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Taking curcumin as the starting point, β-cyclodextrin was introduced on both
sides, and lipid-soluble curcumin was coated by acrylic resin using oil-in-water
strategy. Four different types of curcumin fluorescent complexes EPO-Curcumin
(EPO-Cur), L100-55-Curcumin (L100-55-Cur), EPO -Curcumin-β-cyclodextrin
(EPO-Cur-β-cd) and L100-55-Curcumin-β-cyclodextrin (L100-55-Cur-β-cd)
were prepared to solve their own solubility and biocompatibility issues. The
prepared curcumin fluorescent complexes were characterized and tested by
spectroscopy. The characteristic peaks of 3446 cm−1 (hydroxyl group),
1735cm−1(carbonyl group) and 1455 cm−1 (aromatic group) were determined in
the infrared spectrum. In the fluorescence emission spectrum, it was found that
the emission intensity of different curcumin fluorescent complexes in polar
solvents reached hundreds of times. Through the transmission electron
microscopy shows that acrylic resin tightly coats curcumin into rods or
clusters. In order to observe their compatibility with tumor cells more directly,
live cell fluorescence imaging was carried out, and it was found that all four kinds
of curcumin fluorescence complexes had good biocompatibility. In particular, the
effect of EPO-Cur-β-cd and L100-55-Cur-β-cd is better than that of EPO-Cur
and L100-55-Cur.
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1 Introduction

The important characteristic and active components extracted from the traditional
chinese medicine turmeric have good application prospects and clinical therapeutic potential
in the diversity of pharmacological actions (Kocaadam and Sanlier 2017; Hosseini and
Hosseinzadeh 2018; Hay et al., 2019; Liu et al., 2022a). In a number of studies involving
cancer and tumor cells, it was found that curcumin may play a good inhibitory role in a
variety of different links (Mortezaee et al., 2019; Zendehdel et al., 2019), it effectively inhibits
the uncontrolled metastasis of cancer cells (Jia et al., 2019), the proliferation of tumor cells,
the activity of cancer-inducing chemicals in the stomach and colon (Porras et al., 2020; Naji
et al., 2021), and inhibits angiogenesis by modulating protease activity (Binion et al., 2008;
Liu et al., 2022b; Hu et al., 2022). However, curcumin has some disadvantages such as poor
water solubility, low bioavailability and poor gastrointestinal absorption (Sabet et al., 2021;
Sohn et al., 2021). In order to solve this problem, new drug delivery systems such as
liposomes, micelles and structural modifications were developed (Lian et al., 2020). For
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example, curcumin liposomes mixed with drugs improved the
bioavailability (Hong et al., 2020), and the structure of curcumin
was modified to synthesize new curcumin analogues based on the
natural product curcumin (Xu et al., 2018; Noureddin et al., 2019;
Zhao et al., 2019; Purushothaman et al., 2022). Although these
methods improved the solubility of curcumin to a great extent, they
did not achieve the expected effect due to the complicated
preparation process and high cost. In view of the pleiotropic
structure of curcumin itself, the delivery route of the composite
drug is prepared by modifying the main structure and the coating of
pharmaceutical excipients.

The research and application of acrylic resin-based
pharmaceutical excipients are very extensive, especially in the
field of pharmacy (Bettencourt et al., 2010; Villanova et al., 2011;
Liu S. et al., 2022). In view of the shortcomings of many drugs
directly administered, coating technology can effectively solve such
problems. The use of coating technology can increase the solubility
of drugs with low solubility, which can be better absorbed and
improve the relative bioavailability in the human body (Kausar 2018;
Haining et al., 2022). Not only that, but coating technology can also
reduce the damaging effects of drugs on the body during treatment.
Therefore, coating technology is also often applied to various
formulations such as tablets, liquid formulations and the like
(Katona et al., 2016; Desai et al., 2018; Boase et al., 2022; Jing
et al., 2022; Shao et al., 2022; Xiao et al., 2022).

In order to solve the above points, and based on the known active
drugs, this project designed a novel curcumin fluorescent polymer
complex with polypropylene material as the core carrier. 1) The
hydroxyl functional groups on both sides of curcumin were modified

to introduce β-cd to increase its solubility; 2) Once again, acrylic resin
was used to coat curcumin β-cd complex to further solve the problem
of biocompatibility and absorption rate, and retain and inherit the
efficacy and role of its main drug. To realize the development of
simple, efficient and practical curcumin fluorescence complex.

2 Experiment

2.1 Materials and instruments

All solvents and reagents were purchased commercially and used
without further purification. The reagents used are curcumin (98%, RG)
and beta-cyclodextrin (98%, RG), which were purchased through
commercial channels such as Titan Technologies. Full-wavelength
absorption spectra were recorded using a UV-2550 spectrophotometer.
Under excitation at 490 nm, the fluorescence emission spectrum of
Shimadzu RF-5301pcs spectrophotometer was measured. All optical
measurements were performed at room temperature.

2.2 Synthesis

Curcumin-BF (1.0 g, 2.7 mmol) and of benzenesulfonyl chloride
(0.8 ml, 6.3 mmol) were dissolved in tetrahydrofuran (THF) (8 ml),
triethylamine (0.9 ml, 6.8 mmol) was added, and then at the room
temperature stirred for 30 min. The reaction was confirmed by thin
layer chromatography. The THF was rotary evaporated and
ultrapure water was added to precipitate the solid. After stirring

SCHEME 1
Synthetic route of L100-55-Cur, L100-55-Cur-β-cd, EPO-Cur and EPO-Cur-β-cd.
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the solid with methanol for 30 min, 1.7 g of curcumin-BFB was
obtained (Scheme 1).

Take a 50 ml round-bottom flask 0.1 g of curcumin-BFB and
0.1 g of L100-55 were dissolve in EtOH (5 ml), and then at the room
temperature stirred for 6 h s. The EtOH was concentrated to afford
0.88 g of L100-55-Cur (Scheme 1).

L100-55-Cur-β-cd, EPO-Cur and EPO-Cur-β- cd were
obtained by the same method.

2.3 FT-IR

Grind potassium bromide into powder in an agate mortar under
infrared light, then press potassium bromide into transparent

uniform flakes using a tablet press. Place the potassium bromide
sheet on the sample holder of the spectrometer, start the
measurement, and obtain the background spectrum. The samples
were then pulverized together with potassium bromide, formed into
transparent uniform flakes with a tablet machine, and analyzed by
infrared spectroscopy.

2.4 Spectroscopic properties

2.4.1 UV spectrum
Ultraviolet–visible (UV–vis) spectra were recorded on a UV-

2550 spectrophotometer using a 1 cm path length quartz cuvette and
fluorescence Spectra were performed on Shimadzu RF-5301PCS

FIGURE 1
Sunlight and 365 nm images of four curcumin fluorescence complexes.

FIGURE 2
FT-IR absorption spectrum and cyclodextrin embedding characteristic peaks of four curcumin fluorescent complexes (Its scanning times are 16 and
resolution is 4.0 cm−1).
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Spectro fluorophotometer at room temperature. A proper amount of
the compound was dissolved in THF and prepared into 1 mM
mother liquor for later use. Spectral tests of solutions with
different concentrations were prepared according to needs and
data were recorded. The UV–Vis wavelength range is
400–700 nm. The fluorescence of the compounds were obtained
at the optical path of 10 mm and the excitation wavelength of
450 nm, and the wavelength range of the recorded emission was
400–800 nm.

2.4.2 Fluorescence emission spectrum
Dissolve the four polymers in dichloromethane (DCM), make

them into a series of concentrations, and then conduct fluorescence
spectrum test in dimethylsulfoxide (DMSO), ethylacetate (EA),
methanol (MeOH) and tetrahydrofuran (THF) solution
environment. Set the excitation wavelength as the corresponding
maximum absorption wavelength in ultraviolet. The corresponding
fluorescence emission spectrum was obtained.

2.4.3 Cellular uptake and localization by
transmission electron microscope

Transmission Electron Microscope (TEM) was performed on a
Zeiss Ultra Plus at an accelerating voltage of 15 keV, with an attached
Oxford Instruments X-Max 60 mm2 SDDX-raymicroanalysis system.
The ethanol suspended precipitate of the sample was added to a silicon

wafer, and the sample was attached to a sample tray with a conductive
adhesive, and TEM images were obtained using a scanning electron
microscope at 2.0 μm and 200 nm rulers, respectively. A thin
supporting film is adhered on the copper net in advance, and a
proper amount of powder and tetrahydrofuran are added to the
small beaker respectively, and ultrasonic oscillation is carried out
for 10–30 min. After 3–5 min, the uniform mixed liquid of powder
and tetrahydrofuran is sucked by a glass capillary tube, and then two to
three drops of the mixed liquid are dropped onto the copper net and
dried.Wait formore than 15 min to volatilize tetrahydrofuran asmuch
as possible. Finally, put the sample on the sample table and insert it into
the electron microscope for observation.

2.4.4 Cell imaging
HeLa cells in logarithmic growth phase were treated with

trypsin, seeded in a 96-well plate with a circular cover, placed in
a 5% CO2 incubator, and cultured at 37°C for 24 h to adhere. The
prepared polymers EPO-Cur, EPO-Cur-β-cd, L100-55-Cur and
L100-55-Cur-β-cd stock solutions (5 mg/ml) were prepared in
DMSO, respectively, and then diluted with DMSO to prepare
appropriate concentrations of solution. The cells in the original
culture medium were removed in each of the different samples and
replaced with a medium containing 5 μg/ml for 36 h. Afterwards it
was discarded with PBS, washed twice, and then fixed with
paraformaldehyde for 20 min after. The solution removed the

FIGURE 3
UV absorption spectrum of complexes L100-55-Cur, L100-55-Cur-β-cd, EPO-Cur and EPO-Cur-β-cd in different solvents.
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repair solution with PBS and washed twice, incubated in DAPI dark
room for 20 min, discarded the staining solution, washed 2 times
with PBS, treated with anti-fluorescence inactivating scaffolds, and
obtained fluorescent images of cells on a fluorescence microscope.

3 Results and discussion

Starting from the design of oil-in-water concept and drawing on
the existing research basis, benzenesulfonyl chloride is firstly
introduced from both sides of the main skeleton structure of
curcumin, and then β-cd is used to embed the benzenesulfonyl
groups on both sides to increase its solubility in water and
improve bioavailability Finally, the curcumin complex was coated
with acrylic resin to play a key role in physical properties, and finally
different series of target compounds L100-55-Cur, L100-55-Cur-β-cd,
EPO-Cur and EPO-Cur-β-cd were prepared (Scheme 1 and Figure 1).

In the infrared spectrum, a strong absorption peak can be
observed in the range of 3446–3479 cm−1. This is because the two
sides of the main structure of L100-55-Cur-β-cd and EPO-Cur-β-cd
are embedded by β-cd and thus have characteristic peaks of hydroxyl
groups, while L100-55-CUR and EPO-CUR do not have obvious
absorption peaks compared with the previous two complexes. The
strong absorption peak in the 1735 cm−1 range is the characteristic
absorption peak of the two carbonyl groups of curcumin, while the

subsequent absorption peaks in the 1635–1455 cm−1 range belong to
the aromatic absorption peaks (Figure 2).

In order to observe the spectral characteristics of the four
complexes, dichloromethane, dimethyl sulfoxide, ethyl acetate,
methanol and tetrahydrofuran were used as solvents for UV
spectrum analysis. The results showed that the UV absorption
spectra of EPO-Cur and EPO-Cur-β-cd complexes appeared
multiple peaks, with the same maximum absorption peaks in the
range of 495–512 nm. The UV absorption spectra of L100-55-Cur
and L100-55-Cur-β-cd complexes are different from EPO-Cur and
EPO-Cur-β-cd, which are single peaks, and the maximum absorption
wavelength is in the range of 497–526 nm, the absorption intensity also
increases with the concentration (Figure 3 and Table 1).

Likewise, the fluorescence emission spectra of these four complexes
were determined in dichloromethane, dimethyl sulfoxide, ethyl acetate,
methanol and tetrahydrofuran. The fluorescence emission spectra of
EPO-Cur and EPO-Cur-β-cd complexes are in the range of
566–573 nm, and the emission intensity is basically between
2500 and 4000. The fluorescence emission spectra of L100-55-Cur
and L100-55-Cur-β-cd complexes showed weak emission intensities in
the range of 558–577 nm with emission intensities ranging from 6 to
2200. It is worth mentioning that the fluorescence emission intensity of
EPO-Cur and EPO-Cur-β-cd is the weakest in polar solvents such as
methanol and dimethyl sulfoxide, on the contrary L100-55-Cur and
L100-55-Cur- β-cd is strongest in polar solvents. This is due to the

FIGURE 4
Fluorescence emission spectrum of complexes L100-55-Cur, L100-55-Cur-β-cd, EPO-Cur and EPO-Cur-β-cd in different solvents.
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difference in solubility due to the change in their physical properties due
to their different coating materials, which results in a difference of
several hundred times in emission intensity (Figure 4 and Table 1).

To observe the internal morphology more directly, four
composites were tested using transmission electron microscopy. It
can be seen from the pictures that these complexes have strip- and
cluster-shaped features depending on the coating material, and are
clustered together. These four sets of images have very unique
characteristics. For example, EPO-Cur and L100-55-Cur
encapsulate numerous nanoparticles in strips, while EPO-Cur-β-cd
and L100-55-Cur-β-cd are clearly clustered. This is because the

former is acrylic resin -coated curcumin, while the latter is acrylic
resin -coated curcumin and β-cd. These images show the physical
properties of different types of complexes (Figure 5).

The biocompatibility of the four complexes in tumor cells was
investigated by cell imaging according to their acrylic resin coating
characteristics. Staining of HeLa cells under confocal microscopy, the
two control groups were clearly observed under fluorescence
microscopy. As shown in Figure 6, bright field, DAPI, green channel,
red channel, and merged imaging are provided. Compared with the two
control groups, the biocompatibility of the four complexes with HeLa
cells was significantly different. From the combined images, it can be

FIGURE 5
Transmission electron microscope images of complexes L100-55-Cur, L100-55-Cur-β-cd, EPO-Cur and EPO-Cur-β-cd.
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found that the cell imaging effect of EPO-Cur-β-cd and L100-55-Cur-β-
cd is better than that of EPO-Cur and L100-55-Cur Slightly obvious.
This is because the coating of β-cd increases the solubility of the complex
resulting in different effects between the two groups. Moreover, β-cd is

often used as a pharmaceutical excipient to increase the stability of the
drugs, improve the dissolution and bioavailability of the drugs, and
reduce the toxic and side effects of the drugs (Figure 6). Therefore, by
coating enteric-soluble polymer Eudragit@curcumin to improve its

FIGURE 6
Cellular imaging of L100-55-Cur, L100-55-Cur-β-cd, EPO-Cur and EPO-Cur-β-cd.
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selectivity to cells and biocompatibility, to the water solubility and
targeting of curcumin, and to the effect of cell imaging. Although the
result is not very ideal, but to a large extent solved the problem of
selectivity and compatibility with cells.

4 Conclusion

In summary, four kinds of curcumin fluorescence complexes
were prepared using acrylic resin as drug excipients to improve the
compatibility between drugs and cells. Although these complexes
have improved the compatibility between curcumin and tumor cells
to some extent, this is far from the current requirements. Compound
preparation is an important research direction in recent years,
especially the oil-in-water strategy will greatly increase the
solubility and bioavailability of drugs. Therefore, curcumin has
great bioavailability potential as an antitumor drug. Through the
research of this subject, it is believed that with the in-depth
discussion of curcumin preparations, it will provide a favorable
reference for the subsequent research and development of new
complex curcumin drugs.
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