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Editorial on the Research Topic
Supramolecular cancer therapeutic biomaterials

Cancer poses a serious threat to human health (Helmink et al., 2019). In the field of
cancer treatment, the commonly used methods include surgery, chemotherapy, and
radiotherapy. However, these methods have application limitations, which can prevent
the tumor treatment from having the desired results. (Haumann et al., 2020; Dai et al., 2021).
Under this context, supramolecular therapeutic materials have been developed and have
shown high application value in the early diagnosis and treatment of tumors. Therefore, they
have attracted attention in scientific research and clinical treatment (Cui and Xu, 2017; Goor
et al., 2017; Guo et al., 2020; Cheng et al., 2021; Wang et al., 2022a). In modern cancer
therapy, almost all drugs interact with their receptors via supramolecular characteristics.
(Feng et al., 2017; Wang et al., 2023). Supramolecular chemistry gets inspiration from the
living system and combines with modern medicine to “feed back” into the living system,
giving rise to supramolecular cancer therapeutic biomaterials (Liu et al., 2017; Rajora et al.,
2017; Rui et al., 2017; Sato et al., 2018; Chang et al., 2019; Yan et al., 2019; Ding et al., 2021;
Tian et al., 2021; Lu et al., 2022a; Ding et al., 2022). Supramolecular cancer therapeutic
biomaterials are an interdisciplinary field that focuses on the use of supramolecular
chemistry to improve medicine by means of molecular recognition and assembly.
(Brown and Anseth, 2017; Webber and Langer, 2017; Zhang et al., 2017; Zhang et al.,
2021; Lu et al., 2022b). In particular, the advent of supramolecular cancer therapeutic
biomaterials has provided new means to improve the pharmacokinetics of existing
medications to provide more effective therapies, which is very beneficial for the
treatment of cancer and other related diseases (Acar et al., 2017; Song et al., 2017; Zhu
et al., 2018; Wang et al., 2022b; Guan et al., 2022). This paper focuses on the research of
supramolecular biomaterials and discusses their design, synthesis, and characterization, in
addition to their value in cancer treatment. This paper reviews the research progress of novel
supramolecular hosts based on biomaterials and their application and efficiency in the field
of cancer treatment.

Host-guest recognition is one well-known type of supramolecular interaction. Based on
this, two supramolecular biomaterials (CB [7]⊃DOX and CB [7]⊃CPT) were constructed by
Chen et al. After the creation of supramolecular biomaterials, the stability of DOX and CPT
was significantly enhanced, while the chemotherapeutic drugs’ anticancer activities were
maintained.
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In addition to the cucurbit [7]uril-based host-guest interaction,
Zhang et al. developed a class of high-performance nanodrugs based
on supramolecular strategy and tested their performance. Through
the CB [8] complex to deliver targeted drugs, they developed a class
of PSMA-targeted supramolecular nanoparticles, in which
doxorubicin (DOX) was encapsulated. The experimental study
found that the level of DOX uptake by cells and the therapeutic
effect had greatly improved.

Another type of supramolecular interaction is π-π stacking. By
combining π-π stacking and pillar [5]arene-based interaction,
Zhong et al. constructed luminescent biomaterials from a
thiophene-based α-cyanostyrene-derivative (TPPA). It was found
that TPPA can form nanoparticles in DMSO based on its self-
assembly mode and will emit strong fluorescence during this
process. However, after increasing the water ratio, the
fluorescence intensity and the red shift somewhat decreased, and
the self-assembly morphology also changed significantly and turned
into fiber. When P5 and TPPA are combined to form a host-guest
complex during the experiment, a white light will be released, which
can be applied in cancer cell imaging.

Designing and synthesizing new macrocyclic molecules is very
important for enhancing supramolecular cancer therapeutic
biomaterials. In view of this, Wu et al. developed a TPE-based
tetracationic cyclopropane. The experimental results show that this
material can capture intracellular NADPH, improve the antioxidant
capacity of cancer cells, and reduce ROS toxicity in cancer cells.
When the concentration of GSH in cells decreases, this substance
can act as a GSH response fluorescence switch, thus improving
image quality and displaying cells clearly.

Modification of nanomaterials through supramolecular
interactions is an important way to prepare supramolecular
biomaterials. Lv et al. have highlighted the strategies for treating
myocardial infarction (MI) using supramolecular biomaterials.
These strategies include cardiac targeting drug delivery, an
antiapoptosis strategy, and supramolecular biomaterials-mediated
stem cell therapy. In addition, supramolecular biomaterials-based
diagnosis strategies for MI were presented in terms of
supramolecular biomaterials-based immunoassays. In short, this
material indicates broad application prospects in the diagnosis
and treatment of myocardial infarction, although there are still
many problems to be solved. This should serve as the basis for
the development of a more effective myocardial infarction treatment
technology.

Mesoporous silicon nanomaterials can have their
biodegradability greatly improved through supramolecular
modification. In view of this, Duan et al. prepared a lymphatic
targeting imaging agent called ICG@HMONs-HA, based on an
indocyanine green-mesoporous silicon system. ICG@HMONs-
HA can target lymph vessels and exhibits a long residence time,
which is extremely beneficial for this kind of fluorescence imaging
and the clinical translation of nanomaterial-based tracers.

Supramolecular polymers are excellent precursors for
producing supramolecular biomaterials. Waterborne
polyurethane is widely used in the preparation of
supramolecular hydrogels, which can be used as an ideal
additive to improve the mechanical properties of supramolecular
hydrogels. Shen et al. introduced a large amount of waterborne
polyurethane during experimental research and prepared an
acrylamide supramolecular hydrogel under specific reaction
conditions. The detection results showed that the viscosity of
this gel reached a very high level. This is mainly because the
polyurethane emulsion can form strong chemical crosslinks and
produce strong interactions in polyurethane microregions. Using
this method lowers the cost of crosslinked hydrogel, and the
operation is convenient, so it has wide application prospects in
the preparation of supramolecular biomaterials.

In conclusion, we greatly appreciate the efforts, insights, and
visions of all contributors to the field of supramolecular cancer
therapeutic biomaterials and hope that this Research Topic will
provide perspective on using supramolecular chemistry to solve
specific biomedical problems and will encourage further research in
this field.
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