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Plasmonic Au–Cu nanostructures composed of Au and Cu metals, have
demonstrated advantages over their monolithic counterparts, which have
recently attracted considerable attention. Au–Cu nanostructures are currently
used in various research fields, including catalysis, light harvesting,
optoelectronics, and biotechnologies. Herein, recent developments in Au–Cu
nanostructures are summarized. The development of three types of Au–Cu
nanostructures is reviewed, including alloys, core-shell structures, and Janus
structures. Afterwards, we discuss the peculiar plasmonic properties of Au–Cu
nanostructures as well as their potential applications. The excellent properties of
Au–Cu nanostructures enable applications in catalysis, plasmon-enhanced
spectroscopy, photothermal conversion and therapy. Lastly, we present our
thoughts on the current status and future prospects of the Au–Cu
nanostructures research field. This review is intended to contribute to the
development of fabrication strategies and applications relating to Au–Cu
nanostructures.
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1 Introduction

Because of the synergetic interaction between the two different types of metals, bimetallic
nanostructures exhibit deeply interesting optical and electric properties, which have wide
applications in plasmonic and catalytic fields (Gilroy et al., 2016; Cortes et al., 2020;
Skrabalak, 2021). It has been possible to prepare a variety of bimetallic nanostructures
by using several different methods (Feng et al., 2012; Lee et al., 2014; Zheng et al., 2020; Zhou
L. et al., 2021; Zhou M. et al., 2021; Feng et al., 2021; Jiang et al., 2021; Skrabalak, 2021; Yang
et al., 2021; Lee et al., 2022). Cu and Au nanostructures are excellent materials for
applications in catalysis and plasmonic (Zhang et al., 2019; Mi et al., 2021a; Xin et al.,
2021; Zhang B. et al., 2022; Lin et al., 2022). Cu nanostructures, which are valuable plasmonic
materials in the visible to near-infrared region, have contributed to the development of
applications in photonics, sensing, heterogeneous catalysts and imaging (Gawande et al.,
2016; Lee D. W. et al., 2021; Medvedeva et al., 2021). However, the Cu nanostructure has a
strong tendency to oxidize upon exposure to air (Fan et al., 2021). For example, Au
nanostructures show tunable optical properties by changing size and shape, which has stable
chemical properties and strong photothermal and electromagnetic field enhancements (Hao
et al., 2007; Zheng et al., 2021; Zare et al., 2022). Moreover, Au nanostructures can be applied
in biosensing, drug delivery, and catalysis. The Au–Cu nanostructure is a novel bimetallic
system that has potential applications in photothermal therapy, multimodal imaging, and
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heterogeneous catalysis fields by combining the advantages of Cu
and Au nanostructures with tunable metallic composition and shape
(Tong et al., 2019; Abbasi et al., 2020; Li et al., 2021; Cao et al., 2022).

This review aims to present and discuss recent advances in
colloidal synthesis of controlled-shape Au–Cu bimetallic
nanostructures and their emerging applications in photothermal
therapy, catalysis, and plasmon-enhanced spectroscopy, among
others. We will start with the introduction of Au–Cu
nanostructures of various types. The unique plasmonic properties
of the Au–Cu nanostructures can then be discussed. The three
different kinds and the corresponding applications of the Au–Cu
nanostructures will be presented in detail. Finally, our view of the
current state of perspective and development of this research field
will be presented.

2 Synthesis of Au–Cu nanostructures

In the past few decades, Au–Cu nanostructures have witnessed
obvious advances in the colloidal synthesis of well-controlled sizes,
shapes, structures, and compositions. In terms of atomic ordering,
Au–Cu nanostructures can be divided into three major types: alloy,
core-shell and Janus nanostructures (Ferrando et al., 2008; Wang
and Li, 2011). Similar to other bimetallic nanostructures, the crystal
structures, morphology and element distributions of the Au–Cu
nanostructures are determined by the reaction pathways, which

depend on the reaction conditions and synthetic method (Liu and
Liu, 2012; Yu et al., 2014).

2.1 Au–Cu alloy nanostructures

Because Au has similar characteristics to Cu (valence, atomic
radii and crystal structure), the Au–Cu alloy can be easily prepared
(Ferrando et al., 2008). The melting point of Au–Cu alloy
nanostructures is lower than that of their constituent elements,
and Au–Cu alloy melts at a specific temperature (Okamoto et al.,
1987; Thota et al., 2018). Schaak and coworkers reported Au–Cu
alloy nanospheres using a co-reduction method (Motl et al., 2010).
During the preparation process, 1-octadecene, oleic acid, and
oleylamine were chosen as the surfactants and reducing agents. A
series of Au–Cu alloy nanospheres with different Au and Cu ratios
were obtained by adjusting the concentration of the Cu precursor.
As shown in Figure 1A, the uniform size distribution (8 nm) of alloy
nanospheres is shown, indicating a disordered crystal structure.
Au–Cu alloy nanowires have also been synthesized (Mendoza-Cruz
et al., 2016). Alkylamine chains of ODA and glucose acted as
surfactants and reducing agents, which helped the growth of
alloy nanowires (Bazán-Díaz et al., 2018; Chatterjee et al., 2018).
A coiled mode of Au–Cu alloy nanowires was self-assembled as
individual nanowires or in a parallel-ordering manner as a set of
nanowires. As shown in Figure 1B, the Au–Cu alloy nanowires are

FIGURE 1
(A) TEM images of Au–Cu alloy nanospheres (Motl et al., 2010). (B) TEM images of Au–Cu alloy nanowires (Mendoza-Cruz et al., 2016). (C) TEM
images of Au–Cu alloy nanocubes (Liu and Walker, 2010). (D) SEM image of Au–Cu alloy nanopentacles (He et al., 2014).
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ultrathin, with diameters less than 10 nm and variable lengths of a
few microns, presenting twin boundaries and an elevated density of
stacked faults. The co-reduction method has been extended to
obtain some complex geometrical nanostructures, such as Au–Cu
alloy nanocubes (Figure 1C) (Liu andWalker, 2010). DDT also plays
a critical role in controlling the morphology of Au–Cu alloy
nanocubes. In addition, Xu and others reported the synthesis of
Au–Cu alloy nanopentacles by combining two strategies (co-
reduction and seed-mediated) in the aqueous phase route, with
sizes that can be controlled in the 45 nm–200 nm range (Figure 1D)
(He et al., 2014).

2.2 Au–Cu core-shell nanostructures

Bimetallic core–shell nanostructures offer numerous benefits;
for example, the optical property is easily tuned by varying the
morphology, shape, size, and composition of the core, as well as the
thickness, shape, and composition of the shell material. Thus, the
plasmonic property of the bimetallic core-shell nanostructure was
easily regulated (Zhang Y.-J. et al., 2021; Wan et al., 2022). To date,
although many attempts have been made to generate Au–Cu
core–shell nanostructures by epitaxial growth with lattice
mismatch, limited success has been achieved. For example, Tsuji
and coworkers reported Au–Cu core–shell nanocrystals (Tsuji et al.,
2010). The study showed that the Cu shell can epitaxially grow on
the surface of Au nanocrystals, although a large lattice mismatch
existed between Au and Cu for the first time (Figure 2A) (Wang
et al., 2015). However, the Cu shell thickness and shape of the

Au–Cu core–shell nanocrystal were not exactly regulated. Luis and
collaborators reported the formation of Au–Cu core–shell
nanostructures with uniform and various morphologies using Au
nanostructures as templates (Alvarez-Paneque et al., 2012). The
method is based on the reduction of Cu2+ in aqueous solution by
hydrazine at 60°C. In addition, the size of the resulting Au–Cu core-
shell nanostructure was tuned by either the size of the Au core or the
ratio between the Cu and Au molarities (Figure 2B). Au–Cu core-
shell nanostructures (nanocubes and nanooctahedra) with tunable
sizes were synthesized in water by using Au nanooctahedra
(Figure 2C) (Kim et al., 2014). The synthetic conditions were
very simple, and nanoparticle growth was complete in
45–90 min. In their study, HDA not only increased the pH of the
solution but also acted as a coordination ligand for Cu ions,
facilitating controlled Cu shell growth. In addition, Xia’s group
reported Au–Cu core-shell nanocubes, which exhibit a size smaller
than 30 nm (Figure 2D) (Lyu et al., 2019).

2.3 Au–Cu janus nanostructures

The concept of the “Janus structure” was proposed by Pierre-
Gilles de Gennes in 1991 (Gennes, 1992). Janus nanostructures not
only reduce administered dosages but also combine differential
functionalization (Zhang X. et al., 2021; Qiu et al., 2022). In all
these protocols, the challenge for successful fabrication of bimetallic
Janus nanostructures is how to create asymmetric distributions,
where two metals are side-by-side in one particle, while avoiding the
formation of different types of structures (Duan et al., 2021; Peng

FIGURE 2
(A) TEM images of Au nanostructures and Au–Cu core-shell nanostructures (Tsuji et al., 2010). (B) HAADF-STEM images and STEM-EDS elemental
maps of Au–Cu core-shell nanostructures (Alvarez-Paneque et al., 2012). (C) TEM images of the Au–Cu core−shell nanocubes and octahedra with Au
octahedra nanocrystals as seeds (Kim et al., 2014). (D) TEM images and EDX mapping of Au–Cu core–shell nanocubes(Lyu et al., 2019).
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et al., 2021). It is very important to choose an appropriate capping
agent in the shape-controlled synthesis of Au–Cu Janus
nanostructures. The alkylamines and DNA can selectively bind to
Cu, which helps Cu growth on the surface of the Au nanostructure
(Liu and Fichthorn, 2017; Kim et al., 2021). For example, Zhang and
coworkers proposed a general seed-mediated growth method for the
synthesis of Au–Cu Janus nanostructures by HAD and CTAB as
surfactants (Jia et al., 2021). The protocol can be trivially extended to
various shapes of Au nanostructures as cores, such as Au
nanobipyramids, suggesting the generality of the site-selective
overgrowth method (Figures 3A–C). Similarly, our group
designed a new jellyfish-like Au–Cu Janus nanostructure
(Figure 3D) (Mi et al., 2022). A twin defect and stacking fault
were found to exist at the twinned Au nanotips, which led to Cu
atoms being deposited on the twinned nanotip. In addition, Deng’s
group developed width-adjustable Au–Cu Janus nanostructures by
fish spermDNA (Figure 3E) (Zhu et al., 2020). The strategy relied on
the non-specific surface adsorption of fish sperm DNA onto an Au
nanoparticle to control heterogeneous Cu nucleation, which had
low-cost and natural advantages. Such a process provided a chance
to regulate the contact area between the Au nanoparticle and Cu
nanodomains in the bimetallic nanostructure. Recently, the
interfacial energy between Au nanostructures and Cu
nanodomains was continuously regulated by strong thiol ligands,
which induced a transition from Au–Cu core-shell nanostructures
to Janus nanostructures (Fan et al., 2022). According to a series of
effective ligand controls, Au–Cu Janus nanostructures were
successfully prepared using different shapes of Au nanostructures
as seeds. Crucially, the Janus degree of Au–Cu Janus nanostructures
can be readily tuned by changing the molecular structure and the
concentration of the thiol ligands (Figure 3F).

3 Optical properties

Electrons in the conduction band of metallic nanostructures
collectively oscillate under radiation from an external optical field.
When the oscillation frequency of metallic nanostructures matches
that of the light source, localized surface plasmon resonance (LSPR)
occurs (Barnes et al., 2003; Ozbay, 2006). The frequency of LSPR is
relevant to the morphology, size and composition of the metallic
nanostructure and to the dielectric constant of the medium (Klar
et al., 1998). For Au–Cu nanostructures, the wavelength and line
shape of LSPR depends not only on their morphology and size but
also on the Au and Cu elemental distribution (Mi et al., 2021a).
Typically, this leads to a broadening of the LSPR and a well-defined
redshift when the Cu content of the Au–Cu alloy nanosphere
increases, as shown in Figure 4A. For example, the Au–Cu alloy
nanospheres showed a single LSPR peak in the visible region. A clear
redshift of the LSPR peak from 523 nm to 545 nm was observed
when the Cu content was increased from 0% to 48% (Kim et al.,
2014). A similar result was reported by Nicula and collaborators
(Lungulescu et al., 2021). The LSPR absorption bands of Au–Cu
core-shell nanocubes have been precisely controlled from 586 nm to
614 nm with changing edge lengths (Hsia et al., 2016). Compared
with sphere counterparts, anisotropic Au–Cu nanostructures not
only provide abundant LSPR modes but also focus more light to the
nanogap and tip (Kneipp et al., 1997). For example, Au–Cu
nanorods (NRs) displayed two modes of LSPR, which
corresponded to the electron oscillations perpendicular and along
the NR (Liebsch, 1993; Zheng et al., 2021). Hence, the longitudinal
LSPR mode of Au–Cu NRs can be continuously shifted from the
visible to the near-infrared (NIR) region by changing the aspect ratio
of Au–Cu NRs (Ye et al., 2013; Luo et al., 2016; Mi et al., 2021b). For

FIGURE 3
(A–C)Characterization of Au nanobipyramids and Au nanobipyramids–Cu nanostructures (Jia et al., 2021). (A) TEM image of Au nanobipyramids. (B)
TEM image of Au nanobipyramids–Cu nanostructures. (C) Elemental maps and HAADF-STEM image of the Au NBP–Cu heterostructure. (D) HAADF-
STEM image and SEM image of Au–Cu Janus nanojellyfish (Mi et al., 2022). (E) TEM images of Au–Cu heterodimers (Zhu et al., 2020). (F) Schematic
illustrating the synthesis of Au–Cu Janus nanostructures (Fan et al., 2022).
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instance, the aspect ratio of the Au–Cu core-shell NR was readily
tuned from 2.8 to 13.1 by varying the molar ratio between the AuNR
and the Cu precursor, resulting in a wide range of LSPR wavelengths
from 762 nm to 2201 nm (Figure 4C) (Jeong et al., 2020). The
plasmonic nanostar is composed of several protruding nanotips and
a central core, which usually show multiple LSPR modes
corresponding to the tips and core−tip interactions. For example,
70 nm Au–Cu alloy nanopentacles showed three LSPR peaks
(Figure 4D) (He et al., 2014). Two peaks of higher order modes
were observed at 550 nm and 740 nm, while a major peak of dipolar
mode was found at 1100 nm. Similarly, the LSPR of the 200 nm
Au–Cu alloy nanopentacles showed three different peaks at 530 nm,
810 nm, and 1400 nm (red curve in Figure 4D). Moreover, Au–Cu
nanostructures have been used as templates to design new
multimetallic nanostructures (Chen et al., 2017; Shan et al., 2019;
Dai et al., 2021). Au–Cu–Ag nanostructures had broadband optical
absorption, which can cover the solar spectrum from the visible to
infrared wavelength region by designing the configuration (Figures
4E,F(Lin et al., 2017). It has been found that the local
electromagnetics of these nanostructures are precisely tuned in
Au–Cu–Ag nanostructures.

To investigate the relation between the origin of the LSPRmodes
of Au–Cu nanostructures and their morphological features, single-
particle spectroscopy was used to characterize individual Au–Cu
nanostructures (Slaughter et al., 2011; Hartland and Shang Lo, 2013;
Wang C. et al., 2021). The correlation between the number of arms
of Au–Cu nanostars and scattering properties has been studied
(Velazquez-Salazar et al., 2019). As the number of arms increases
from one to two and three, multiple plasmonic bands appear and
dominate the spectrum in the visible and near-IR regions, in
agreement with previous reports on Au nanostars using plasmon

hybridization theory (Prodan et al., 2003; Hao et al., 2007). In
addition, scattering spectra of single Au–Cu alloy NRs were
observed. It can be demonstrated that asymmetry and minor
structural defects in Au–Cu alloy NRs induce multiple scattering
peaks in a single Au–Cu alloy NR (Thota et al., 2015).

4 Applications

Due to the advantages of Au–Cu plasmonic nanoparticles with
tunable composition and spatial distribution, more plasmonic
modes of Au–Cu plasmonic nanoparticles can be generated (Li
et al., 2010; Toscano et al., 2015; Zhuo et al., 2019). A wide range of
applications have been reported in the fields of plasmon-enhanced
electrocatalysis, surface-enhanced spectroscopy, phototherapy, and
photocatalysis (Chen et al., 2019; Mi et al., 2019; Zhang B. et al.,
2022; Zhang C. et al., 2022; Chen et al., 2022). In the following
sections, different applications of Au–Cu nanostructures are
presented and discussed in detail.

4.1 CO2 reduction

Electrochemical conversion of CO2 into feedstock and value-
added fuels shows a convenient solution to energy demand and
climate change (Nitopi et al., 2019). For this conversion, designing
new catalysts with the capability to reduce CO2 into more valuable
products is one of the challenges (Birdja et al., 2019; Wang et al.,
2022). Although Cu nanoparticles have shown great helpe for CO2

reduction, poor selectivity persists (Lee S. H. et al., 2021). To solve
this problem, the Au–Cu nanostructure has been exploited as a

FIGURE 4
(A) Extinction spectra of Au nanospheres, Au–Cu alloy nanospheres and Cu nanospheres. Dotted lines indicate the LSPR peak of Au (~520 nm) and
Cu (~570 nm) nanostructures (Kim et al., 2014). (B) Extinction spectra of Au–Cu core-shell cubes (Hsia et al., 2016). (C) Extinction spectra of Au–Cu NRs
with different aspect ratios (Jeong et al., 2020). (D) Extinction spectra of Au–Cu alloy nanopentacles with different sizes (He et al., 2014). (E) and (F)
Extinction spectra of Au–Cu–Ag nanostructures (G@CS-1 and CGS-1) with different concentrations of PVP(Lin et al., 2017).
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catalyst (Zhou et al., 2018; Ni et al., 2022). For example, alloying Au
with Cu not only stabilizes Cu but also reduces the overpotential
required for CO2 reduction. In addition to the excess potential, the
selectivity of the catalysts during CO2 reduction must be considered
since multiple couplings between protons and electrons lead to
many possible reaction products (Bagchi et al., 2022). Yang’s group
showed that Au–Cu alloy nanospheres are a highly potential catalyst
for CO2 reduction (Kim et al., 2014). Catalytic activity and selectivity
have been tuned by varying the composition of the Au–Cu alloy
nanostructures. The Faraday efficiencies for hydrogen, ethylene, and
methane increased with increasing Au content in alloy
nanostructures, but the opposite results were obtained for carbon
monoxide. As shown in Figure 5A, turnover rates of 93.1, 83.7, and
40.4 times for CO were obtained by Au3Cu, AuCu, and AuCu3 alloy
nanospheres compared to Cu nanospheres. Au3Cu nanostructures
also showed the best mass activity for CO (Figure 5B).

Additionally, due to tandem electrocatalysis, the Au–Cu Janus
nanostructure provides an efficient conversion to the C2 product
pathway (Jia et al., 2021). The symmetry importance was also shown
by comparing different types of Au–Cu nanostructures, where the
Janus nanostructure exhibited the best selectivity toward C2

products owing to the obvious boundaries between the Au and
Cu nanodomains of the nanostructure. As shown in Figure 5C, the
highest C2 product FEs of the Au nanobipyramide–Cu and Au
nanosphere–Cu Janus nanostructures were 46.4% and 25.2%, which
displayed 4.1-fold and 2.2-fold compared with that of the Cu

nanosphere counterpart, respectively, showing the synergistic
effect of Au and Cu in the Janus nanostructure. Furthermore,
Huang’s group reported that the Au–Cu Janus nanostructure
catalyst exhibited remarkable selectivity toward C2 product
formation (Figure 5D) (Zheng et al., 2022).

4.2 Photothermal applications

For Au–Cu nanostructures, their LSPR peaks can also be tuned
to the NIR region, making them good candidates for biomedical
applications, such as bioimaging, photothermal therapy, and
controlled drug release. As a new field, photothermal conversion
and therapy are attracting extensive attention by using plasmonic
nanostructures under NIR laser illumination (Zhu et al., 2021).
Recently, Au–Cu systems have been explored for photothermal
therapy. For example, mouse tumor cells were injected with
Au–Cu nanopentacles. Then, mouse tumor cells were irradiated
with an NIR laser. The tumor volume in the mice was also
significantly reduced compared to tumor samples injected with
Au–Cu nanoparticles only or irradiated with an 808 nm laser
only. Under 808 nm laser irradiation, robust photothermal
therapy efficiency was obtained by 70 nm Au–Cu nanopentacles.
The relative tumor volume of mice after treatment along with
feeding time is shown in Figure 6A. As seen in the purple and
red segmentation lines, tumors from the groups injected with

FIGURE 5
(A,B) Relative turnover rates and mass activity for CO of the Au–Cu alloy nanostructures (Kim et al., 2014). (C) Plot of faradaic efficiency for C2

products for Au bipyramids, Cu nanospheres, Au–Cu core-shell nanospheres, and Au nanosphere–Cu heterodimers (Jia et al., 2021). (D) Plot of faradaic
efficiency for C2 products for Au–Cu Janus, Au–Cu core-shell and Cu nanoparticles (Zheng et al., 2022).
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Au–Cu nanoparticles only and irradiated with 808 nm laser only
were enlarged in volume and showed some fluctuations. The group
of mice that received both Au–Cu nanopentacle irradiation and
injection were tumor-free 4 days after treatment (Figure 6B). This
work demonstrates that Au–Cu alloy nanostructures have potential
applications in tumor diagnostics and therapeutics (He et al., 2014).
In addition, the Cu–Au nanotripod also exhibited a well-defined
prominent photothermal effect (Nanda et al., 2019). The cell
viability results illustrated that Cu−Au nanotripods were
minimally toxic to the cells. Au–Cu nanostructures also provide
a chirality-dependent method for highly efficient phototherapy
(Wang J. et al., 2020). The Au–Cu–Au heteronanorod (HNR)
was synthesized by virtue of the dipeptide as ligands, which
displayed strong circular dichroism (CD) in the range of
400–1000 nm (Figure 6C). The potential for photothermal and
photodynamic therapy of chiral Au–Cu–Au HNRs was further
investigated in HeLa cells by using confocal microscopy signals
and CCK-8 assays. The Au–Cu–Au HNRs show the highest rate of
cell toxicity (Figure 6D).

Solar steam generation is emerging as a promising technology,
for its potential in harvesting solar energy for various applications
such as desalination and sterilization (Hu et al., 2017; Xu et al.,
2017). The studies has reported a variety of artificial structures that
are designed and fabricated to improve energy conversion
efficiencies by enhancing solar absorption, heat localization, water
supply, and vapor transportation (Zhu et al., 2017). Recently,
Cu−Au core-shell nanostructures showed strong broadband
plasmonic absorption, which was used for solar steam generation
(Wang Y. et al., 2021). The evaporation rate of water and

photothermal efficiency of different plasmonic absorbers are
shown in Figure 6E. The evaporation rates of the Cu2.5−Au1
nanoparticles and Au nanoparticles were 0.92 kg m−2 h−1 and
1.02 kg m−2 h−1 under 1 Sun irradiation for 5 h, respectively.
Furthermore, a very high conversion efficiency of 66% was
achieved by the Cu2.5−Au1 nanoparticles under 1 Sun irradiation
compared to the Au nanoparticle absorber and bulk water. Next, the
durability of Cu2.5−Au1 nanoparticles in a saturated CO2 solution
was tested. Under 1 Sun irradiation, it can be observed that the color
of Cu nanoparticles changed from black to colorless after 6 h (insets
in Figure 6F). The reason is that Cu is easily oxidized. However,
under the same test conditions, Cu2.5−Au1 nanoparticles remained
black in color. Next, the temperature changes of the surface were
tracked during the evaporation of saturated CO2 solutions at 1 solar.
The temperature of the Cu2.5−Au1 nanoparticles remained constant
under continuous illumination, implying excellent stability of the
Cu2.5–Au1 nanoparticles (Figure 6F).

4.3 Plasmon-enhanced spectroscopies

Au–Cu nanostructures show LSPR tunability and larger
enhancement of the near field, which can be applied in a variety
of enhanced spectroscopies (Zhang et al., 2017; Chen et al., 2018;
Cabello et al., 2019; Wang X. et al., 2020). To exploit the surface-
enhanced Raman scattering (SERS) performance of Au–Cu
nanoshells, MB molecules were used as probe molecules (Chuang
et al., 2020). Figure 7A shows that the intensity of the SERS spectra at
1621 cm−1 for the Au–Cu nanoshells was enhanced by 10.3-fold,

FIGURE 6
(A,B)Characterization of mouse tumor growth after treatment (He et al., 2014). (A) Tumor growth curves of different groups of mice after treatment.
(B) Photographs of tumor-bearing mice at 1, 4 and 16 days after Au–Cu nanoparticle injection and irradiation in the 808 nm laser group. (C,D) CD and
photothermal therapy properties of chiral Au–Cu–Au HNRs (Wang J. et al., 2020). (C) CD spectrum for different AuCuAu HNRs. (D) HeLa cell viability
analysis after 808 nm left-circularly polarized, linear polarized and right-circularly polarized light irradiation of HeLa tumor-bearing mice after
injection with L CF Au3.65–Cu3–Au120 HNRs. (E–F) Characterization of photothermal conversion properties and stability of Cu2.5–Au1 core-shell
nanoparticles (Wang Y. et al., 2021). (E) The rates of solar evaporation and solar steam efficiency of Cu2.5–Au1 core-shell nanoparticles, Au nanoparticles,
and bulk water under 1 sun illumination. (F) Time-dependent surface temperature curves of Cu2.5−Au1 nanoparticles placed on a saturated CO2 aqueous
solution and illuminated by 1 sun. Insets in (F) show the photographs of Cu2.5−Au1 nanoparticles and Cu nanoparticles placed on a saturated CO2 solution
with time.
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16.7-fold, 26.78-fold, 2.54-fold, 2.71-fold and 22.58-fold relative to
that for the Au NRs, Ag@PVP nanoparticles, Ag@PVP nanocubes,
Au0.64–Ag0.36@PSMA nanoshells, Au0.53Ag0.47@PSMA nanoshells,
and Au0.39Ag0.61@PSMA nanoshells, respectively. It can be
demonstrated that Au–Cu nanoshells are effective and reliable for
SERS detection, with promising potential applications in visualizing
and sensing living bladder cancer cells in physiological
environments. Kumar-Krishnan and coworkers evaluated the
sensitivity of CV detection of SERS with Au–Cu flower-shaped
nanostructures (Kumar-Krishnan et al., 2020). Figure 7B shows the
SERS spectra of CV molecules with different concentrations (10−6 to
10−10 M) recorded over the particular substrate. In addition, Au–Cu
NRs were designed by Nguyen and coworkers (Van et al., 2022). The
plasmon wavelength of Au–Cu NRs can be tuned by changing the
aspect ratio. The SERS performance of Au1–Cu3 NRs with different
aspect ratios is investigated. As shown in Figure 7C, clearly, the SERS
spectral intensities of NBA increase as the Au–Cu NRs become
longer. The reason was explained by the enhancement of the local
electromagnetic field intensity. Recently, Au–Cu nanostructures
have been employed to enhance the luminescence of Yb3+/Er3+-
doped nanoparticles (Mi et al., 2022). The plasmonic Au–Cu Janus
nanojellyfish showed two LSPR peaks, which coupled the emission
and excitation of the light wavelength of the Yb3+/Er3+-doped
nanoparticles. A 5000-fold enhancement of the emission of Yb3+/
Er3+-doped nanoparticles was achieved (Figure 7D). It is shown

that multiple LSPR modes of Au–Cu Janus nanojellyfish can
exhibit the potential to enhance the emission of upconversion
nanoparticles.

To date, Au–Cu nanostructures have exhibited excellent
enhancement of the near field in a variety of enhanced
spectroscopies. Nevertheless, view from the current study, the
application of Au–Cu nanostructures is just in the early stage
compared with Au and Ag nanostructures. Focusing on the
enhanced spectroscopies of Au–Cu nanostructures, further works
is the construction high-performance Au–Cu nanostructures.

5 Conclusion

In summary, we have presented recent works on Au–Cu
nanostructures. The fabrication strategies of Au–Cu
nanostructures and their applications have been highlighted.
Three types of Au–Cu nanostructures with different shapes and
compositions are prepared by co-reductiont method, capping agent-
directed method, seed-mediated growth method, and other
methods. Au–Cu nanostructures have shown great potential in
plasmon-enhanced spectroscopy, catalysis, and phototherapy
fields. Although many developments have been made regarding
Au–Cu nanostructures, many questions remain. The diversity of
Au–Cu nanostructures is still limited by the structure. The

FIGURE 7
(A) SERS spectra with different shapes of nanostructures for MB (10–4 M) (Chuang et al., 2020). (B) SERS spectra for different concentrations of CV
(10−6 to 10−10 M) (Kumar-Krishnan et al., 2020). (C) SERS spectra with different aspect ratios of Au1Cu3 NRs for NBA (10–5 M). Insets in (C) show extinction
spectra of Au1Cu3 NR samples s (Van et al., 2022). (D) Enhancement factors of emission of Yb3+/Er3+-doped nanoparticles coupled with a Au–Cu Janus
nanostructure (Mi et al., 2022).
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technology for regulating the Au–Cu nanostructure is far from
mature. The detailed growth mechanisms and properties of some
Au–Cu nanostructures are unclear. Moreover, maintaining the long-
term stability of Au–Cu nanostructures is challenging and needs
more exploration. Although several types of Au–Cu Janus
nanostructures have been reported, the uniformity of Au–Cu
Janus requires significant improvement. Considering the
importance of shape control in defining the properties of the
nanocrystals, more unconventional shapes should be developed
for the Au–Cu nanostructure. Doping, alloying, or integration to
generate Au–Cu nanostructures may further improve their
performance and broaden their applications. As a major
challenge, the high susceptibility of Cu to oxidation greatly
restricts the storage and utilization of Au–Cu nanostructures.
To prevent the oxidation of the Au–Cu nanostructure, the
new surface passivation technologies can be developed by a
series of materials, such as graphene, polymers, SiO2, metal
oxides and noble metals to protect the Au–Cu nanostructure.
From anti-oxidation techniques, forming an alloy or a core–shell
structure with robust materials by alloying and electroplating.
Compared with alloyed structures, core–shell structures are
considered more effective in protecting Cu atoms from oxidation
because Cu atoms cannot be directly exposed on the surface in the
ideal case.

In conclusion, there are numerous opportunities in the
development of various Au–Cu nanostructures and in the
exploration of their current applications. It is necessary to
improve fabrication techniques in order to understand the
mechanisms behind the growth and properties of Au–Cu
nanostructures. This not only expands the types of Au–Cu
materials but also promotes their current applications in
nanomotors, biomedicine, sensing, and solar energy.
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