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Polymer solar cells (PSCs) have drawn great attention as a hopeful renewable energy
sources technology due to their advantages in mechanical flexibility, light weight and large-
scale roll-to-roll fabrication. Recently, the considerable achievement of PSCs has benefited
from the development of novel photovoltaic materials and the modulation of active layer
morphology. Up to now, the power conversion efficiency (PCE) of PSCs using p-type
polymer as the donor and n-type small molecule as the acceptor has exceeded 19%. Among
them, the all-PSCs are considered as one of the most promising candidates for commercial
applications ascribing to the higher thermal stability and mechanical flexibility. With
tremendous effort being devoted to the design and synthesis of polymer acceptor
materials, including perylene diimide (PDI), nanphthalene diimide (NDI), B ← N-
bridged bipyridine polymer, and polymerized small molecule acceptors (PSMAs), the
photovoltaic performance has achieved significant improvement with PCE of > 18%.
Compared to the PDI-, NDI- and B ← N-typed polymer acceptors, the PSMAs is
caught much more attention resulting from their wider absorption and stronger
absorption coefficients.

In order to further improve the PCE of all-PSCs, it is crucial to synthesize high-
performance polymer acceptors and finely adjust the active layer morphology. Due to the
great success of Y-series SMAs in PSCs, a widely used method for synthesizing polymer
acceptors is the polymerization of Y-series SMAs (Figure 1). Wang et al. (2020) reported a
narrow bandgap PMSA of PYT using Y5-C20 as the building block and thiophene as the
bridging unit. The effects of different molecular weights on the optical and electrical
properties of the PYT, and the morphology of the active layer were also investigated in
detail. The results showed that the medium molecular weight for PYT exhibited suitable
miscibility with PM6, which was favorable for obtaining more balanced carrier mobility,
stronger intermolecular aggregations, more ordered features, higher charge-transport ability
and less energy loss, resulting in the higher photovoltaic performance of 13.44%, compared
to the ones of low and high molecular weights.

Moreover, when using the random copolymerization of three different functional units
on themolecular backbone, the opto-electrical properties such as energy level and absorption
spectrum of the resulting polymer could be easily tuned by changing the molar ratio of
different moieties. Based on this strategy, Du et al. (2020) synthesized a series of terpolymer
PMSAs PTPBT-ETxs by randomly copolymerizing 3-ethylesterthiophene (ET) with
A-DA’D-A typed SMA unit (TPBT-Br) and thiophene-bridged units. It was found that
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the lowest unoccupied molecular orbital (LUMO) of the obtained
PMSA gradually shifted upward with increasing ET content, which
favored to obtain higher Voc, mainly due to the weak electron-
pulling property and the higher frontier orbital energy level of the
ET unit. Notably, it suggested that the ester group on the ET may
cause non-covalent intra- and intermolecular S•••O interaction,
leading to the formation of more planar molecular backbone and
thus the preferential face-on orientation of the molecular
arrangement. Matching with PBDB-T as donor to prepare all-
PSCs, the PCE of PTPBT-ET0.3 as the acceptor is 12.52%.

In addition to the simple thiophene-like π-bridges, other donor
units have been reported to be introduced as bridging units into the
Y-series PMSAs. Fan et al. (2020) reported a PMSA PF5-Y5 by
copolymerizing the classically efficient donor unit thienyl-
benzodithiophene (BDT-T) as a bridging unit with Y5. Compared
to the corresponding SMA Y5, PF5-Y5 showed a redshift of 25 nm in
solution due to the extension of the conjugated backbone, and a blue
shift of 10 nm in film attributing to the introduction of the non-
conjugated alkyl side chain on BDT-T and thus inhibiting the excessive
aggregation and phase separation. Therefore, the PBDB-T:PF5-Y5-
based all-PSC presented higher PCE of 14.45% with smaller non-
radiative loss of 0.24 V and larger open-circuit voltage of 0.95 V,
compared to the PBDB-T:Y5-based PSC.

Furthermore, the strategy of using electron-deficient units to
copolymerize with SMAs to construct A-A-type polymer acceptors
is believed to improve electron mobility and facilitate electron

transport potentially. To obtain both stronger light absorption and
higher electron transport properties for polymer acceptor, Sun et al.
(2020) reported a novel PMSA (L14) by introducing distannylated
bithiophene imide derivatives (BTI-Tin) as the electron-deficient
building block and Y5 as core into the polymer backbone. The
L14 showed a broad and strong absorption in the 600–900 nm
band with a higher absorption coefficient, compared to thiophene-
bridged counterpart L11 (or named PYT). The more balanced and
higher carrier mobility, denser π-π stacking, and more ordered and
predominant face-on molecular arrangement in PM6:L14 film can
facilitate the charge transport in the vertical direction compared to
PM6:L11 system. The PCE of all-PSCs based on PM6:L14 was 14.3%,
which was higher than that of PM6:L11 with 11.1%.

Additionally, the introduction of strongly electronegative fluorine
(F) atoms could significantly decrease the molecular frontier orbital
energy level and enhance inter-/intra-molecular interactions, which is
an effective way to modulate the energy level and molecular stacking in
PSCs. Peng et al. (2020) introduced F atoms into the structure of
polymer acceptor, the fluorinated polymer PFA1 possessed a slightly
down-shifted energy level, narrower bandgap, higher absorption
coefficient, and more balanced charge mobility compared to the
non-fluorinated counterpart PY5T. In addition, PFA1 showed better
miscibility and ordered stacking morphology with the polymer donor,
resulting in the better PCE of 15.11%.

At last, a mixture of two isomers (brominated 1,1-
dicyanomethylene-3-indanone, IC-Br) that are difficult to separate

FIGURE 1
The chemical structures of typical Y-series PMSAs.
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each other, is now widely used as the terminal for the polymerization of
SMAs. This unit not only causes batch differences that are difficult to
reproduce, but also reduces the ordered stacking of morphologies and
efficient charge transport, resulting in lower photovoltaic performance
than the SMAs based PSCs. On the basis of this consideration, Luo et al.
(2020) developed two structurally determined pure IC-Br-based
monomers by recrystallization in different solvents and used them
to polymerize with Y5-liked SMAs for the synthesis of PMSAs. Two
PMSAs with defined polymerization (PY-IT and PY-OT) and one with
random polymerization (PY-IOT) were synthesized to study the
optoelectronic and photovoltaic properties of polymer acceptors.
Compared to the PY-OT and PY-IOT, the PY-IT showed smaller
bandgap, larger absorption coefficient, lower LUMO energy level, larger
and more balanced charge mobility and more suitable phase separation
morphology. As a result, all-PSCs based on PM6:PY-IT obtained a PCE
of 15.05%, which was significantly higher than PM6:PY-OT of 10.04%
and PM6:PY-IOT of 12.12%. The authors noted that the development
of polymer acceptors with defined and optimized structure could
facilitate the acquisition of highly efficient all-PSCs. Similarly, Li
et al. (2022) reported a series of PSMAs with defined polymerization
site using the core of SMA L8-BO as the building block. By tuning the
optical and electrical properties of the polymer through the adjustment
of the alkyl side chain length, the PM6:PY-DT-based all-PSCs obtained
a high PCE of 16.76% with a low non-radiative loss of 0.18 V.
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