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TheHRAS gene plays a crucial role in regulating essential cellular processes for life,
and this gene's misregulation is linked to the development of various types of
cancers. Nonsynonymous single nucleotide polymorphisms (nsSNPs) within the
coding region of HRAS can cause detrimental mutations that disrupt wild-type
protein function. In the current investigation, we have employed in-silico
methodologies to anticipate the consequences of infrequent genetic variations
on the functional properties of the HRAS protein. We have discovered a total of 50
nsSNPs, of which 23 were located in the exon region of the HRAS gene and
denoting that they were expected to cause harm or be deleterious. Out of these
23, 10 nsSNPs ([G60V], [G60D], [R123P], [D38H], [I46T], [G115R], [R123G], [P11OL],
[A59L], and [G13R]) were identified as having the most delterious effect based on
results of SIFT analysis and PolyPhen2 scores ranging from 0.53 to 69. The DDG
values −3.21 kcal/mol to 0.87 kcal/mol represent the free energy change
associated with protein stability upon mutation. Interestingly, we identified that
the three mutations (Y4C, T58I, and Y12E) were found to improve the structural
stability of the protein. We performed molecular dynamics (MD) simulations to
investigate the structural and dynamic effects of HRAS mutations. Our results
showed that the stable model of HRAS had a significantly lower energy value of
−18756 kj/mol compared to the initial model of −108915 kj/mol. The RMSD value
for the wild-type complex was 4.40 Å, and the binding energies for the G60V,
G60D, and D38Hmutants were −107.09 kcal/mol, −109.42 kcal/mol, and −107.18
kcal/mol, respectively as compared to wild-type HRAS protein had −105.85 kcal/
mol. The result of our investigation presents convincing corroboration for the
potential functional significance of nsSNPs in augmenting HRAS expression and
adding to the activation of malignant oncogenic signalling pathways.
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1 Introduction

The HRAS gene is identified as the Harvey rat sarcoma viral
oncogene homolog and is responsible for encoding a GTPase
protein of small stature that belongs to the RAS family. A
plethora of cellular processes, comprising proliferation,
differentiation, and survival, are subject to regulation by this
particular intracellular signalling pathway (Rajalingam et al.,
2007). Genetic alterations in RAS genes, notably in HRAS, are
among the most common mutations detected in human cancers
(Kawazu et al., 2013). The aberrant functioning of the HRAS protein
instigates the activation of downstream signalling pathways, namely,
MAPK/ERK and PI3K/AKT, which are critical in promoting cell
proliferation and survival. Notably, these pathways are often
disrupted in cancer, thereby underscoring their significant
contribution to the disease’s pathogenesis (De Luca et al., 2012;
Asati et al., 2016). Several studies have confirmed the involvement of
HRAS mutations in various cancers, including bladder, colon, head
and neck, lung, and thyroid cancers (Ngan et al., 2022). For instance,
activating HRAS mutations have been found in up to 10% of thyroid
cancers, linked with aggressive disease and poor prognosis (Garcia-
Rostan et al., 2003).

Similarly, in bladder cancer, HRAS mutations have been
detected in 1%–2% of cases and are associated with high-grade
tumours and advanced disease (Nagata et al., 2016). Identifying and
characterizing HRAS mutations are vital for cancer diagnosis and
treatment. HRAS mutations may serve as biomarkers for cancer
diagnosis or prognosis or as targets for cancer therapies to inhibit
RAS signalling (Kompier et al., 2010). Research on HRAS and its
role in cancer remains an active area of investigation, with ongoing
efforts to identify new mutations and decipher their functional
consequences.

The HRAS gene and its protein product have significant
roles in tumour genesis by regulating fundamental cellular
processes such as growth, differentiation, and viability. In its
wild-type cellular context, the expression and activity of HRAS
are under the precise control of several signaling pathways,
especially the RAS-MAPK axis, which is vital for cellular
differentiation and growth. However, genetic mutations in
the HRAS gene can disrupt the balance of the RAS-MAPK
pathway, leading to unregulated cellular proliferation and
neoplastic transformation (Rezatabar et al., 2019; Ullah et al.,
2022). Such HRAS mutations have been consistently observed
in several types of cancer, including squamous cell carcinoma of
the head and neck, bladder cancer, and thyroid carcinoma
(Jefferies and Foulkes, 2001; Gilardi et al., 2020). Moreover,
the involvement of HRAS in cancer is not restricted to the RAS-
MAPK pathway alone, as it extensively interacts with other
pivotal signaling pathways and cellular processes, including but
not limited to the PI3K-AKT pathway, Wnt signaling pathway
and cytoskeleton. These intricate interactions facilitate the
promotion of a multitude of oncogenic processes, such as
cell survival, invasion, and metastasis. Therefore, the role of
HRAS in cancer is multifaceted and cannot be limited to a single
pathway or mechanism (Rezatabar et al., 2019; Shorning et al.,

2020). The intricate protein-protein interaction network
between HRAS and its downstream effectors in cancer cells
comprises several signaling molecules, kinases, and
transcription factors that are essential for malignant
transformation and disease progression. A comprehensive
understanding of this network can provide crucial insights
into the mechanisms of HRAS-driven cancer and facilitate
the development of innovative therapeutic interventions
targeted at HRAS and its downstream effectors (Khan et al.,
2020; Odeniyide et al., 2022).

Proteins exhibit nsSNPswhich can result in alterations in the
amino acid sequence. It is well-established that such modifications
have been linked to the initiation and advancement of cancer
(Masoodi et al., 2013; Wang et al., 2019). These variations can
arise in genes involved in cell growth regulation, such as oncogenes
or tumour suppressor genes. They may impede normal cellular
processes such as cell division and programmed cell death,
associated with malignant transformation. One of the
prototypical oncogenes affected by nsSNPs is the RAS gene
family, encompassing HRAS, which encodes small GTPases
involved in signalling pathways that control cellular proliferation,
differentiation, and survival (Khan and Bisen, 2013; Makrides et al.,
2017). Mutations in RAS genes, including nsSNPs, can activate these
pathways and subvert normal cellular regulation, thereby instigating
tumorigenesis. HRAS regulates several essential cellular processes,
including cell differentiation, division, and programmed cell death.
Mutations in HRAS have been observed in various cancers,
including bladder cancer, pancreatic cancer, and lung cancer.
NsSNPs within the coding region of HRAS may yield deleterious
mutations that impair the normal function of the HRAS protein
(Backwell and Marsh, 2022). Identifying and
characterisingIdentifying and characterising nsSNPs in cancer-
associated genes, including HRAS, is critical for comprehending
the mechanisms underlying cancer pathogenesis and devising
personalized cancer therapies (Pang, 2018). Computational tools
can aid in predicting the impact of nsSNPs on protein function and
can facilitate a deeper understanding of the contribution of these
genetic variations to cancer onset and progression (Jubb et al., 2017;
Ahmad et al., 2022).

The main objective of our research is identifying and
characterising nsSNPs in the HRAS gene and their potential
impact on the structure and function of the HRAS protein.
Specifically, we explore in silico approaches to predict the
effects of rare genetic variants on HRAS protein function,
identify the most deleterious nsSNPs, and investigate the
consequences of these mutations on the stability, flexibility,
and compaction of the HRAS protein using molecular
dynamics simulations. In this study, we also analyze the
binding energies of the wild-type and mutant HRAS protein
with docked complexes to understand the potential impact of
these mutations on the activation of oncogenic signalling
pathways. Our research provides compelling evidence for the
potential functional role of nsSNPs in up-regulating HRAS
expression and contributing to the development of various
types of cancers.
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2 Material and methods

2.1 Collecting and preparing SNP data

The ensuing discourse delineates the origins and manipulation
of Single Nucleotide Polymorphism (SNP) data garnered from
sundry databases like dbSNP (https://www.ncbi.nlm.nih.gov/snp/),
ENSEMBLE (https://ensemblgenomes.org/), SNP500 cancer
(https://pubmed.ncbi.nlm.nih.gov/), GeneCards (https://www.
genecards.org/), and UniPort (https://www.uniprot.org/), which
are periodically refreshed with new information. In particular, the
ENSEMBLE repository was availed to obtain the nucleotide and
protein sequences germane to the HRAS gene as per the methods
of earlier researchers (Buljan et al., 2018; Zafar et al., 2022). This
undertaking holds the promise of research prospects for exploring
genetic variations and their potential implications (Rajaram et al.,
2001).

2.2 Prediction of deleterious nsSNPs

The SIFT tool (https://sift.bii.a-star.edu.sg/) was employed to
forecast the impact of non-synonymous SNPs on the mutant protein
(Bromberg and Rost, 2007). This technique bifurcated the SNPs into
two categories, intolerant and tolerant, based on homologous
alignment (Seal et al., 2014). Precisely, amino acids with
normalization probabilities falling beneath the designated
threshold value were ascertained as intolerant, whilst those with a
tolerance index measuring over >0.05 were considered tolerant
(Dakal et al., 2017). The implications of this approach hold
potential research prospects in assessing genetic variations and
their resultant phenotypic outcomes (Pauls et al., 2013).

2.3 Structural homology-based approach:
Coding of nsSNPs

The PolyPhen2 tool (http://genetics.bwh.harvard.edu/pph2/)
was leveraged to predict the pernicious ramifications of nsSNPs
on the structural and functional aspects of proteins. This prediction
was based on the naive Bayesian algorithm, which involves
classifying scores from 0 to 1. Mutations were partitioned into
three categories, depending on the scores, with those possessing a
score closest to 1 being identified as probably damaging and
exhibiting a significant impact on protein structure.
Implementing this tool could potentially open up research
opportunities in the realm of genetic variability and its influence
on protein conformation and function.

2.4 Categorization of functional nsSNPs

Identifying functional nsSNPs was executed with the aid of
online servers, including SNP&GO (https://snps-and-go/), PhD-
SNP (https://snps.biofold.org/), PROVEAN (https://bio.tools/
provean), PANTHER (http://www.pantherdb.org/), and P-Mut
(https://bio.tools/pmut). In particular, PhD-SNP relied on
support vector systems to classify and depict the effects of non-

synonymous SNPs on proteins. This method divided nsSNPs into
deleterious or neutral categories (Li et al., 2006; Pauls et al., 2013).
Furthermore, the ROVEAN tool was utilized to identify damaging
SNPs by classifying mutations into deleterious or neutral depending
on a threshold score of −2.5. At the same time, SNP&GO relied on
the support vector machine algorithm (Sharma et al., 2022). Lastly,
P-MUT employed the neural networking algorithm to segregate
mutants into disease or neutral based on probability statistics of the
sequences (Shinwari et al., 2022). These techniques could potentially
unlock research opportunities in the sphere of genetic variations and
their ramifications on protein function and structure (Singh et al.,
2007).

2.5 Identification of nsSNPs on the coding
area of protein

The SNP SnpEff and SnpSift (http://pcingola.github.io/SnpEff/)
tool box was implemented to foretell the impact of nsSNPs on the
coding region of the HRAS protein as per earlier researchers
(Hossain et al., 2020). Apart from exhibiting the outcomes in
conservation scores, the program also identified the protein
homeostasis landscape (Han et al., 2020). The SNP effect used
several software and tools to discover the propensity, including
the aggregation tendency of the mutant via TANGO (https://
switchlab.org/software/), amyloid propensity through WALTZ
(https://switchlab.org/software/), and chaperone binding with
LIMBO as per investigation of the earlier researcher (De Baets
et al., 2012). These sophisticated methodologies can foster new
research avenues for exploring the complex interplay between
genetic variations and protein homeostasis.

2.6 Influence of non-synonymousmutations
on protein stability (INPS)

The I-MUTANT 3.0 suit (https://bio.tools/i-mutant_suite) was
utilized to prognosticate the impact of mutations on the stability of
the HRAS protein, with the MUpro program (https://mupro.
proteomics.ics.uci.edu/) being employed to validate the outcomes
(Venkata Subbiah et al., 2020). Both servers rely on the same
algorithm and are designed to evaluate the influence of
mutations on protein stability, whether it is enhancing or
diminishing it (Dehouck et al., 2011). Furthermore, the SRide
server (http://sride.enzim.hu/) was leveraged to pinpoint the
stabilizing residues of the native and mutant proteins (Kotha,
2010). The integration of these advanced computational
techniques holds great promise for driving further research in
protein stability and its response to genetic variations.

2.7 Conservational analysis of HRAS protein

The ConSurf server (https://consurf.tau.ac.il/consurf_index.
php) was deployed to thoroughly analyze each amino acid’s
conservation and evolutionary aspects in the HRAS protein
(Kumar et al., 2021). The outcomes were presented as diverse
conservation scores, ranging from 1 to 9. Scores from 1 to

Frontiers in Chemistry frontiersin.org03

Ali et al. 10.3389/fchem.2023.1173624

https://www.ncbi.nlm.nih.gov/snp/
https://ensemblgenomes.org/
https://pubmed.ncbi.nlm.nih.gov/
https://www.genecards.org/
https://www.genecards.org/
https://www.uniprot.org/
https://sift.bii.a-star.edu.sg/
http://genetics.bwh.harvard.edu/pph2/
https://snps-and-go/
https://snps.biofold.org/
https://bio.tools/provean
https://bio.tools/provean
http://www.pantherdb.org/
https://bio.tools/pmut
http://pcingola.github.io/SnpEff/
https://switchlab.org/software/
https://switchlab.org/software/
https://switchlab.org/software/
https://bio.tools/i-mutant_suite
https://mupro.proteomics.ics.uci.edu/
https://mupro.proteomics.ics.uci.edu/
http://sride.enzim.hu/
https://consurf.tau.ac.il/consurf_index.php
https://consurf.tau.ac.il/consurf_index.php
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1173624


3 corresponding to variable positions, while scores from 4 to
6 indicated amino acid positions that were moderately conserved.
Furthermore, scores falling within the range of 7–9 represented
highly conserved positions of amino acids. Utilizing this cutting-
edge technology can pave the way for further protein evolution and
conservation research, thereby expanding our knowledge of the
complex interplay between genetics and protein function
(Gourbal et al., 2018).

2.8 Molecular docking

We investigated the effects of mutations on the structure and
function of the HRAS protein employing molecular docking analysis
(Hossain et al., 2020). To achieve this, they acquired the three-
dimensional configuration of the HRAS protein (PDB ID: 6MQT)
from the Protein Data Bank. They transferred it into the MOE
software (https://www.chemcomp.com/Products.htm) as per the
method of the earlier researcher (Bhattacharya et al., 2017).

For the docking process, we excluded heteroatoms, ligands, and
aqueous molecules from the structure. We conducted structural
refinement employing definite parameters, such as energy
minimization concerning 0.1 gradients, addition of hydrogen atoms,
and utilization of the MMFF94X force field. We recognized an active site
within the protein, encompassing a critical area of interacting residues.

Utilizing the MOE software, we performed molecular docking
simulations for both standard and mutated molecules, storing the
results in mdb format for further analysis (Ahmad et al., 2015). The
highest-ranking postures underwent further refinement and
calculation of binding free energies (ΔG) by employing the
scoring function (GBVI/WSA dg). The scoring function is
grounded on several molecular interactions, such as pi, hydrogen,
and hydrophobic interactions. It presents a dependable scoring
method that yields the docking score of the correct binding
postures (Jin et al., 2023).

We meticulously surveyed the docked complex’s MOE database
to understand the mode of binding interactions of the wild-type and
mutated complex (Niranjan et al., 2021). This exploration enabled
the research team to identify possible impacts of mutations on the
protein’s structure and function, providing insightful discoveries for
further investigations in the field.

2.9 Molecular dynamics (MD) simulation

We employed the Schrodinger 2021.2 software suite for their
computational investigations (Kutzner et al., 2022)., The initial
structures were drawn using Maestro 12.8 and subsequently
ionized with Epik 3.2 program at a pH of 7.4 using Ligprep 3.4
(https://www.schrodinger.com/products/ligprep) as per the analysis
of (Santana-Romo et al., 2020). This protocol was carried out to
produce the requisite starting structures for molecular dynamics
(MD) simulations.

We perform calculations to produce MD simulation trajectories
across various intervals during the simulation run (Galindo-Murillo
et al., 2015). After docking, the conformational study of three
complexes was executed with the MacroModel 10.8 module
(Kellici et al., 2019). This module employs a torsional sampling

approach for all conformational searche:a Monte Carlo multiple
minimum method (Li and Scheraga, 1987). The highest energy
conformers were removed using a 21 kJ mol1 energy limit. Each
conformer was reduced for a maximum of 2,000 steps using the
Polak-Ribiere conjugate gradient technique, with a gradient
convergence threshold of 0.001 kJ mol1 A˚ 1, and the
OPLS3 force field was utilized for this process. The OPLS3 force
field is advantageous for small molecules because it delivers accurate
energy minimization potential functions (Harder et al., 2016).

The team employed MD simulation to appraise the stability of
the enzyme-inhibitor complex and explore the conformational
aspects of protein-ligand interactions (Amaral et al., 2017). The
conformational variations and stability index of secondary structural
components of the simulated complexes were assessed utilizing data
reduction techniques such as root-mean-square deviation (RMSD),
root-mean-square fluctuation (RMSF), the radius of gyration (Rg),
and beta-factor values as per earlier researcher (Kumar et al., 2019).
We employed a suite of computational software to perform
molecular dynamics simulations and scrutinize the
conformational aspects of protein-ligand interactions. They used
diverse techniques to appraise the stability and conformational
variations of the simulated complexes.

3 Results and discussion

3.1 Compilation of a single nucleotide
polymorphism (SNP) library

We aimed to construct a comprehensive SNP database for the
HRAS gene, a human gene that encodes for the protein HRAS
(Hossain et al., 2020). The team utilized various bioinformatics tools
and databases to achieve this goal, including the Ensemble genome
browser, Gene card, Uniprot, and NCBI db-SNP (Phillips, 2009).
These resources provide access to various genetic and protein-
related information, which the team could use to identify and
analyze SNPs in the HRAS gene (Kohl et al., 2015). Our analysis
was on non-synonymous SNPs (nsSNPs), which are genetic
variations that change the amino acid sequence of the protein
encoded by the HRAS gene (Chai et al., 2022). These variations
are more likely to impact the structure and function of the HRAS
protein, potentially leading to changes in protein activity and, in
turn, contributing to disease development.

We specifically looked for nsSNPs located within the HRAS
gene’s exon region, which is the coding region translated into
protein (Tarek et al., 2021). They identified the location and
nature of each nsSNP and determined its frequency in different
populations. However, during their analysis, we observed that many
SNPs were located in the intron region of the HRAS gene (Estep
et al., 2006). Intron regions are non-coding regions of the gene and
traditionally were thought to be non-functional. However, recent
studies have suggested that intronic SNPs could also have a role in
regulating gene expression and splicing and may contribute to
disease susceptibility (Meyer et al., 2008). Therefore, we also
analyzed the potential impact of these intronic SNPs on HRAS
gene expression and splicing as per earlier investigations (Vornholt
et al., 2021). The distribution of SNPs in a different region of human
HRAS gene is represented in Figure 1.
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Our work involved using various bioinformatics tools and
databases to map a comprehensive SNP dataset for the HRAS
gene, focusing on non-synonymous SNPs in the exon region
(Rivera et al., 2005). This dataset could provide valuable insights
into the genetic variations contributing to disease development and
help develop personalized medicine approaches (Hamburg and
Collins, 2010).

3.2 Evaluation of non-synonymous (nsSNP)
SNPs

We use the SIFT (Sorting Intolerant from Tolerant) algorithm
to predict the impact of non-synonymous SNPs (nsSNPs) on the
structure of the HRAS protein (Chai et al., 2022). The SIFT
algorithm uses homologous protein sequences to determine
which amino acid substitutions are likely to be tolerated and
which are likely deleterious (Ng and Henikoff, 2001). The
algorithm’s output is a tolerance index (TI) score, ranging from
0 to 1, with lower scores indicating a greater likelihood of harmful
consequences. We submitted 50 nsSNPs to the SIFT algorithm for
analysis (Savas et al., 2004). The of 23 SNPs were identified with TI
scores ranging from 0 to 0.04, with 28 having a TI score of 0,
indicating highly deleterious consequences. This means that these

nsSNPs are likely to impact the structure and function of the HRAS
protein significantly and the result matched with earlier research
(Chai et al., 2022). Multiple SNPs had a TI score of 0.01, one had a
score of 0.02, and one had a score of 0.004, suggesting only minor
importance.

We noted a high frequency of substitutions involving cytosine
and thymine or guanine and adenine, while substitutions involving
adenine and thymine or adenine and cytosine were rare (Kim et al.,
2019). This information could provide important insights into the
mechanisms by which these nsSNPs affect HRAS protein function
and may be helpful in developing targeted therapies for diseases
caused by HRAS mutations as per the investigation of the earlier
researcher (Chai et al., 2022). Overall, the use of the SIFT algorithm
provides valuable information for understanding the impact of
nsSNPs on the HRAS protein and could potentially contribute to
the development of new treatments for diseases caused by HRAS
mutations (Hossain et al., 2020).

3.3 Identification of functional modifications
in coding nsSNPs

We describe the results of further analysis of 50 selected
nsSNPs submitted to a server and utilized the

FIGURE 1
SNP distribution in a different region of the human HRAS gene.
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PolyPhen2 algorithm to predict the impact of nsSNPs on
protein structure. The algorithm provides a score between
0 and 1, with a higher score indicating a greater likelihood of
deleterious consequences. Out of the 50 nsSNPs submitted, only
10 had a probabilistic score greater than 0.97, indicating that
they were probably damaging nsSNPs. The total of 10 nsSNPs
had scores higher than 0.83, which were classified as possibly
damaging. We exactly identified seven nsSNPs (G75R, P34S,
G60D, G60V, T58I, G60D, and A146P) with a maximum score
of 1, indicating a high probability of being damaging. Most of
the remaining mutations had scores in the range of
0.98 to −0.99. We also compared the results obtained from
SIFT and PolyPhen2 and observed that ten nsSNPs were
identified as common between the SIFT and
PolyPhen2 analyses, despite using different methods to
obtain results. The SIFT algorithm utilizes structural detail
to yield results, while PolyPhen2 is based on structure and
has shown a good correlation with the SIFT approach. Finally,
we observed that most nsSNPs had a SIFT tolerance index of
0.00, indicating that they were highly intolerant to variation,
while their PolyPhen2 scores were >0.90 and based on these

findings, we concluded that these alterations may be responsible
for disease.

3.4 Phenotypic impact of mutations

The SNP-effect tool assesses the potential effects of genetic
variants on protein structure and function. We also evaluate the
phenotypic impact of alterations within the HRAS molecule.
Specifically, the approach evaluated chaperone binding
propensity, aggregation propensity, and amyloid tendency.
Chaperones are a class of proteins that assist in properly folding
and assembly of other proteins. A protein’s chaperone binding
propensity can provide insight into its stability and folding
efficiency. Aggregation propensity refers to the tendency of
proteins to form aggregates or clumps, which can interfere with
proper cellular function. The amyloid tendency measures a protein’s
ability to form amyloid fibrils, which are associated with several
diseases, including Alzheimer’s and Parkinson’s and Cancer. The
results of the SNP-effect analysis showed that the selected mutations
had little to no impact on chaperone binding propensity,

TABLE 1 Screening of most deleterious SNPs by using different software.

No. Variant ID Alleles Amino acid changes SIFT Polyphen2 Provean deleterious P-mut disease

1 rs756190012 C/T G75R 0.03 1 −7.893 0.69

2 rs730880460 C/A/T G60V 0 1 −6.760 0.66

3 rs121917758 G/A T58I 0 1 D −5.798 0.66

4 rs104894231 C/G/T A146P 0 1 −4.427 0.53

5 rs730880460 C/A/T G60D 0 1 −8.689 0.69

6 rs770492627 T/G T58P 0 0.999 −5.797 0.53

7 rs755488418 A/C M72R 0 0.999 −5.873 0.66

8 rs755322824 G/C S89C 0 0.999 −4.711 0.64

9 rs764622691 T/C Y4C 0 0.999 −6.949 0.66

10 rs730880464 C/G R123P 0 0.998 −5.560 0.69

11 rs750680771 C/G/T D38H 0 0.998 −6.461 0.66

12 rs1564789700 A/G I46T 0 0.998 −4.596 0.64

13 rs1554885139 C/T G15D 0 0.996 −5.631 0.63

14 rs1564789063 A/G M111T 0 0.995 −4.376 0.64

15 rs121917757 G/A/T Q22K 0 0.993 −3.341 0.62

16 rs917210997 C/T G115R 0 0.993 −7.193 0.69

17 rs1370566417 A/T C80S 0 0.992 −7.008 0.64

18 rs1204223913 G/A G60V 0 0.99 −9.167 0.69

19 rs727504747 GC/AG A59L 0 0.988 −4.756 0.69

20 rs1427823770 A/C V112G 0 0.97 −6.172 0.67

21 rs104894228 C/A/G G13R 0 0.975 −6.676 0.66

22 rs898057728 G/A/S S65R 0 0.947 −4.536 0.67

23 rs727503094 GC/AG G12E 0.01 0.942 −6.114 0.66

Frontiers in Chemistry frontiersin.org06

Ali et al. 10.3389/fchem.2023.1173624

http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=209970891
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=205097900
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=108708025
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=90533204
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=205097900
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=233071580
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=209656939
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=209606626
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=230585591
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=205097986
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=207551923
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=620831009
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=618805037
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=620830254
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=108707861
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=280885458
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=561949826
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=452337085
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=205097090
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=592006764
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=90533015
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=259559463
http://asia.ensembl.org/Homo_sapiens/Variation/Summary?db=core;g=ENSG00000174775;r=11:532242-537287;vf=205094948
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1173624


aggregation propensity, or amyloid tendency. However, it is essential
to note that this approach only evaluates a limited set of
characteristics and does not comprehensively assess all possible
effects. The findings suggest that the selected mutations may
have other potential impact on the structure and properties of
the HRAS protein, which could have significant implications for
biological organisms. Further experimental studies would be
necessary to fully understand the impact of these mutations and
their potential role in disease. Screening of most deleterious SNPs
using different software’s are mentioned in Table 1; the HRAS gene
encodes HRAS protein and plays an essential role in various cellular
processes, including cell proliferation, differentiation, and survival.
SNPs in the HRAS gene have been associated with multiple diseases,
including cancer, and can impact protein structure and function.
Therefore, identifying deleterious SNPs in the HRAS gene is crucial
for understanding disease mechanisms and developing potential
treatments.

Screening potentially deleterious SNPs in the HRAS gene is
essential to understanding the possible impact of genetic variations
on the protein’s function (Chai et al., 2022). Several software tools
have been developed to analyze the potential effect of SNPs on
protein structure and function (Paniri et al., 2021). We applied SIFT,
PolyPhen2, and SNP-effect to predict the impact of nsSNPs on the
HRAS protein. The SIFT algorithm is a sequence-based tool that
utilizes sequence homology to predict the potential effect of nsSNPs
on protein function. SIFT analysis identified 23nsSNPs with TI
scores ranging from 0.53 to 69, suggesting highly deleterious
consequences. PolyPhen2 is a tool that combines sequence-based
and structure-based predictions to predict the effect of nsSNPs on
protein structure and function. We found that G75R, P34S, G60D,
A59L, G60V, I46T, D38H, T58I, and A146P had a maximum score

of 1, while most mutations had scores in the range of 0.98 to −0.99. A
total of 10 nsSNPs were identified as standard between the SIFT and
PolyPhen2 analyses, despite using different methods to obtain
results.

The SNP-effect tool is a computational pipeline that assesses the
effect of SNPs on protein properties, such as chaperone binding
propensity, aggregation propensity, and amyloid tendency (Ji et al.,
2021). We found that the selected alternate variants did not
significantly impact these characteristics. However, they suggested
that variations in protein structure and properties resulting from
these SNPs could still significantly impact biological organisms. In
summary, the use of multiple software tools to predict the effects of
nsSNPs on the HRAS protein provides a more comprehensive
understanding of the potential consequences of genetic variations,
where earlier researchers (Hossain et al., 2020; Chai et al., 2022) also
explore and indicate exact predictions. The SIFT and
PolyPhen2 analyses identified several nsSNPs with a high
likelihood of deleterious consequences. In contrast, the SNP-
effect study showed that the selected nsSNPs did not significantly
affect the protein’s chaperone binding, aggregation propensity, or
amyloid tendency. These findings could have implications for
understanding the role of HRAS mutations in developing various
diseases.

3.5 Effect of mutation on stability of HRAS

The stability of a protein is crucial for its proper function, and
destabilizing mutations can lead to the misfolding and aggregation
of the protein, resulting in various diseases (Gámez et al., 2018). We
explored the effect of different mutations on the stability of the
HRAS protein and assessed using I-MUTANT and MUpro for final
results and validations. The Delta Gibbs free energy (DDG) values
were calculated to determine the stability of the protein, and a DDG
value lower than 0 indicated a destabilizing mutation. The
I-MUTANT (https://folding.biofold.org/i-mutant/i-mutant2.0.
html) server predicted that most modifications can decrease the
stability of the HRAS protein, with DDG values ranging from −3.
21 kcal/mol to 0.87 kcal/mol. The most significant effect was
observed with the I46T mutation, which had a DDG value of −3.
21 kcal/mol. Only three mutations, Y4C, T58I, and Y12E, showed
perfection in the structural stability of the protein. The MUpro
server (https://mupro.proteomics.ics.uci.edu/) provided similar
results, except for the Y4C, G12E, and T58I mutations, which
showed a decrease in stability. The G15D mutation showed an
increase in strength in the MUpro prediction, while I-MUTANT
predicted a reduction in stability and the results are summarized in
Table 2.

The differences in predictions between the two servers can be
attributed to their different calculation methods. I-MUTANT uses a
support vector regression algorithm based on various structural
properties of the protein, such as solvent accessibility and secondary
structure, to predict the DDG values. In contrast, MUpro employs a
neural network-based approach that incorporates sequence and
structural information, as well as evolutionary conservation, to
predict the effects of mutations on protein stability. The results
of this study indicate that several mutations within the HRAS gene
can destabilise the protein, potentially resulting in disease.

TABLE 2 Non-synonymous single nucleotide polymorphisms (nsSNPs) and
their predicted effects on protein function.

Variant ID Position Wild type Mutant DDG value

rs730880460 60 G D −2.19

rs121917758 58 T I 0.28

rs730880460 60 G V −1.22

rs764622691 4 Y C 0.62

rs730880464 123 R P −1.13

rs750680771 38 D H −1.57

rs1564789700 46 I T −3.21

rs1554885139 15 G D −0.4

rs917210997 115 G R −0.98

rs369106578 123 R G −1.01

rs1204223913 110 P L −0.87

rs727504747 59 A L −0.32

rs104894228 13 G R −1.27

rs1564789552 64 Y H −0.94

rs727503094 12 G E 0.87
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Identifying these destabilizing mutations can provide insights into
the molecular mechanisms of HRAS-associated diseases and may
aid in developing new therapeutic strategies.

Our results indicated that most of the mutations decreased the
stability of the HRAS protein, while only a few improved it. The
mutation with the most significant effect on stability was I46T, with
a DDG value of −3.21 kcal/mol. The I-MUTANT server predicted
that 15 mutations, including Y4C, G12E, G13R, G15D, D38H, I46T,
T58I, A59L, G75R, P34S, G60D, G60V, G115R, R123G, and R123P,
decreased the stability of the protein, while Y4C, T58I, and Y12E
improved it. The MUpro server provided similar results, except for
Y4C, G12E, and T58I mutations, which showed decreasedd stability,
contrary to the I-MUTANT prediction. Additionally, MUpro
predicted I-MUTANT predicted a decrease inincreased stability
for the G15D mutation, and I-MUTANT predicted decreased
stability. The DDG values of most mutations ranged
from −3.21 kcal/mol to 0.87 kcal/mol, indicating reduced protein
stability with a DDG value lowers than 0. The results suggest that
mutations can significantly affect the HRAS protein’s stability,
which may impact the biological organism. Further research may
be required to understand the specific effects of each mutation on
HRAS protein stability and its overall impact on biological systems.

3.6 Conservation analysis

The ConSurf server (https://consurf.tau.ac.il/consurf_index.
php) is a valuable tool for determining the evolutionary
conservation of protein residues across a set of homologous
sequences. The conservation scores of HRAS protein residues
were analyzed using ConSurf to evaluate the impact of the
10 deleterious mutations on the protein structure and
function. Out of the 10 deleterious mutations, 6 missense
mutations (G13R, D38H, A59L, G60V, G60D, G115R, R123P,
and R123G) were located in highly conserved regions (7–8–9).
This finding suggests that mutations in these regions could
significantly affect the function and structure of the HRAS
protein. Additionally, G13R, D38H, and I46T were predicted
to be exposed, while mutants such as A59L, G60V, G60D,

Q60D, R123P, and R123G were expected to be functional
and revealed mutations.

The conservation analysis showed that onemutation was located
in a variable region (1–2–3) and one in an average part, indicating
that these mutations may have a milder effect on the protein
structure and function. These findings suggest that highly
conserved regions of HRAS protein are more sensitive to
mutations that could impact the protein function. These results
provide insights into the functional and structural effects of the
10 selected deleterious mutations on the HRAS protein. By
identifying the regions that are highly conserved and sensitive to
mutations, this study can help researchers better understand the
consequences of HRAS mutations and may lead to new treatments
for diseases associated with HRAS mutations.

3.7 3D structures

The Protein Data Bank (https://www.rcsb.org/) provides an
extensive collection of experimentally determined protein
structures that can be used for structural analysis (Protein Data
Bank, 2019). In this study, we obtained the wild-type entire structure
of the HRAS protein with its PDB ID: (6MQT) from the PDB. The
protein structure was analyzed to identify features such as active
sites, protein-protein interface sites, domain motifs, and ligand-
binding affinities. The three-dimensional structure of HRAS was
visualized in Figure 2, where the protein’s helices, beta-sheets, and
coils were represented by yellow, cyan, and green colors,
respectively. The structure of HRAS showed that it consists of
five alpha-helices and six beta-strands, which are arranged in a
characteristic fold called the G-domain as per earlier researcher
investigations (Korzeniecki and Priefer, 2021). The G-domain
contains the nucleotide-binding site, which is responsible for the
hydrolysis of GTP to GDP, and plays a crucial role in regulating
HRAS activity (Liu et al., 2019).

The protein structure was further analyzed to identify potential
active sites and protein-protein interface sites, which can be targeted
for drug design as per the results of researchers (Velazquez et al.,
2018; Lin et al., 2020). In addition, the ligand-binding affinities of

FIGURE 2
3D Structure of HRAS protein.
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HRAS were predicted to identify potential small molecule inhibitors
that can be used to target the protein in various diseases. The three-
dimensional structure of HRAS provides essential insights into this
protein’s function and regulation. It can be used to guide the design
of new therapeutics for the treatment of HRAS-related diseases, as
shown in an earlier exploration by Ahmad et al. (2022).

3.8 Mapping of most deleterious nsSNPs on
HRAS gene

The mapping of the 10 most deleterious nsSNPs on the HRAS
protein structure using mutagenesis techniques in Pymol software (as
shown in Figure 3) provides a visual representation of the location and
distribution of these mutations on the protein. The mutations were
distributed throughout the protein structure, with several mutations
located in the Group-I (G12E, G13R, G15D) and Group-II (Q61L,
A59L) regions, which are known to play a crucial role in HRAS
activation. Mutations in these regions can potentially lead to impaired
GTPhydrolysis, affecting the normal functioning of HRAS.Moreover,
several mutations were located in or near the protein’s active site
(D38H, G60D, G60V), which could interfere with HRAS’s ability to
interact with its downstream effectors and may impair its biological
functions. The mutagenesis techniques used in Pymol also showed
that some of the mutations (I46T, D38H, A59L, G60V) could form
hydrogen bonds with neighbouring residues, suggesting a possible
alteration of the protein’s conformation and potential effects on
protein stability. Mapping these deleterious mutations in HRAS
protein structure provides insights into how these mutations could
potentially impact the protein’s structure and function, providing a
foundation for further experimental investigation.

3.9 Structural analysis of HRAS protein

The native complete structure of HRAS was retrieved from the
Protein Data Bank, and the Swiss Model server (https://swissmodel.
expasy.org/) was used to predict the mutated form using homology
modelling approaches. The ten most deleterious mutations,

indicated by all the analyzing tools, were mapped in their
respective region of HRAS using mutagenesis techniques in
Pymol software, as shown in Figure 4. The mutated models were
generated to further investigate the effect of these mutations on the
HRAS protein structure, and energy minimization was carried out
using Schrodinger. The energy minimization process minimized the
energy and force acting on each atom in a gathering of atoms to
obtain the most thermodynamically stable HRAS structure. The
final and stable model of HRAS had an energy value of −18,756 kj/
mol, which was significantly lower than the energy value of the
initial model, which was −108915 kj/mol. This indicates that the
mutated models had a more stable conformation than the initial
models, after the energy minimisation process.

The deleterious mutated models of HRAS, including
rs730880460 (G60V), rs730880460 (G60D), rs730880464
(R123P), rs750680771 (D38H), rs1564789700 (I46T),
rs917210997 (G115R), rs369106578 (R123G), rs1204223913
(P11OL), rs727504747 (A59L), and rs104894228 (G13R), were
generated using Pymol software and compared with the native
HRAS protein structure. The mutations were observed to cause
structural changes in different regions of HRAS, and the energy
minimization process helped achieve more stable configurations.
The results suggest that these mutations could potentially affect the
function of HRAS and contribute to cancer development.

Each mutation can have different effects on the structure and
function of the protein. The specific effects of each mutation can
depend on a variety of factors, such as the location of the mutation in
the protein, the surrounding amino acid residues, and the protein’s
function as per the investigation of the earlier researcher (Cain et al.,
2020). For example, the G60Vmutation, predicted to be deleterious in
our analysis, is located in the Group-II region of the protein and can
cause problems in protein folding due to the larger size of the mutant
residue compared to the wild-type residue. This can prevent the
mutant residue from fitting correctly in the core region of the protein,
potentially leading to the destabilization of the protein structure.

Similarly, the G115R mutation, also predicted to be deleterious,
can lead to an incorrect conformation and disturbance of the local
structure of the protein due to the larger size of the mutant residue,
as a result, compare with (Wang S et al., 2022), and this result in loss
of protein function. The G13R mutation located in the G-domain in
the G-domain can cause loss of interaction because the mutant
residue is more minor and has a different hydrophobicity compared
to the wild-type residue as per earlier researchers (O’Bryan, 2019).
This can affect the interaction between HRAS and its downstream
effectors proteins, potentially leading to downstream signalling
defects. The D38H mutation can cause loss of interaction or
repulsion due to changes in charge, as the positively charged
histidinepositively charged histidine replaces the negatively
charged aspartic acid replaces the negatively charged aspartic
acid. This can affect the interaction of HRAS with its upstream
activators, potentially leading to downstream signaling defects.

3.10 Molecular docking of HRAS

Molecular docking is a computational method used to predict
the binding mode and affinity of small molecules to a protein as per
earlier researchers (Luo et al., 2019). In this study, molecular

FIGURE 3
Mapping of most deleterious nsSNPs.
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docking was applied to understand the effect of three deleterious
mutations, G60V, G60D, and D38H, on the binding pocket of the
HRAS protein. The HRAS protein structure with PDB ID: 6MQT
was imported into MOE software (https://www.chemcomp.com/
Products.htm), and the docked complexes of the wild-typeand
mutated protein with ligands were generated. The docked
complexes were analyzed for their docked score, hydrogen bonds,
and pi-interactions within the 4.5 Å. The active binding site residues
GLU62, GLY10, THR58, ASP33, ILE36, GLU63, TYR64, ALA11,
TYR96, GLY13, and LYS16 were identified to be involved in pi-
interactions and generate hydrogen bonds. The docked complexes
showed significant binding affinity and interactions with the active
binding site residues.

When the three deleterious mutations, G60V, G60D, and D38H,
were docked into the same binding pocket, the D38H residue was
found to be involved in the binding interactions. With G60V, three
hydrogen bonds were generated by the D38H residue, while one
hydrogen bond with D38H and two with G60D were observed. This
suggests that the D38H residue plays an important role in stabilizing
the conformation of the mutated HRAS protein and results were
compared with the investigation of the earlier researcher (Chai et al.,
2022). The docked complexes were further subjected to MD
simulation to analyze the stability and conformation of the wild-
type and mutated complexes as shown in Figure 5. The MD
simulation analysis revealed that the wild-type and mutated
complexes were stable during the simulation. The RMSD and
RMSF values were calculated, and it was observed that the

mutated complexes had higher RMSD and RMSF values
compared to the wild-type complex. This indicates that the
mutated complexes had a slightly different conformation than
the wild-type complex.

The -protein residues are shown as sticks, and the ligands are
shown in space-filling mode. The wild-typel protein and the three
mutated proteins are shown in different colors. The two-
dimensional plot of interacting target residues shows the residues
of the protein that areprotein residues involved in important
interactions with the ligands. The residues involved in hydrogen
bonding, Pi, and hydrophobic interactions are shown as circles in
different colors. The Non-mutant protein is shown in blue color, and
the residues involved in interactions with the ligands are labelled
with their residue numbers. The plot in Figure 5 shows that the
residues involved in interactions with the ligands are distributed
throughout the protein’s active site. The residues involved in
hydrogen bonding are mainly located in the loops and helices of
the protein. The residues involved in Pi interactions are primarily
situated in the helices and strands of the protein. The hydrophobic
residues are mainly located in the core of the protein as mentioned in
Figures 5A-D. For the G60V mutation, the plot shows that the
mutation affects the hydrogen bonding with residue D38H and
G60D mutation; the plot shows that the mutation affects the
hydrogen bonding with residue D38H and generates two new
hydrogen bonds with residue G60D. In D38H mutation, the plot
shows that the mutation affects the hydrophobic interactions with
the residues in the core of the protein. The plot provides valuable

FIGURE 4
Muatantstructure of HRAS protein.
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insights into the specific residues of the protein involved in the
interactions with the ligands and how the mutations affect these
interactions.

The 3D interaction study of the docked complexes of G60V,
G60D, and D38H with Non-mutant protein was performed to
visualize the interactions and understand the binding mechanism
of the mutated proteins with the Non-mutant protein as shown in
Figure 6. The results showed that the mutated residues interacted
with different residues compared to the Non-mutant protein. In the
case of G60V, the mutated residue interacted with residues GLY13,
ILE36, and GLU63. The GLU63 precipitate, which was involved in
Pi-interactions and hydrogen bonding in the Non-mutant protein,
did not form any interactions with the G60V mutated residue.
Instead, GLY13 and ILE36 residues formed new interactions with
the G60V mutated residue. This suggests that the G60V mutation
might have altered the interaction pattern in the active site of the
HRAS protein, which could affect the protein function.

In the case of G60D, the mutated residue interacted with
residues ALA11, GLY10, and TYR96. The ALA11 residue,
involved in Pi-interactions and hydrogen bonding in the Non-
mutant protein, formed new interactions with the G60D mutated
residue. Similarly, GLY10 and TYR96 residues also included new
interactions with the G60D mutated residue. This indicates that the
G60Dmutation might have altered the binding pattern of the HRAS
protein with ligands. In the case of D38H, the mutated residue
interacted with residues GLU62, GLY10, and TYR64. The
GLU62 residue, involved in Pi-interactions and hydrogen
bonding in the Non-mutant protein, formed new interactions
with the D38H mutated residue.

Similarly, GLY10 and TYR64 residues also formed new
interactions with the D38H mutated residue. This suggests that
the D38H mutation might have affected the ligands’ binding in the
HRAS protein’s active site. Overall, the 3D interaction study
revealed that the mutated residues interacted with different

FIGURE 5
Visualizing structural changes in active site of HRAS protein due to mutations: Insights from hydrogen bonding and hydrophobic interactions.
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residues compared to the Non-mutant protein, which could affect
the protein-ligand interactions and the function of the HRAS
protein.

3.11 Molecular dynamic simulations

The RMSD analysis is an essential tool for understanding the
structural stability of a protein-ligand complex over a given time
interval. The present study focused on analyzing the root-mean-
square deviation (RMSD) values of protein-ligand complexes of
HRAS in both APO and docked states, to examine the impact of
three mutations, namely, G60V, G60D, and D38H, on the stability of
the complexes. The findings of this study revealed that the wild-type
HRAS complex demonstrated a greater degree of fluctuation
compared to both the APO and mutated complexes. These
results provide valuable insights into the effects of specific
mutations on the stability of protein-ligand complexes and
contribute to a better understanding of the dynamics of HRAS
proteins in different states. The mean RMSD value of the wild-
typecomplex was 4.40 Å, indicating that the protein underwent
secondary structure changes with high loop regions compared to
the average RMSD values of the mutated models. The mutated
models (G60V, G60D, and D38H) decreased mean square
calculation upon mutation, indicating a more stable environment
and compactness of the whole system. The RMSD of the apoprotein
was themost durable among all the protein models (Roy et al., 2022),
with a value of 3.14 Å, as shown in Figure 7.

The results suggest that the mutations in the HRAS protein can
lead to a more stable protein-ligand complex structure. The RMSD

analysis also revealed that the ligand remained fixed throughout the
simulation time interval, indicating that the mutations did not cause
any significant changes in the ligand’s position or displacement. The
RMSD analysis supports the conclusion that the mutations have a
stabilizing effect on the protein-ligand complex. The minor
fluctuations observed in the wild-type complex may indicate a
higher degree of flexibility, potentially leading to changes in the
protein-ligand complex’s structural framework.

FIGURE 6
The 3D interaction of the docked complexes (G60V, G60D and D38H with Non-mutant protein).

FIGURE 7
The RMSD of the APO protein was TheMost Stable among All the
Protein Models, with a Value of 3.14 Å as Shown in Figure 7.
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The RMSF plot was generated to understand the fluctuation and
stability of protein residues over the simulation period of 100 ns. The
RMSF graph showed that the residues of the normal HRAS complex
exhibited higher instability in comparison to the mutated and APO
models, indicating more flexibility and conformational changes in
the normal complex. The residues that showed higher RMSF values
in the wild-type HRAS complex include Ser157, G12E, ILE46, and
ASP47, which experienced significant structural changes concerning
APO protein. On the other hand, the mutated complexes (G60V,
G60D, and D38H) showed decreased RMSF values compared to the
wild-type HRAS complex, indicating higher stability and less
conformational changes, which are shown in Figure 8. The
residues that exhibited high RMSF values in the mutated models
were similar to those in the wild-type HRAS complex, including
ILE46 and ASP47, but with lower fluctuations.

Notably, the residues ASN26 and ASP33 of the mutated
complexes showed higher RMSF values than the wild-typw
HRAS complex, indicating more fluctuations and conformational
changes. These residues also showed significant structural changes
during the simulation time, which may affect the stability and
binding affinity of the mutated HRAS complex with ligands. The
RMSF plot indicated that the mutated HRAS complexes were more
stable than the wild-type complex, as evidenced by the lower RMSF
values. However, some residues still experienced fluctuations and
conformational changes, which could affect the stability and
functionality of the protein-ligand complex.

The RMSF analysis provides information about the flexibility
and fluctuation of each residue in the protein structure. The RMSF
analysis revealed that the fluctuations occurred at the residual level,
leading to the s system stability. The RMSF values showed changes
occurring in regions other than the active site, which resulted in
relatively more significant fluctuations. The loops in the protein
structure are flexible regions, and upon ligand binding during MD
simulations, they start changing their configuration at different
intervals. The fluctuations in the loops and other flexible regions

can be observed in the RMSF analysis. It can provide valuable
information about the changes in the protein structure that occur
during the simulation.

The radius of gyration measures the compactness of the protein
structure (Ahmed et al., 2020). It provides information about the
average distance of all the atoms in the protein structure from the
centre of mass. In this study, the radius of gyration analysis showed
that the protein structure remained stable throughout the simulation
time intervals. Although the radius of gyration values did not show
any significant difference among all the proteins, it still provided
helpful information about the compactness of the protein structure.
The RMSF and radius of gyration analyses offered valuable
information about the stability and structural changes in the
protein-ligand complex during the MD simulations as mentioned
in Figure 9. These analyses can be helpful in understanding the
dynamic behaviour of the protein-ligand complex and provide
insights into the binding mechanism of the ligand to the protein
target.

The beta (B)-factor, also known as the temperature factor,
measures a protein’s thermal stability and flexibility as per earlier
researcher (Mao et al., 2020). It is calculated from the atomic
displacement parameters obtained from X-ray crystallography
experiments. The B-factor reflects a protein’s atomic vibrations
and thermal motion, with higher values indicating greater
mobility and lower stability (Wang W et al., 2022). The B-factor
is often used to identify regions of a protein that are flexible or
disordered (Vander Meersche et al., 2021). The root-mean-square
fluctuation (RMSF) is another measure of a protein’s thermal
stability and flexibility, based on the atomic changes of a protein
over time (Khan et al., 2021). It indicates the amount of localized
atomic fluctuations in a protein, which contribute to its overall
vibration movement and thermal stability.

The study used the B-factor and RMSF to investigate the thermal
stability and flexibility of different HRASmodels, including the APO
(no ligand bound), wild-type, and mutant (G60V, G60D, and
D38H) HRAS models. The average B-factor values were

FIGURE 8
Conformational changes in structure that occurred in the
docked protein complex at different time intervals.

FIGURE 9
The protein Structure’s Stability throughout Simulation Time
Interval.
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determined for each model, and the RMSF results were compared
with the B-factor data. The results showed that the average B-factor
values were highest for the G60D and wild-type HRAS models,
indicating that these proteins had greater mobility and lower
stability as mentioned in Figure 10. The lowest B-factor value
was observed for the apo HRAS model, suggesting that this
protein was the most stable. The G60V and D38H HRAS models
had intermediate B-factor values, indicating moderate thermal
instability.

The RMSF results also showed that the thermal instability was
higher at specific residues in the different HRAS models. These
results were consistent with the B-factor data, as shown in Figure 11.
In particular, residues 7, 13, 27, 38, and 50 had higher RMSF and
B-factor values, indicating that these residues were more flexible and
less stable in all the HRAS models. The study suggests that the
B-factor and RMSF analyses can provide valuable insights into
proteins’ thermal stability and flexibility. The results can be used
to identify protein regions that are likely to be flexible or disordered,
which could be important for understanding protein structure and
function and drug design and development.

Hydrogen bonds are weak interactions between a hydrogen
atom bonded to an electronegative atom (such as oxygen or
nitrogen) and another electronegative atom in a nearby molecule
(Karas et al., 2020). In biological systems, hydrogen bonds play a
crucial role in determining the specificity and directionality of
molecular recognition between molecules such as proteins,
nucleic acids, and carbohydrates (Vladilo and Hassanali, 2018).
In the study, the number of hydrogen bonds in the APO protein
and all four HRAS complexes (including the G60V, G60D, and
D38H mutants) were analyzed over time. The average number of
hydrogen bonds was recorded for each system, and the results were
presented in a time-dependent manner. The goal was to test the
degree of intermolecular association across the simulation period
and to investigate the effect of mutations on hydrogen bonding in
the active site of the HRAS protein.

The results showed that the average number of hydrogen bonds
was highest for the D38H mutant (138.9) and lowest for the G60V
mutant (127.5), with the APO protein (133.6) and G60D mutant
(136) having intermediate values. This suggests that the mutations
can affect the number of hydrogen bonds formed within the active
site of the HRAS protein. The hydrogen bond analysis also revealed
that the number of hydrogen bonds decreased upon the D38H
mutation and increased significantly upon the G60V, G60D, and
D38H mutations. This suggests that the modifications can affect the
hydrogen bonding patterns within the active site of the HRAS
protein and potentially alter its structure and function. Figure 11
visually represents the number of hydrogen bonds formed in all
three complexes over time. The data in the figure shows that the
number of hydrogen bonds fluctuates over time, indicating that the
interactions between the molecules are dynamic and can change
with time. The analysis of hydrogen bonding patterns in the HRAS
protein provides valuable insights into the molecular recognition
and specificity of the protein. The results suggest that mutations can
significantly affect the number of hydrogen bonds formed in the
protein’s active site, which could impact its function and potentially
lead to disease.

3.12 MM-GBSA analysis

In molecular docking and drug design studies, it is essential
to estimate a ligand’s binding affinity to its target protein. One
commonly used method for calculating binding energies is the
molecular mechanics/generalized born surface area (MM-
GBSA) approach (Pang et al., 2021). This method combines
molecular mechanics force fields with implicit solvent models
and can provide estimates of the relative binding free energies of
different ligands to a target protein. In the study mentioned, the
MM-GBSA approach was used to calculate the binding energies
of the G60V, G60D, and D38H mutants and the normal HRAS
protein. The results showed that all four systems had highly
favourable binding energies, with the mutants having the

FIGURE 10
The beta (B)-factor, also known as the temperature factor,
measures the thermal stability and flexibility of a protein.

FIGURE 11
Presenting the number of hydrogen bonds of all three complexes
with the time interval of 100 ns.
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highest. The table presented in the study (Table 3) showed that
the binding energies for the G60V, G60D, and D38H mutants
were −107.09, −109.42, and −107.18 kcal/mol, respectively. The
Wild-type HRAS protein had a binding energy
of −105.85 kcal/mol.

In addition to examining the RMSDvalues, this study delved deeper
into the binding energies of the protein-ligand complexes by
scrutinizing their components. This comprehensive analysis
facilitated a meticulous investigation of the specific interactions that
play a role in determining the overall binding affinity, including van der
Waals forces, electrostatic interactions, and hydrogen bonding. The
outcomes of this investigation furnished valuable insights into the
fundamental nature of the protein-ligand interactions, unravelling
the intricacies of the underlying mechanisms that govern the
binding affinity of these complexes. These findings have far-reaching
implications for developing novel therapeutics targeting HRAS and
allied proteins. An enhanced understanding of the binding energies can
optimize drug efficacy and specificity and pave the way for developing
more potent and targeted treatments. The results showed that the
favourable Van der Waals and Coulombic interactions were the main
contributors to the high binding energies in all four systems. Van der
Waals interactions are attractive forces between atoms and molecules
nearby, while Coulombic interactions are electrostatic forces between
charged particles. The study also noted that Coulombic interactions
reduced the binding affinity of some ligands towards the active site
residues. This is because electrostatic repulsion between negatively
charged ligands and negatively charged residues in the active site
can decrease the strength of the binding. MM-GBSA calculations
performed in this study provided insights into the binding energies
and components of the G60V, G60D, and D38Hmutants, as well as the
normal HRAS protein.

Table 3 illustrates the prime MM-GBSA calculations for the
G60V, G60D, and D38H mutants and the normal HRAS protein.
The results exhibit various constituents of the binding energies,
comprising Coulomb solute, Coulomb solvent, VDW (van der
Waals) solute, VDW solvent, ΔG (change in Gibbs free energy)
binding, and Solvent GB (Generalized Born) energy. Coulomb
solute and Coulomb solvent indicate the electrostatic interaction
energies between the protein and solvent molecule. In contrast,
VDW solute and VDW solvent imply the van der Waals interaction
energies between the protein and solvent molecules. ΔG binding
represents the overall binding energy of the protein-ligand complex,
which shows the free energy change upon binding the ligand to the
protein. Solvent GB energy reflects the energy contribution from the
solvent Generalized Born model.

The outcomes manifest that all four systems exhibit highly
favourable binding energies, with the mutants displaying slightly
higher binding energies than the normal HRAS protein. This

suggests the mutations could intensify ligands’ binding to the
protein’s active site. The Coulomb solute and Coulomb solvent
energies were identified to be the highest in all four systems,
indicating that electrostatic interactions play a significant role in
the binding of ligands to the protein. The VDW solute and VDW
solvent energies were also substantial, with the VDW solvent energy
being the highest for the normal HRAS protein. This suggests that the
solvent molecules have a part in stabilizing the protein-ligand
complex. Regarding the particular mutants, the G60D mutant was
observed to have the highest Coulomb solvent energy, while the D38H
mutant had the lowest Coulomb solute and VDW solute energies.
This implies that the mutations may affect the electrostatic and van
der Waals interactions between the protein and solvent molecules,
potentially influencing the binding of ligands to the active site.

The ΔG binding free energies of all the systems, including the wild-
typesystem, were determined to be quite favourable, ranging
from −4,902.33 to −5,068.6 kcal/mol, indicating that the binding of
ligands to the HRAS protein is energetically stable. The favourable
binding energies were due to the highly favourable Coulombic and Van
der Waals interactions between the ligands and the protein. The
Coulombic interactions between the ligands and the protein were
more favourable in all the systems, resulting in lower binding
energies. The electrostatic solvation energy of Generalized Born was
compensated by the Coulombic interactions, which were less favourable.
This suggests that the Coulombic interactions play a significant role in
ligand binding towards the active site residues in the HRAS protein.

All four complexes displayed a clear pattern, which was
considerably similar, indicating that the mutations did not
significantly affect the binding energy. This observation is
intriguing and prompts further investigation into the
conformational characteristics of the systems, i.e., the interaction
between the ligands and the receptor. The molecular docking and
dynamics results may explain the in vitro findings logically. Overall,
the MM-GBSA calculations provide valuable insights into the
thermodynamic stability of the ligand-protein complex, which is
crucial for understanding the binding affinity and specificity of the
ligand towards the protein. The favourable binding energies and
strong Coulombic interactions observed in this study suggest that
the ligands are likely to bind tightly to the active site residues of the
HRAS protein, which may have implications for the design of novel
HRAS inhibitors with improved efficacy and specificity.

3.13 3D modeling and structural analysis of
HRAS protein

The study aimed to investigate the impact of mutations on the
structure and stability of the HRAS protein. To achieve this, the native

TABLE 3 Summary of the calculated binding free energies utilizing the MM/GBSA algorithm.

Protein complex Coulomb solute Coulomb solvent VDW solute VDW_Solvent ΔG binding Solvent GB

G60V −4,908.6 −637.9 −299.437 −448.99198 −5,067.99 −633.999

G60D −4,909.7 −685.6 −298.622 −86.0249567 −5,068.6 −683.333

D38H −4,723.4 −620.7 −296.619 −80.1992073 −4,882.6 −620.903

HRAS-Normal −4,758.06 −681.1 −144.27 −383.163312 −4,902.33 −678.231
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structure of the HRAS protein was obtained from the Protein Data Bank
(PDB), and homology modeling approaches were used to predict the
mutated structure of the protein. The mutations were identified using
various Single Nucleotide Polymorphism (SNP) databases, including
rs730880460 (G60V), rs730880460 (G60D), rs730880464 (R123P),
rs750680771 (D38H), rs1564789700 (I46T), rs917210997 (G117R),
rs369106578 (R123G), rs1204223913 (P11OL), rs727504747 (A59L),
rs104894228 (G13R), and rs1564789552 (Y64H). The PyMOL software
was utilized to generate the mutated models of HRAS.

The energy minimization process was carried out using
Schrödinger, a method that minimizes the energy and force load
applied upon every atom in a gathering of atoms to obtain the best
thermodynamically stable HRAS structure. The final and stable model
of the HRAS protein was obtained after energy minimization, and the
energy value was reported to be −17,755 kJ/mol, significantly lower
than the initial energy value of −107916 kJ/mol. This indicates that the
energy minimization process significantly improved the stability of the
protein structure. The results of this study suggest that mutations can
dramatically alter the structure and stability of the HRAS protein. The
homology modelling approach successfully predicted the mutated
models of the protein, and the energy minimization process further
improved the stability of the predicted structures. The energy
minimization process revealed a remarkable reduction in the energy
value of the predicted protein structures. This significant decrease in
energy strongly suggests that the systems are thermodynamically stable
and likely to represent the native conformation of the protein. The
observed reduction in energy value serves as a reliable indicator of the
stability and accuracy of the predicted structures, bolstering confidence
in the findings of this study.

The study is significant in providing insights into the impact of
mutations on the stability of the HRAS protein. The mutated models
generated in this study can be used for further studies to understand
the effect of mutations on protein function and interactions. Overall,
the results of this study provide a foundation for developing new
HRAS inhibitors that can target the mutated forms of the protein
with improved efficacy and specificity.

3.13.1 Residue substitutions and HRAS protein
function

In the case of R123P, substituting R with P at position 123 may
result in a significant loss of interaction due to the marked disparity
in size and hydrophobicity between the wild type and mutant
residues. The smaller size of the mutant residue may significantly
impede the protein’s interactions with other molecules. In D38H,
the mutation of D to H at position 38 can potentially disturb the
protein’s interaction with other parts of the protein. The loss of the
charge of the wild type residue due to this mutation may
significantly impact the protein’s functionality. In I46T,
substituting I with T at position 46 can cause the core region of
the protein to lose its hydrophobic interactions. This is because the
mutant residue is, more minor, but more hydrophobic than thewild-
type residue. In G117R, the mutation of G to R at position 117 could
result in a protein folding problem. Introducing a charge in a buried
region of the protein due to the mutant residue, which is normally
flexible, may disrupt the local structure of the protein. In R123G, the
mutation of R to G at position 123 could cause the protein to lose its
ability to interact with other molecules due to the charge difference
amongmutant and wild-type res and. In G60V, substituting P with L

at position 110 can result in the loss of external interactions with
other proteins in a pathway due to the difference in size between the
mutant and wild-type residues. The native residue is embedded in
the core region, which may make it difficult for the more
considerable mutant residue to fit. In A59L, the mutation of A to
L at position 59 can potentially cause the mutant residue, which is
larger than the wild-type residue, to not fit in the protein’s core
region. This could result in a loss of external interactions. In G13R,
substituting G with R at position 13 may significantly impede the
protein’s interaction with other molecules. Introducing a charge due
to the mutant residue may cause a repelling effect between the
mutant and adjacent residues, which are typically found on the
protein’s surface. In Y64H, converting Y to H at position 64 may
result in a loss of external interactions at this point has potential
result in the loss of hydrophobic interactions with other molecules.

4 Discussion

Single nucleotide polymorphisms (SNPs) are a type of genetic
variation in the human genome that can result in amino acid
substitutions, leading to alterations in protein structure and
function (Stalin et al., 2022). Non-synonymous SNPs (nsSNPs)
result in an amino acid substitution, and they have been
implicated in many genetic disorders. Therefore, it is essential to
understand the functional impact of nsSNPs on protein structure and
function. Bioinformatics approaches have become an essential tool for
predicting the practical impact of nsSNPs (Yazar and Özbek, 2021).
These approaches can be broadly classified into two categories: in
silico and experimental. Experimental approaches involve biochemical
and biophysical techniques, such as X-ray crystallography, NMR
spectroscopy, and site-directed mutagenesis, to directly measure
the functional impact of nsSNPs. However, these methods are
time-consuming, expensive, and require specialized expertise. In
contrast, in silico approaches use computational methods to
predict the functional impact of nsSNPs, making them a faster and
more cost-effective way to screen for potentially deleterious variants.

SIFT (Sorting Intolerant from Tolerant) and PolyPhen-2
(Polymorphism Phenotyping v2) are widely used in silico tools for
predicting the functional effects of nsSNPs. SIFT uses a sequence
homology-based approach to predict the impact of an amino acid
substitution on protein function. It compares the protein sequence of
interest to a database of related protein sequences and determines the
degree of conservation of the substituted amino acid. If the amino acid
is highly conserved, it is predicted to be intolerant to substitution, and
the variant is classified as damaging. PolyPhen-2, conversely, uses a
combination of sequence- and structure-based approaches to predict
the impact of amino acid substitutions on protein structure and
function. It considers factors such as the physicochemical properties
of the substituted amino acid, the local protein structure, and the
conservation of the substituted amino acid across different species.
Variants are classified as damaging if they are predicted to affect protein
function, stability, or interaction with other molecules. Both SIFT and
PolyPhen-2 have been shown to have high accuracy in predicting the
functional impact of nsSNPs. However, they use different algorithms
and approaches, which can lead to differences in their predictions.
Therefore, it is recommended to use both tools to increase the accuracy
of predictions. In addition, other tools, such as PROVEAN, MutPred,
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andMutPred-LOF, are also available and can be used in combination to
improve the accuracy of predictions.

Other tools, such as SNP&GO, P-Mut, Phd SNP, and ROVEAN,
have also been developed to predict the functional effects of nsSNPs.
These tools use different algorithms and approaches to predict the
impact of nsSNPs on protein structure and function. They can
provide complementary information to other tools. In recent
research, a comprehensive analysis of nsSNPs in the HRAS gene
was performed using various in silico tools to identify potentially
deleterious SNPs that may be associated with the disease. After
searching the SNP databases, 50 hits were found, and the mutants’
rsIDs were submitted to SIFT and PolyPhen-2 for functional
analysis. Of the 50 SNPs, 24 were found to be non-tolerable by
SIFT, and 28 were predicted to be possible or probably damaging by
PolyPhen-2. The results were then validated using other tools, and
11 SNPs were identified as deleterious by all of the tools. The impact
of these deleterious SNPs on protein structure was analyzed using
software such as PyMOL and SNP effect. In conclusion, in silico
approaches and tools have become powerful tools for identifying
and characterizing the functional effects of nsSNPs and predicting
their potential association with various diseases. While no single tool
can accurately predict the practical effects of nsSNPs, a combination
of tools can provide more accurate and reliable predictions.
Moreover, detailed analysis of the impact of deleterious SNPs on
protein structure and function can provide important insights into
the development of genetic disorders and may lead to the
development of novel therapeutic approaches.

Bioinformatics is an essential tool for analysing genetic
variations, including non-synonymous single nucleotide
polymorphisms (nsSNPs) (Wang et al., 2020). In-silico
approaches have been developed to predict the functional impact
of nsSNPs on protein structure and function and to distinguish
between neutral and deleterious variants. One of the widely used
approaches for predicting the deleterious effect of nsSNPs is SIFT
which predicts whether an amino acid substitution is likely to affect
protein function based on sequence conservation. Another approach
is PolyPhen (Polymorphism Phenotyping), which is a tool for
predicting the functional effect of amino acid substitutions on
protein structure and function (Seifi and Walter, 2018). It uses
both sequence-based and structure-based features to predict the
impact of a variant on protein function. In addition, machine
learning-based methods such as Random Forest and Support
Vector Machines (SVM) have also been developed to classify
nsSNPs as deleterious or neutral (Ge et al., 2021). These methods
use a combination of sequence, structural and evolutionary features
to predict the functional impact of nsSNPs.

In a recent study by Behairy et al. (2022), various SNPs of the
HRAS gene were assessed to identify those potentially deleterious and
associatedwith disease development using computational approaches.
We searched for nsSNPs against HRAS in SNP databases and found
138 hits. The rsIDs of these mutants were submitted to two widely
used computational tools, SIFT and PolyPhen2, to determine the
functional effects of the nsSNPs. SIFT identified 15nsSNPs as non-
tolerable, while PolyPhen2 showed 23 nsSNPs as possible and
probably damaging. To validate the results, the authors submitted
the rsIDs of the 23 nsSNPs to several other tools, including SNP&GO,
P-Mut, Phd SNP, and ROVEAN. Among these, 10 SNPs, with rsIDs
of rs730880460, rs730880460, rs730880464, rs750680771,

rs1564789700, rs917210997, rs369106578, rs1204223913,
rs727504747, rs104894228, and rs1564789552, were identified as
deleterious by all the tools. The authors highlighted that the
association of these damaging nsSNPs with disease development
has not been reported in any other study yet. Therefore, further
research is required to validate the functional significance of these
nsSNPs in HRAS and their association with disease development.

The authors emphasized that combining multiple algorithms
frequently is a powerful tool for selecting candidate functional
nsSNPs. In a previous study by Falahi et al. (2021), it was
reported that among various Insilico tools, Polyphen 2 and
SNAP show better performance for identifying functional
nsSNPs. Thus, using multiple computational tools and
integrating their results can provide more reliable predictions of
functional nsSNPs, which can aid in understanding the molecular
basis of diseases caused by nsSNPs. Overall, the study by Behairy
et al. (2022), highlights the importance of using computational
approaches to identify potential deleterious nsSNPs in genes and
their association with disease development. The study also
underscores the significance of using multiple computational
tools to validate the functional relevance of nsSNPs and the need
for further research to establish their association with disease
development.

In our study, we utilized SNP effect to assess the impact of
SNPs on the aggregation tendency, amyloid propensity, and
chaperone binding of HRAS protein. The outcomes of SNP
effect revealed that rs1204223913 increases the aggregation
propensity of HRAS protein with a dTANGO score of 547.61,
while rs1564789700 decreases the aggregation propensity with a
dWALTZ score of −106.36. However, we observed that most of the
variations did not affect the molecular phenotype of the protein.
Although these variations may convey some damaging mutation
on HRAS protein, they seem unrelated to the protein’s aggregation
tendency, amyloid propensity, or chaperone binding tendency,
according to the outcomes of the SNP effect. To further investigate
the impact of deleterious nsSNPs on the protein structure of
HRAS, we retrieved the tertiary structure of HRAS from PDB
with PDB id (6MQT). We mapped all 10 deleterious nsSNPs using
PyMOL software. Our findings indicate that these nsSNPs are
located in different regions of the protein structure and may affect
the protein function by altering its stability or interactions with
other molecules.

Several previous studies have also investigated the impact of
nsSNPs on protein structure and function. For instance, a survey by
Taghvaei et al. (2021) utilized in silico tools to predict the effects of
nsSNPs on protein function and reported that these tools aid in
identifying deleterious nsSNPs associated with human diseases.
Additionally, a study by Teng et al. (2009) utilized molecular
dynamics simulations to investigate the impact of nsSNPs on
protein stability and interactions. Our study highlights the
importance of using computational approaches to identify
deleterious nsSNPs and their potential effects on protein
structure and function. Our findings also suggest that combining
multiple in silico tools can provide a more accurate prediction of the
functional impact of nsSNPs on proteins.

Using computational methods, our investigation aimed to detect
harmful single nucleotide polymorphisms (SNPs) in the HRAS gene.
By examining several SNP databases and employing different
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analytical tools, we identified 10 damaging SNPs. Our study is
significant because mutations in HRAS are associated with
various diseases, including cancer. Recognizing potentially
harmful SNPs in HRAS can help us understand the genetic
basis of these diseases and facilitate the development of
personalized treatments. Moreover, using computational
methods to identify functional nsSNPs can considerably
reduce the time and cost required for experimental
validation. Our findings emphasize combining various
algorithms and tools to pinpoint candidate functional
nsSNPs. In conclusion, our research offers a valuable
contribution to the genetics field and can assist in developing
personalized medical interventions.

5 Conclusion

We investigate the potential impact of nsSNPs in the HRAS
gene on the structure and function of the HRAS protein, as well as
their potential contribution to the development of various types
of cancers. Specifically to identify and characterize nsSNPs within
the coding region of HRAS that can cause detrimental mutations,
disrupt normal protein function, and activate oncogenic signaling
pathways. To decrease expenses and enhance the efficiency of
genetic association studies, We applied in silico approaches,
including SIFT analysis, PolyPhen2 scores, and TI scores, to
predict the potential impact of rare genetic variants on HRAS
protein function, and identified 50 nsSNPs in total, of which
23 were located in the exon region of the HRAS gene and were
likely to be deleterious. Among these 23 nsSNPs, 10 had the most
destructive impacts, including G60V, G60D, R123P, D38H, I46T,
G115R, R123G, P11OL, A59L, and G13R, with DDG values
ranging from −3.21 to 0.87 kcal/mol. We conducted molecular
dynamics (MD) simulations to analyze the stability, flexibility,
and compaction of the HRAS protein to investigate the
consequences of specific non-synonymous single nucleotide
polymorphisms (nsSNPs). Our predicted results indicated that
the stable model of HRAS had a significantly lower energy value
than the initial model, suggesting that these nsSNPs may alter the
stability of the protein. Furthermore, we analyzed the binding
energies of both the wild-type and mutant HRAS protein with
docked complexes to understand the potential impact of these
mutations on the activation of oncogenic signalling pathways.
Our findings indicated that the G60V, G60D, and D38H mutants
had higher binding energies than the wild-type HRAS protein,
potentially leading to the activation of oncogenic signalling
pathways and contributing to the development of various types

of cancers. Our systematic study analysis provides essential
insights into the potential functional role of nsSNPs in the
HRAS gene in cancer development. It could inform future
studies aimed at developing targeted therapies for cancer
treatment.
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