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For amphoteric ß-lactam antibiotics, the acid dissociation constant (pKa) is a
fundamental parameter to characterize physicochemical and biochemical
properties of antibiotics and to predict persistence and removal of drugs. pKa

of piperacillin (PIP) is determined by potentiometric titrationwith a glass electrode.
Electrospray ionization mass spectrometry (ESI-MS) is creatively applied to verify
the reasonable pKa value at every dissociation step. Two microscopic pKa values
(3.37 ± 0.06 and 8.96 ± 0.10) are identified and attributed to the direct dissociation
of the carboxylic acid functional group and one secondary amide group,
respectively. Different from other ß-lactam antibiotics, PIP presents a
dissociation pattern where direct dissociation is involved instead of protonation
dissociation. Moreover, the degradation tendency of PIP in an alkaline solution
may alter the dissociation pattern or dismiss the corresponding pKa of the
amphoteric ß-lactam antibiotics. This work offers a reliable determination of
the acid dissociation constant of PIP and a clear interpretation of the effect of
stability of antibiotics on the dissociation process.
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1 Introduction

Piperacillin (PIP), which belongs to penicillin antibiotics containing the ß-lactam
moiety, is widely and frequently used in medicinal and veterinary therapy (Hsia et al.,
2019) to prevent post-operative infection complications (Milne and Waterworth, 1978;
Pastena et al., 2020). A high daily dose of PIP (about 12–16 g) results in a high residue level in
the patient’s blood and feces (Carlier et al., 2015). Moreover, like other antibiotics, a large
amount of PIP may migrate into the environment as persistent or pseudo-persistent
substances creating risks to the ecological environment and human health (Polianciuc
et al., 2020). Actually, PIP has been detected in underground water, with the highest detected
concentration of 571 ng L-1 (Szekeres et al., 2018), as well as in surface water (Da Le et al.,
2021; Danner et al., 2019; O’Flaherty and Cummins, 2017; Anh et al., 2021; Wu et al., 2020;
Soran et al., 2017; Adams et al., 2002), drinking water treatment plants (Mahmood, Al-
Haideri, and Hassan, 2019), wastewater (Faleye et al., 2017), and so on. As is known, the
acidity/alkalinity of an amphoteric pharmaceutic substance is among the most fundamental
properties for drug action (Alekseev, 2010; Charifson and Walters, 2014). The acid
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dissociation constant (pKa) is a characteristic parameter
representing ionization equilibrium and predicting molecular
form variations with respect to pH (Demiralay et al., 2012). For
that, since pKa has an influence on solubility and lipophilicity,
biological enrichment, and toxicity, pKa is definitely critical to
absorption, distribution, metabolism, and excretion involved in
the fields of environmental chemistry, biological chemistry,
pharmaceutical chemistry, and medicinal development (Nural
et al., 2020). Therefore, it plays an important role in determining
the acid dissociation constant for understanding the persistence and
removal of PIP.

pKa values of pharmaceuticals can be determined indirectly via
potentiometric titration (Evagelou, Tsantili-Kakoulidou, and
Koupparis, 2003; Ke et al., 2016), UV or fluorescent
spectrophotometry (Evagelou, Tsantili-Kakoulidou, and
Koupparis, 2003), chromatography (Jančić et al., 2007), and the
coupling method. Potentiometric titration in aqueous solutions is a
simple and effective method and considered to be the most precise
method for the determination of equilibrium constants (Ke et al.,
2016). No additional derivative procedures or special functional
groups or knowledge of all binding partners and their stoichiometry
are required (Guo et al., 2016; Budhadev et al., 2020; Liao et al.,
2021). For the treatment of the titration curve, the
Henderson–Hasselbalch equation is often used to calculate the
pH of a buffer. Yet, there is difficulty for weak polyprotic acids
due to the overlaps of multiple acid–base equilibriums and titration
jumps in some pH ranges. In this case, piecewise linear regression is
helpful, in which the independent variable is segmented according to
its value, and the linear regression is performed separately on these
segments (Ke et al., 2016). Additionally, mass spectrometry is
scarcely applied for the detection of pKa values. Mass
spectrometry is used for resolving degradation/dissociation
products (Ahmed et al., 2012; Liang et al., 2017) and noncovalent
interactions (Kempen and Brodbelt, 2000; Hardouin and Lange,
2005; Zhang et al., 2006; Erba and Zenobi, 2011). A recent review
reported its potential for the determination of dissociation constants
and giving information about the specificity of noncovalent
interactions (Schulte et al., 2023). Several reports have presented
evidence when properly controlled experimental conditions are
used, electrospray ionization mass spectrometry (ESI-MS) has
demonstrated its use in the detection and study of weakly bound
forms. Its data reflect solution-phase chemistry, meaning that one
should be able to derive binding affinities quantitatively from such
data (Mathur et al., 2007; Jecklin et al., 2008). Considering this, the
ESI-MSmethod is potential for the identification of acid dissociation
products.

So far, pKa values of some antibiotics are determined, and
ionizable moieties are analyzed via theory analysis and
experimental validation (Montaudo, Caccamese, and Recca, 1975;
Lin et al., 2004; Qiang and Adams, 2004; Andrasi et al., 2007; Babić
et al., 2007; Kong et al., 2007; Rayer et al., 2014). Some studies apply
pKa to facilitate the exploration of the effect of pH on the removal of
PIP by wastewater treatment technology (Mahmood, Al-Haideri,
and Hassan, 2019), the mechanism of PIP decomposition
(Xuexiang, 2014), and bioactive metabolic products of PIP and
metabolic path. Recently, various novel methods have been
developed to determine pKa (Reijenga et al., 2013; Fuguet et al.,
2015; Subirats et al., 2015), and pKa values in multi-solvent systems

are investigated (Sanli, Altun, and Alsancak, 2012; Eugene-Osoikhia,
2020). However, due to the complex chemical structure with diverse
functional groups and multiple ionizable moieties in the PIP
molecule, incomplete or scarce acid dissociation constants are
published along with the dissociation patterns (Alekseev, 2010).
Moreover, the prediction results are not always consistent with the
actual situation (Ribeiro and Schmidt, 2017). A reliable
determination of the acid dissociation constant of PIP and a
clear interpretation are remained to be solved.

In this work, microscopic acid dissociation constants of PIP in
an aqueous solution are determined by potentiometric titration with
a glass electrode at a constant temperature. ESI-MS in the infusion
mode (without LC) is used creatively to identify functional groups
related to microcosmic acid dissociation constants during
overlapping ionization processes. The distribution of various PIP
dissociation forms versus solution pH is recognized.

2 Materials and methods

2.1 Reagents and solutions

PIP powder (CAS 61477-96-1, 97% purity) was purchased from
Beijing Bionet Co., Ltd. The standard substance number is CB
0181853 with a molecular weight of 517.55. Solid sodium
chloride (NaCl, AR grade) and hydrochloric acid (37 w% HCl,
AR grade) were bought from Beijing Chemical Works Co., Ltd.
Sodium hydroxide (NaOH, AR grade) was purchased from
Sinopharm Chemical Reagent Co., Ltd. All chemicals were used
as received without further purification.

PIP solutions: PIP stock solution (100 μmol L-1) was prepared by
completely dissolving 0.103 g of the solid PIP powder into 2 L of
ultrapure water. The concentration is lower than the solubility of
PIP, 0.119 mg mL-1. Then, PIP stock solution was diluted using
NaCl solution (0.1 mol L-1) to 5 μmol L-1, 10 μmol L-1, and
50 μmol L-1, respectively, with the same final total volume of
50.0 mL. Here, NaCl solution instead of ultrapure water was used as
the electrolyte, contributing background ion strength to improve the
sensitivity of potentiometric titration. As a blank control, the titration
results of 0 μmol L-1 of PIP (that is, 0.1 mol L-1 of NaCl solution) were
subtracted from titration volumes. All as-prepared PIP solutions were
stored in 60-mL brown VOA bottles. Additionally, it was noted that
only fresh PIP solutions can be used so that no photolysis, hydrolysis, or
oxidative degradation occurs before potentiometric titration and mass
spectrometry characterization.

Saturated NaOH solution was prepared and was diluted to about
0.2 mol L-1. This procedure can avoid the dissolution of carbonate in
NaOH solution as much as possible. The prepared NaOH titrant was
calibrated to be 0.2002 mol L-1. About 1.0 mol L-1 HCl was prepared
by diluting the concentrated HCl reagent with ultrapure water,
which was then calibrated to be about 1.0030 mol L-1.

Moreover, special attention should be paid to the following: 1)
all ultrapure water used is purged by high-purity argon and boiled to
remove carbon dioxide and oxygen. 2) The NaOH titrant is freshly
prepared on the day of the experiment to prevent the absorption of
carbon dioxide and any other chemicals from the ambient air. 3) All
as-prepared solutions are uniformly stored at 25°C to minimize
experimental errors.
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2.2 Apparatus

Potentiometric titration is carried out using an automatic
potentiometric titrator equipped with a pH glass electrode
(877 Titrino plus, Metrohm, Switzerland). PIP solution and
added titrant are mixed uniformly using a thermostatic magnetic
stirrer (RCT Basic S 25, IKA, Germany). PIP is weighed using a 1/
100,000 electronic scale (AB265-S, METTLER TOLEDO,
Switzerland). Mass spectrometry characterization is performed on

a high-performance liquid chromatography-triple quadrupole mass
spectrometer (Xevo TQD, Waters, United States).

2.3 Potentiometric titration experiments

Potentiometric titration experiments of PIP solutions are carried
out for PIP solution with different concentrations (5, 10, and 50 μmol L-
1). First, HCl solution (1.0030 mol L-1) is titrated into PIP solution to

FIGURE 1
(A) Scatter plot of lgV versus pH. (B) Piecewise linear regression results of the lgV-pH data. Potentiometric titration is performed for 5, 10, and
50 μmol L-1 PIP solutions Here, Panel A is given for 5 μmol L-1 of PIP, and Supplementary Figure S1 and Supplementary Figure S2 are given for 10 and
50 μmol L-1 of PIP solutions.

FIGURE 2
Schematic diagram of the molecular structure of PIP, AMP, and AMX.

TABLE 1 Potential pKa of PIP.

5 μmol L-1 10 μmol L-1 50 μmol L-1 Average SD RSD %

pKa1 3.46 3.34 3.32 3.37 0.06 1.74

pKa2 4.18 4.07 3.95 4.07 0.09 2.32

pKa3 8.83 8.97 9.08 8.96 0.10 1.12

pKa4 10.04 9.96 9.99 9.99 0.03 0.32
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initialize to pH 3.0 and kept steady for 10 min. Then, NaOH solution
(0.2002 mol L-1) is continuously titrated into PIP solution to pH close to
11.0. The titration volume of each drop is set at 10 μL, and an interval of
10 s is set for pH equilibrium (fluctuation is nomore than 0.01 pH). The
solution system is kept in a water bath at 25 ± 1°C. Highly pure argon is

purged continuously through the solution to avoid the contact of
ambient air with the solution. pH variation versus titration volume
of NaOH is automatically recorded. Since pKa is independent of the
concentration of the solution, for each type of dissociation site, pKa

values in triplicate for different concentrations are obtained.

FIGURE 3
Mass spectrometry of PIP (intactmolecular concentration of 500 μg mL-1) in positive (A–D) and negative (E–H)modes under different pH values. (A)
pH 3.0, (B) pH 5.0, (C) pH 7.0, and (D) pH 9.0 in the positive mode; (E) pH 3.0, (F) pH 5.4, (G) pH 7.4, and (H) pH 9.6 in the negative mode. The full scale of
signal intensity is presented as 2.15 × 106,2.18 × 106, 6.22 × 105, 2.44 × 105, 7.59 × 104, 5.93 × 104, 5.67 × 104, and 5.30 × 104. The difference in themolecular
ion intensity demonstrates the occurrence of the dissociation or degradation of PIP.
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2.4 Mass spectrometry experiments

About 500 μg mL-1 of PIP aqueous solution is prepared. The
solution pH is manually tuned to 3.0, 5.0, 7.0, and 9.0, respectively,
with HCl and NaOH solutions. Then, PIP solutions are qualitatively
characterized on a high-performance liquid chromatography-triple
quadrupole mass spectrometry in the infused injection mode.

3 Results and discussion

3.1 Microscopic pKa (Micro-pKa)

All potential pKa values of PIP are excavated through
piecewise linear regression, following a method from the
reference (Ke et al., 2016). Titration data in the form of
lgV-pH are plotted, as shown in Figure 1A, and five linear
fitting curves are presented (Figure 1B; Supplementary Table

S1). The four potential pKa values are indicated for generating at
the connectors of two curves. Based on this method, the
potential pKa values of PIP at different concentrations are
listed in Table 1. In addition, the average pKa value at each
step is obtained from PIP at different concentrations. The
previous literature (Sörgel and Kinzig, 1993) reported that the
piperacillin pKa value was 4.14, and the determination method
was not clear. Another piece of literature (Tsukinaka et al., 1982)
reported that the pKa value of piperacillin obtained by
potentiometric titration was 2.9 at 35°C, with an ionic strength
of 0.5. Our previous study measured that the pKa value of
piperacillin was 3.19 ± 0.02 at 25°C (published in Chinese). In
these studies, only one pKa was obtained, and there was no
dissociation site information.

The potential pKa values of PIP can be explained by the
molecule structure. According to the molecule structure of PIP
(Figure 2), it is deduced that the value of pKa2 at about 4.07 is
illogical and should be excluded referring to the literature about
ampicillin (AMP) and amoxicillin (AMX) (Demiralay et al.,
2012). Therefore, the other three values 3.37 ± 0.06, 8.96 ±
0.10, and 9.99 ± 0.03 are identified as potential pKa values of
PIP (Table 1).

3.2 Mass spectrometric characterization

Mass spectrometry of PIP in the positive ionization mode is
shown in Figure 3 and Supplementary Figure S2. Since PIP has a
molecular weight (M) of about 517, the mass charge ratio (m/z) at
518 is generally recognized as the characteristic molecular ion of PIP
in the positive mode.

PIP does not tend to be protonated in an acid solution. As
shown in Supplementary Figure S3 and Supplementary Figure S4,
a mass spectrogram in the scanning mode (m/z 245–263 and m/z
150–184) demonstrates that there are no multiple-charged
molecular ions, for example, [MHn]

n+ (2 ≤ n ≤ 5),

TABLE 2 pKa of AMP and AMX.

Antibiotic pKa1 pKa2 pKa3 pKa4 Method Reference

AMP 3.966 7.541 11.264 Spectrophotometric and reversed-phase liquid chromatography;
calculation by Yasuda–Shedlovsky and mole fraction equations

Demiralay et al. (2012)

AMX 3.001 8.042 10.261 11.922

AMP 2.66 7.10 11.34
(-CONH-)

Potentiometric titration and UV/VIS spectra Jaszczak and
Kufelnicki (2010a)

AMX 3.11 7.38 9.60
(-CONH-)

AMP 2.66 7.24 Solubility experiment and calculation by a simplified perturbed hard sphere
theory

Rudolph et al. (1999)

AMX 2.63 7.16

AMP 2.14 7.37 Solubility experiment and calculation by a simplified perturbed hard sphere
theory

Santana et al. (2010)

AMP 2.592 7.239 Potentiometric and spectrophotometric measurements; calculation by the
Setschenow equation

Crea et al. (2012)

AMX 2.549 7.501 10.014

AMX 2.41
(-COOH)

7.19
(-NH3

+)
9.38 (-OH) Potentiometric titrations and calculation by the MINIQUAD-75 program Shoukry (1993)

FIGURE 4
Relationship between pKa of PIP and its structure.
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indicated by the absence of m/z at 259.5 and 173. This reveals that
amide groups in PIP are not protonated in an acid solution.

Direct dissociation of amide groups in PIP is involved instead
of protonation dissociation. Figure 3 presents the specific mass
spectrometry of PIP (m/z 505–545). When the solution pH is
tuned to 3.0 (Figure 3A), the predominant m/z is 518. The
undissociated PIP molecule transforms to [MH]+ in positive
electrospray, and then [MH]+ is detected. As the solution
pH further increases to 5.0 (Figure 3B) and then changes to
be neutral (pH 7.0 in Figure 3C) or alkaline (pH 9.0 in Figure 4D),
the response at m/z 516 and 517 increases obviously along with
the solution pH. That is to say, the content of substances with
molecular weights M-2 and M-1 increases. It reveals that, in a
neutral or alkaline solution, dissociation occurs in PIP via losing
one or two H+ ions in advance, respectively. Dissociation happens
to the carboxyl group and then possibly certain amide groups in
PIP. Then, the two types of anions, [M–H]‒ and [M–2H]2‒, are
immediately oxidized induced by the high potential on
the capillary wall. Afterward, the oxidized products change to
neutral pH (molecular weight M-1 and M-2) accompanied
by the losing of electrons. Then, molecular ions [(M-1)]H+

and [(M-2)]H+ are detected. It reveals that amide groups in
PIP directly dissociate one H+ ion instead of protonation
dissociation.

3.3 Functional groups affordable for PIP
micro-pKa

The affordable functional groups of PIP microscopic pKa are parsed
by structural analogy among PIP, AMP, and AMX (Figure 2). First, the
single apparent acid dissociation constant (pKa = 3.19 ± 0.02) is calculated
by a direct method from the titration curve, demonstrating a feature of
monoprotic acids. The micro-pKa of PIP at 3.37 ± 0.06 is close to the
apparent acid dissociation constant. Previous works report that the acid
dissociation constant of carboxylic acid is at pKa 2–4 (Martínez, 1989;
Jaszczak and Kufelnicki, 2010a). pKa values of AMP and AMX derived

from the carboxylic group (Table 2) also consist of the aforementioned
patterns. Therefore, it indicates that pKa1 of PIP (3.37 ± 0.06) is most
probably attributed to the functional group of carboxylic acid.

Second, it is noted that PIP starts to break down in an alkaline
situation. For example, PIP under a pH of 9.5 has degradation rate
constants of 0.12 h-1 and 2.7 h-1 at 35°C in two paths (the content of
intact PIP is 1) (Tsukinaka et al., 1982). Accordingly, the third pKa4 at
9.99 ± 0.03 should be excluded.Moreover, once the pH increases to 11, a
complete degradation will immediately occur in hours (Tsukinaka et al.,
1982; Mitchell et al., 2014). Considering this, no remaining functional
groups will account for the additional pKa >11. The degradation
tendency of weak acid ß-lactam antibiotics in an alkaline solution
will alter the dissociation pattern or dismiss certain pKa values. This
explains the poor agreement of pKa in an alkaline environment to some
degree. It also suggests the determination of an accurate pKa value,
which is not available through high pH by potentiometric titration.

Third, themicro-pKa value of PIP is parsed among amide groups by
taking AMP and AMX as references. Regularly, protonation and
deprotonation of amide groups coupling with the dissociation of
carboxylic group produces three probable forms in an aqueous
solution for an ampholyte with weak acidity and alkalinity (Kóczián
et al., 2007): cationic form [H2A]

+, neutral or zwitterionic form [HA]
(Martínez, 1989), and anionic form [A]− (Demiralay et al., 2012). It is
reported that primary amide (R-NH2) protonates to [R-NH3]

+ when
pH < 5 (Martínez, 1989; Hamada and Harris, 2006), and the acid
dissociation constant of protonated R-NH2 is at pKa 6–8. This pattern of
primary amide agrees well with pKa2 of AMP andAMXcited in Table 2.
Nevertheless, PIP does not contain primary amides.

Considering secondary amides (R2-NH) and tertiary amides (R3-N),
various patterns emerge. For example, some studies report that
protonated secondary amides and tertiary amides have the respective
pKa values of 10.22 and 9.45 (Cantu, Hillebrand, and Carrilho, 2005;
Curtis et al., 2016). Yet, Ribeiro and Schmidt (2017) conclude that
secondary amides cannot protonate (Ribeiro and Schmidt, 2017). In their
work, amide groups with ß-lactam structures dissociate after carboxylic
acid, protonated primary amide, and tertiary amide in a wide pH range.
The dissociation of the protonated ß-lactam moiety is assigned to some
pKa3 values in the range of 9.60–11.34 for AMP and AMX (Jaszczak and
Kufelnicki, 2010a; Demiralay et al., 2012) (Table 2). It confirms that the
secondary amide group near the ß-lactam structure is functionally silent
to the dissociation of AMP and AMX. Additionally, many works report
no pKa value for the moiety (Table 2). It is deduced that the ß-lactam
moiety is not responsible for the pKa value of PIP at 8.96 ± 0.10.

Moreover, compared to AMP, PIP has an additional piperazinyl
ring structure. A previous study reports that a piperazine moiety
dissociates at pKa = 9.73 and branched chain results in some shift of
pKa (Rayer et al., 2014). For example, the piperazine moiety in
ciprofloxacin protonates at two protonated R3-N and produces two
pKa values (pKa3 = 8.70 ± 0.09 and pKa4 = 10.58 ± 0.30) (Wei et al.,
2013). For PIP, a piperazinyl ring moiety suspends two carbonyl
groups. Carbonyl groups may hinder the protonation ability of R3-N
(Wuitschik et al., 2010). The piperazinyl ring of piperacillin will
hydrolyze in an alkaline environment (Tsukinaka et al., 1982).
Accordingly, the piperazinyl ring structure in PIP may have no
chance to account for pKa = 8.96 ± 0.10.

According to previous studies, the N-H near ß-lactam is stable. It
cannot be oxidized by peroxymonosulfate (PMS) (Chen et al., 2018).
The reaction can only take place if UV and peroxydisulfate (PDS) act

FIGURE 5
Distribution of PIP molecular forms versus pH. α (%) indicates the
molar ratio of certain molecular forms.
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together (Zhou et al., 2018). Previous studies on ampicillin (He et al.,
2014), amoxicillin (Hirte et al., 2016), and cephalosporins (Qian 2014;
Zhang 2015) demonstrate that N-H near ß-lactam is more stable than
-NH2. Mass spectrometry studies (master dissertation in Chinese)
(Chang 2018) have shown that this N-H near ß-lactam can also be
protonated, and the N-H near the piperazine group can only be
protonated if it exists alone. MS/MS studies on PIP were also
conducted in this dissertation. It indicated that the N-H near the
piperazine group is a chemically active site.

Thus, pKa = 8.96 ± 0.10 of PIP is attributed to the secondary amide
group (R2-NH) (Figure 4). As is known from mass spectrometry of PIP,
direct dissociation is involved instead of protonation dissociation.
Additionally, some studies report a special deprotonation phenomenon
of R2-NHCO effected by the phenmethyl functional group (Chiu and Lo,
2000; Jaszczak and Kufelnicki, 2010b). Reactivity toward deprotonation
increases due to a stereoelectronic twisting effect of the anilino group out of
the plane of the benzene ring (Dombrowski et al., 2005). Some studies
report the deprotonation of an amide group in peptides effected by
C-termini (Chiu and Lo, 2000; Jaszczak and Kufelnicki, 2010b;
Bokatzian-Johnson et al., 2012). In their work, amide nitrogens and
alpha carbons of the peptide backbone must be considered alternative
deprotonation sites. Thus, the characteristic spectrometry at m/z 517 and
516 indicates that 1) R2-NH near the piperazine structure dissociates after
the carboxyl group, creating a pKa value at 8.96 ± 0.10; 2) R2-NH near the
ß-lactam structure is functionally silent to dissociation.

3.4 Distribution of PIP molecular forms
along with pH

Two pKa values are identified for PIP in potentiometric titration
from pH 3.0 to pH 11.0: pKa1 at 3.37 ± 0.06 and pKa3 at 8.96 ± 0.10,
which are attributed to the carboxylic acid and secondary amide
groups (R2-NH), respectively. Based on the aforementioned analysis
about the two pKa values, the distribution of PIP molecular forms
that responds to the pH variation is elaborated in Figure 5.

Different from most ß-lactam antibiotics, PIP in an aqueous solution
does not present any zwitterionic forms due to the absence of protonation.
Additionally, PIP tends to degrade at a pH > 9, and the degradation rate
accelerates along with the higher pH. Actually, a molecular form with
minus two charges is rarely detected for PIP in an aqueous solution.

4 Conclusion

The pKa values of PIP are determined by potentiometric
titration. ESI-MS in the infusion mode (i.e., without LC) is
used creatively to identify the real pKa and mathematical pKa.
Two micro-pKa values (3.37 ± 0.06 and 8.96 ± 0.10) are
recognized and attributed to carboxylic acid and secondary
amide groups. The secondary amide groups near ß-lactam in
PIP are functionally silent to dissociation. Different from other ß-
lactam antibiotics, the pattern of direct dissociation is involved

instead of the general pattern of protonation dissociation. Due to
the degradation tendency of PIP in an alkaline solution
environment, pKa in a high alkaline solution is dismissed.
This work suggests that pKa values in the high pH range may
not be reliable for the potentiometric titration method when
hydrolytic degradation of antibiotics occurs. This work offers a
reliable determination of the acid dissociation constant of PIP
and a clear interpretation of the effect of stability of antibiotics on
the dissociation process.
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