acetate, and solvent-free
condition with Cu-PTC@GO (12 mg) (entries 1–8). Among
different solvents, CH3CN solvent gave the highest yield. We
have tested the effect of a catalyst using CuCl2.2H2O, PTC@GO,
and Cu-PTC@GO (Table 1, entries 8–10).

The results showed that the Cu-PTC@GO nanocatalyst furnished
a 98% yield after 2 h. The nanocatalyst loading of Cu-PTC@GO
(entries 11 and 12) was also analyzed. Interestingly, the catalytic

activities of Cu-PTC@GO were found to be maximum at 12 mg
of the nanocatalyst at 80°C. Furthermore, the temperature was
evaluated and the model reaction was carried out at 40°C–85°C
(entries 13–15). The yield remained constant when the
temperature decreased below 80°C (entries 13 and 14) and
increased above 80°C (entry 15).

With the stipulated optimized reaction conditions, the substrate
scope for the catalyst is explored for the diverse range of several
aromatic and aliphatic aldehydes with phenylenediamine (Table 2).
Aliphatic aldehydes took a longer reaction time and provided
moderate yields compared to aromatic aldehydes. The aromatic
aldehydes produced the corresponding products in better yields
than the aliphatic aldehydes. Aromatic aldehydes involving the
electron-donating group yielded better than the electron-
withdrawing group.

3.2 Catalyst reusability and stability

The reusability of a nanocatalyst is important from economic
and environmental points of view. Therefore, the reusability and
recyclability of Cu-PTC@GO were investigated for synthesizing
benzimidazoles under optimized conditions (CH3CN = 12 mL,
T = 80°C, catalyst = 0.05 mol%, benzaldehyde = 1 mmol, and
phenylenediamine = 1 mmol). Subsequently, after each run, the
nanocatalyst was recovered by centrifugation, washed with CH3CN,
and dried at 60°C. The recovered nanocatalyst was utilized in
another experiment to estimate its reusability. As shown in
Figure 8, no noticeable change in the catalytic activity of Cu-
PTC@GO was observed even after five cycles. The leach metal in
the filtrate was determined by ICP analysis and found to be
0.14 ppm Cu.

3.3 Hot filtration test

To investigate the heterogeneous nature of the catalyst, a hot
filtration test was conducted for benzimidazoles under the
optimized reaction conditions in the presence of a
heterogeneous catalyst (Figure 9). After 1 h, the reaction was
paused and the catalyst was separated through filtration from
the reaction mixture under hot conditions, which resulted in a
65% yield of the product. The filtrate was again transferred into
a reaction flask and heated at 80°C for 3 h. No enhancement in
the yield of the product could be obtained after the removal of

FIGURE 8
Recycling experiments of Cu-PTC@GO.

FIGURE 9
Hot filtration test of benzimidazoles.

TABLE 3 Comparison catalytic activity of Cu-PTC@GO with similar systems.

Entry Name of the catalyst Conditions Yield [%] Reference

1 Cu-PTC@GO CH3CN/65°C/2 h 98 This work

2 Fe3O4–CB tBuOK/120°C/8 h 88 Verma et al. (2022)

3 GO CH3OH/65°C/4 h 81 Dhopte et al. (2016)

4 A-FGO THF/reflux/2 h 86 Hanoon et al. (2017)

5 CoCl2.6H2O CH3OH/RT/4 h 81 Khan et al. (2009)

6 HNO3@nano SiO2 Solvent-free/90°C/2.5 h 85 Nikoofar and Dizgarani (2018)
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the catalyst from the reaction mixture, which confirmed the
heterogeneous nature of the catalyst. The results obtained from
ICP showed that no significant amounts of Cu are leached
during the reaction.

The results obtained for the preparation of imidazole were
compared with the previously reported procedures to show the
performance of the Cu-PTC@GO catalyst (Table 3). As a result,
it showed that this Cu-PTC@GO catalyst has better activity in
reaction time and product yield.

A mechanism was introduced to prepare the imidazole
heterocyclic compound from phenylenediamine and aromatic
aldehydes using the Cu-PTC@GO catalyst (Scheme 2). The
reaction between an amine and an aldehyde proceeds via the
condensation reaction mechanism, which forms a Schiff base and
includes the oxidative cyclization reaction (Verma et al., 2022).
The activation of the ring aldehyde on the GO surface enhances
the electrophilicity of the C=O group, thereby facilitating the
formation of imine. Thus, the ring closure reaction occurs via the
nucleophilic attack between the substituted amine and imine
intermediate. Finally, the desired heterocyclic product was
achieved.

4 Conclusion

The GO was employed as a support for preparing the copper
complex. Different characterization methods characterized the
properties of the prepared catalyst. The catalytic efficiency of
the catalyst was evaluated in the synthesis of imidazole
derivatives. The heterogonous catalyst was used for the
synthesis of imidazoles with excellent yields. This catalyst

was employed for five runs without losing activity,
demonstrating its recoverability, easy separation, reusability,
and efficiency. These features make this nanocatalyst an
appropriate heterogeneous catalyst for synthesizing imidazoles.
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SCHEME 2
Plausible mechanism pathway for the synthesis of benzimidazole.
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