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Graphene has attracted much research attention due to its outstanding chemical
and physical properties, such as its excellent electronic conductivity, making it as a
useful carbonmaterial for a variety of application fields of photoelectric functional
devices. Herein, a newmethod for synthesizing conductive carbonmembranes on
dielectric substrates via a low-temperature thermodynamic driven process is
developed. Although the obtained films exhibit low crystallinity, their electrical,
wetting, and optical properties are acceptable in practice, which opens up a new
avenue for the growth of carbonmembranes andmay facilitate the applications of
transparent electrodes as potential plasma-free surface-enhanced Raman
scattering (SERS) substrates.
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1 Introduction

The preparation of high-quality graphene is challenging and hinders its application in
various fields (Chen, et al., 2012; Ren, et al., 2014). Graphene, as a two-dimensional (2D)
carbon-based material, has received tremendous scientific attention due to its excellent
physical properties, such as a tunable bandgap (Zhang, et al., 2009), extremely high mobility
(Geim, 2009; Fang et al., 2015), high mechanical strength (Frank, et al., 2007; Lee, et al., 2008;
Vadukumpully, et al., 2011), outstanding light transmittance (Bae et al., 2010; Kim, et al.,
2011; Pang, et al., 2011; Liu, et al., 2017), and excellent electronic conductivity (Zhang, et al.,
2005; Castro Neto, et al., 2009). Based on these properties, graphene exhibit excellent
potential in application of supercapacitors, solar cells, photonic sensors, transparent flexible
electrodes, plasma-free surface-enhanced Raman scattering (SERS) substrates, and gene
electronic sequencing. As new, exciting characteristics of graphene are continuously being
discovered, it has potential applications in many fields. Among all the aforementioned
potential applications, transparent electrodes made of graphene are the materials closest to
being of practical use (Bae et al., 2010; Kim, et al., 2011; Pang, et al., 2011; Liu et al., 2017).
However, it is imperative to develop a reliable synthetic method to make such materials.
Graphene can be directly stripped from base material or synthesized on a substrate via
mechanical exfoliation, direct chemical exfoliation, epitaxial growth, and chemical vapor
deposition (CVD) methods. At present, CVD is a promising technique by which to produce
high-quality graphene with a large surface area on metal substrates (Li et al., 2009; Reina,
et al., 2009; Wei, et al., 2009). For example, in 2009, Li et al. grew a large-area single-layer
graphene thin film on a copper substrate via CVD using methane (Li et al., 2009). It is
generally accepted that the presence of metals is essential for the growth of high-quality
graphene as most of the CVD methods reported to date have been based on metal-catalyzed
growth. However, an essential and prolix step for such a route is to transport the graphene
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onto other substrates via etching the metal catalyst layer, which may
import defects to the as-grown graphene and influence its
properties. To date, direct graphene growth on non-conductive
substrates via CVD has been reported (Fanton et al., 2011; Chen
et al., 2014; Chen, et al., 2016; Wang, et al., 2016; Wang, et al., 2019).
Although the use of such CVD routes can negate the need for a
complex transfer process, the high growth temperature still restricts
the choice of substrates and hinders their practical application due to
cost. Moreover, the choice of carbon source is restricted to CxHy in
the gas phase. Therefore, there is a need to find another way to
prepare graphene on dielectric substrates.

After decades of continuous development, the chemical vapor
transport (CVT)method has shown promising results in solid-phase
synthesis, purification, and crystal growth. The basic principles of
this technique are that a solid or liquid substance reacts with a
catalytic transport agent at a certain temperature to form a gas-phase
product, which then migrates through a reactor that has been sealed
and evacuated by heating in a tube furnace. This gas-phase reaction
product undergoes a reverse reaction in areas of the reactor that are
at different temperatures, and, as a result, the gas-phase product is
reduced back to the precursor. This process is similar to a
sublimation or distillation process. This approach is
advantageous because a high-quality, large-area material can be
produced in high throughput at a low growth temperature; it has
been widely used in the growth of a large number of high-quality
single crystals with a layered structure. Hu et al. (2017) used CVT to
controllably synthesize 2D MoS2, WS2, MoSe2, and other 2D

semiconductors. However, there have been no reports on the
preparation of carbon films on dielectric substrates using the
CVT method. Therefore, we developed a facile CVT method for
the growth of conductive carbon-based membranes using polymers
as precursors was developed. Different from other studies
(Binnewies, et al., 2013; Ubaldini, et al., 2014; Hu, et al., 2017),
the obtained films have an ultra-smooth surface, a continuous
structure, and light transmittance and hydrophobic properties,
which makes the described CVT method an effective synthesis
route for developing a potential chemical mechanism (CM)-based
plasma-free SERS platform, electronic sensor devices, materials for
energy storage applications, and nanomaterials for use in catalysis
(Liang, et al., 2021; Sun, et al., 2021; Liu, et al., 2022; Wang, et al.,
2022).

2 Results and discussion

The synthesis strategy developed in this study is based on the
CVTmethod (see the experimental set-up and details in the ESI). As
shown in Figure 1A, a quartz tube with a short and thin column
platform was selected as the reaction vessel. First, low density
polyethylene (LDPE) was selected as the precursor due to its
simple chemical structure, featuring only carbon and hydrogen,
and single-side-polished sapphire was selected as a substrate. The
LDPE was sealed at one end of a quartz tube and the substrate at the
other. Both ends of the closed quartz tube were placed in a horizontal

FIGURE 1
(A) Strategy of synthesizing a conductive carbon-based membrane on a dielectric substrate via the CVT method. (B) Optical micrograph of the
carbon membrane. Scale bar, 100 μm. (C) An optical image of the carbon membrane. (D) AFM images of the carbon membrane.
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tube furnace. When the precursor end was heated to 850°C, the
temperature of the substrate end was 400°C. The polymer precursor
was readily cracked into carbon-based fragments under the harsh
reaction conditions, which were transported to the substrate end of
the reactor via a thermodynamic driven process due to the
temperature difference between the two ends of the quartz tube.
After being annealed at 850°C, the film was deposited across the
entire surface of the substrate. Thus, the obtained carbon membrane
was transferred via a non-etching method.

Based on the optical micrograph shown in Figure 1B, the
obtained carbon membrane exhibits a uniform and continuous
structure. It can be seen that the film contrast is very close to that
of the sapphire substrate through the scratch made using
tweezers to distinguish the contrast difference, suggesting that
the carbon film was thin enough to exhibit a good transmittance
of ~83% at a wavelength of 800 nm (Figure 1C; Figure 2). Atomic
force microscopy (AFM) was used to characterize the thickness of
the synthesized membrane. Figure 1D shows an AFM image of
the ~1.6 nm film formed after the CVT process, consistent with
the optical image of the same material. It is remarkable that the
film surface is smooth compared to that of graphene glass
prepared via CVD (Binnewies, et al., 2013; Ubaldini, et al.,
2014; Hu, et al., 2017), with no vertical and ravine-like
product, which can be observed in the inset of Figure 1D.
This may be due to the lower reaction temperature and
transmission mode of the carbon fragments compared with
other methods. The thickness of the film was found to be
tunable; it is dependent on the amount of solid carbon
precursor used. With an increase in the amount of the
reactant, a darker substrate (Figure 3; Figure 4) and a thicker
film (Figure 4Sc) were observed upon AFM imaging. In addition
to LDPE, there are other precursors that can be employed to
make this kind of film, such as naphthalene, polyvinyl alcohol
(PVA), polyethylene oxide (PEO), and perylene-3,4,9,10-
tetracarboxylic dianhydride (PTCDA). Using these precursors,
carbon films with similar properties were obtained under the
same experimental conditions (Figures 5A–D).

The microstructure of the film prepared by CVT was probed by
transmission electron microscopy (TEM), selected-area electron
diffraction (SAED), and X-ray photoelectron spectroscopy (XPS).
The TEM image (Figure 4A) shows that the carbon membrane
exhibits a flat surface with no crystal lattice, confirming that an
amorphous phase was formed during the CVT process. The SAED
pattern exhibits typical amorphous carbon rings without any
diffraction dots, in agreement with the TEM results. The results
thus reflect that a complex cracking process of LDPE occurred upon
an increase in temperature (Aboulkas, et al., 2010). To further
investigate the structure of the prepared carbon film, more
detailed information about its chemical composition was
obtained from the C 1s XPS spectrum (Figure 4B). The
deconvoluted spectrum features peaks at binding energies of
284.8 eV, 286.4 eV, and 290.7 eV, attributed to C–C, C–O and
O–C=O bonds, respectively. This confirmed the presence of a
large number of oxygen-containing functional groups in the
prepared films. Amorphous carbon is an amorphous metastable
material composed of sp2 and sp3 hybrid carbon atoms. The C 1s
nuclear binding energy (284.7 eV) of the thin film is close to the
value of diamond (285.3 eV), indicating that it contains a high
amount of sp3 hybridized carbon. The results thus support the
formation of a graphitized conductive carbon film.

Raman spectroscopy is a very effective structural characterization
method for carbon materials, which is used to determine their
microstructure via different vibration modes and strengths. To
confirm the quality of this film, the Raman spectra of three films
with different thicknesses are shown in Figure 6A, wherein it can be
seen that the films of different thickness all feature two peaks in the same
positions. The two broad peaks at around 1,341 cm−1 and 1,594 cm−1 can
be attributed to the characteristic peaks of the D and G bands of carbon,
corresponding to the sp3 hybridization of carbon with a disordered
structure and the sp2 hybridization of a graphitized structure, respectively
(Ferrari et al., 2006; Ferrari, 2007). In addition, upon an increase in film
thickness, the positions of the two peaks remained almost unchanged.
The results show the presence of amorphous carbon in the film, which is
also consistent with the SAED results. Figure 6B shows that the intensity
ratio of the D peak (ID) with respect to the G peak (IG) increases in line
with an increase in film thickness. The ratio of the two peak strengths is
an important criterion by which to judge the degree of graphitization of
carbon materials. The smaller the ratio, the less amorphous the carbon.
Compared with LDPE, the conductive carbon films prepared using the
other polymers as reactants were disordered, and only the product
prepared using PEO as a precursor showed a high degree of
graphitization (Figures 5E–H). This indicates that this method of
preparing conductive carbon films has great application value, thus
providing ideas for further research.

The properties of the films were investigated and the results are
displayed in Figure 7. As shown in Figure 7A, at a wavelength of
800 nm, for ~1.6 nm, ~5.8 nm, and ~12.6 nm films with different
light transmittance (Figure 2) the average contact angles were 102°,
99°, and 92°, respectively. Thicker films with low light transmittance
exhibited smaller contact angles and better hydrophilicity. The
presence of peaks related to ester groups in the XPS data also
provided evidence that upon an increase in thickness the O−C=O
bonding increased and the films became more hydrophilic. The
results of conductivity measurements of films prepared at different
transmittance were as expected, as shown in Figure 7B. It can be seen

FIGURE 2
Light transmittance of carbon-based membranes of ~1.6 nm
(black), ~5.8 nm (blue), and ~12.6 nm (red) in thickness.
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that the resistivity increases with the thickness of the film. The
bonding between carbon atoms in the thin film is mainly related to
sp2 and sp3 hybridization, among which the former carbon chain

structure has good conductivity, while the latter carbon chain
structure has poor conductivity. By controlling the reversible
transformation between carbon atoms and hybrid binding modes

FIGURE 3
(A, B)Optical micrographs of carbonmembranes upon an increase in the amount of reactants, (C, D) optical images of the carbonmembranes. (E, F)
AFM images of the carbon membrane.

FIGURE 4
(A) TEM image of carbon membrane. (B) XPS spectra of carbon membrane.
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using an external electric field, the reversible transformation
between the high and low resistance of the carbon film can be
controlled and the electric resistance effect can be realized. The thin
film prepared on the dielectric plate can thus be applied without
transfer and etching, which has good prospects for electrical
applications.

3 Materials and methods

LDPE, naphthalene, PVA, PEO, and PTCDA were purchased
from Alfa Aesar. The quartz reaction tube was soaked in potassium
hydroxide solution to remove organic impurities and was washed
with deionized water before use.

FIGURE 5
AFM images of carbon membranes prepared using (A) naphthalene, (B) PTCDA, (C) PVA, and (D) PEO. Raman spectra of carbon membranes
prepared using (E) naphthalene, (F) PTCDA, (G) PVA, and (H) PEO.

FIGURE 6
(A) Raman spectra of carbon films with different thicknesses. (B) Relationship between the ratio of the D peak to G peak and the thickness of the
carbon film.
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3.1 Synthesis of the carbon membrane using
LDPE

LDPE (1.5 mg) was added into one end of a 1-cm quartz tube with a
0.5-cm column platform of 0.5 cm in length, and then the sapphire
substrate was placed inside. A CH4–O2 flame and a vacuum systemwere
used to cut off and seal the quartz tube. The precursor was subjected to a
temperature of 850°C to achieve a temperature of 400°C at which to form
the product, with the final product obtained after annealing.

3.2 Characterization

Optical images were captured using an Olympus BX 53M
microscope. AFM images were taken using a Bruker Bioscope
Resolve in ScanAsyst. Raman and photoluminescence (PL)
measurements were conducted using a Horiba-Smart Raman system
at 532 nm laser excitation at a power of 0.5 mW. The Si peak at
520.7 cm−1 was used for calibration in the data analysis of Raman and
PL spectra. TEM images and SAED patterns were acquired using an
F200 s instrument at 200 kV. XPS measurements were conducted on a
Thermo ESCALAB 250XI spectrometer. Contact angles were measured
and calculated using a DSA100E system. Transmittance measurements
were conducted using an LS116 light transmittance instrument.
Resistivity measurements were conducted using a four-electrode
resistance measuring meter.

4 Conclusion

In summary, a novel and effective method is firstly developed for
synthesizing conductive carbon membranes on dielectric substrates. A
carbon film can be directly synthesized on a dielectric substrate, which
can then be directly incorporated into electronic devices, thus avoiding a
complex and post-synthetic transfer process that may lead to
contamination and breakage of the film. Due to the fragmentation
of LDPE is able to occur inmany different ways, the structure of the thin
film prepared using the developed CVT method was amorphous, and

its thickness was controllable. The conductivity of the film was found to
be related to the degree of deposition of the LDPE andthe use of
different reactants led to the same results, further illustrating the
extensibility and convenience of this experimental method. These
characteristics make the carbon films prepared via this method ideal
materials that have broad application potential for use in photoelectric
chemistry, as potential CM-based plasma-free SERS platforms,
transparent flexible electrodes, supercapacitors, and solar cells in the
energy storage fields.
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resistivity of the carbon film and the light transmittance at a wavelength of 800 nm.
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