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Cancer is the second leading cause of death worldwide. Specially, the high
incidence rate and prevalence of drug resistance have rendered prostate
cancer (PCa) a great threat to men’s health. Novel modalities with different
structures or mechanisms are in urgent need to overcome these two
challenges. Traditional Chinese medicine toad venom-derived agents (TVAs)
have shown to possess versatile bioactivities in treating certain diseases
including PCa. In this work, we attempted to have an overview of
bufadienolides, the major bioactive components in TVAs, in the treatment of
PCa in the past decade, including their derivatives developed by medicinal
chemists to antagonize certain drawbacks of bufadienolides such as innate
toxic effect to normal cells. Generally, bufadienolides can effectively induce
apoptosis and suppress PCa cells in-vitro and in-vivo, majorly mediated by
regulating certain microRNAs/long non-coding RNAs, or by modulating key
pro-survival and pro-metastasis players in PCa. Importantly, critical obstacles
and challenges using TVAs will be discussed and possible solutions and future
perspectives will also be presented in this review. Further in-depth studies are
clearly needed to decipher the mechanisms, e.g., targets and pathways, toxic
effects and fully reveal their application. The information collected in this work
may help evoke more effects in developing bufadienolides as therapeutic agents
in PCa.
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1 Introduction

The quality of life of cancer patients have been improved significantly due to the progress
of application of new technologies, including drug development, especially precision
medicine. Targeted therapies and the cutting-edge immunotherapies have reached a new
paradigm for cancer treatment, which work together with renovated surgery and
radiotherapy, etc., to markedly improve treatment outcomes. However, there are still
many challenges in treating certain types of cancer including prostate cancer (PCa)
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which has two unique characteristics. The first one is the high
prevalence since it’s one of the leading cancers in men and one of the
leading causes of deaths among men worldwide (Gomella, 2017;
Schatten, 2018; Zhang et al., 2022a). The second characteristic is the
high incidence of drug resistance, since more than 90% of PCa will
eventually develop resistance to androgen-depredation therapy
(ADT), termed as castration-resistant PCa (CRPC), and later
second resistance to subsequent chemotherapies (Armstrong and
Gao, 2015; Cohen et al., 2021; Liotti et al., 2021; Morel et al., 2021; Ji
et al., 2022; Peery et al., 2022). It’s known that various factors
contribute to the development of drug resistance in PCa, such as the
alteration/mutation of androgen receptor (AR) or oncogenes,
metabolism adaptation, overexpression of ATP-binding cassette
(ABC) transporters, apoptosis resistance, enhanced DNA repair
and cellular defensive systems against toxic inducers, etc. (Peery
et al., 2017; Wang et al., 2020a; de Leeuw et al., 2020; Messina et al.,
2020; Peery et al., 2020; Yang et al., 2020; Do and Webster, 2021;
Filon et al., 2022). Thus, structurally and mechanistically renovated
agents that can effectively suppress PCa and/or less likely develop
resistance are in urgent need.

Toad venom, also named as Chan-Su, is a traditional Chinese
medicine that has shown therapeutic efficacies in clinic (mainly in
China) and has been widely used for the treatment of cancer,
cardiovascular diseases, pain, and inflammation/inflammatory
diseases as shown in Figure 1 (Gao et al., 2017; Li et al., 2021a;
Xu et al., 2021; Zheng et al., 2022). Originally derived from the skin
and auricular glands of Chinese toad, toad venom is used to repel
toad’s natural enemies primarily, working as a protective agent.
Known for the toxic effects to cause cardiac arrhythmia, toad
venom-derived agents (TVAs) usually work as an inhibitor of

Na+/K+-ATPase and a regulator of calcium homeostasis, which
leads to seizure and coma, etc., thereby causing toxic effects
(Chen and Kovarikova, 1967; Bick et al., 2002; Lopez-Lopez
et al., 2008). In addition to toxic effects, however, toad venom
has therapeutic effects that can be applied to treat certain diseases.
Till now, due to its strict export ban to other countries by state law,
drugs that contain toad venom are only approved for clinical use in
China, such as Chansu injection, Liu Shen Wan, Xin Bao Wan,
Chan-Su Wan, Hua-Chan Wan (made of isolated cinobufagin in
toad venom), Kyushin, Zuo Xiang Bao Xin Wan, etc. (Morishita
et al., 1992). In addition to Chinese Chan-Su in the application of
cancer treatments, toad venom from other species has also been
reported, including Indian toad venom (Gomes et al., 2011),
although they have not been fully studied for its application.

In this review, we focused on the applications of bufadienolides,
especially those isolated pure compounds in TVAs, in treating PCa
in the past 10 years. While it is true that not too many studies have
been published as of December 2022, and that the research and
application of TVAs in cancer treatment are still at its early stage, the
information collected could certainly serve as a base for their further
exploration in PCa treatment.

2 Bufadienolides in toad venom and
their therapeutic implication in cancers

In total, several dozens of different components were identified
and characterized in toad venom (Zhang et al., 2005; Wang et al.,
2018a; Cao et al., 2019). Their pharmacological effects can be
majorly attributed to alkaloids (Dai et al., 2018a; Dong et al.,
2022) and bufadienolides which share steroids scaffold in
common (Qu et al., 2012). Both alkaloids and bufadienolides are
among the most prominent and most-studied compounds in toad
venom. Growing studies have confirmed that both alkaloids and
bufadienolides can work in treating cardiovascular diseases and
cancers (Chen et al., 2020). Our special and major interest in this
review falls in these bufadienolides (Figure 2).

There are several prominent members that are categorized as
bufadienolides (Figure 2) (Cunha-Filho et al., 2010; Zhang et al.,
2014), including Bufalin, (3β,14-dihydroxy-5β-bufa-20,22-
dienolide, shown as compound 1) (Zhang et al., 2020a), bufatalin
[(3β,14,16β-Trihydroxy-5β-bufa-20,22-dienolide) 16-acetate,
shown as compound 2] (Zhang et al., 2022b), cinobufagin, (3β-
Hydroxy-14,15β-epoxy-5β-bufa-20,22-dienolid-16β-yl acetate,
shown as 3) (Toma et al., 1987), resibufogenin [(3β,5β,15β)-
14,15-epoxy-3-hydroxy-bufa-20,22-dienolide, shown as 4] (Yang
et al., 2021a), and arenobufagin [(3β,5β,11α)-3,11,14-Trihydroxy-
12-oxobufa-20,22-dienolide, shown as 5] (Zhang et al., 2013). These
compounds are structurally related, and specially, all of them can be
regarded as bufalin’s derivatives, with minor differences at certain
position, which are shown and highlighted in Figure 2. It appears
that TVAs have broad-spectrum anticancer potential (Liu et al.,
2019; Niu et al., 2021; Jia et al., 2022). Research has indicated that
they, either by single use or as a mixture when combined with other
agents, are effective in treating acute myeloid leukemia (Hirasaki
et al., 2022), lung cancer (Xie et al., 2018; Li et al., 2021b; Meng et al.,
2021), colorectal cancer (Li et al., 2019; Bai et al., 2021; Meng et al.,
2021), liver cancer (Zhang et al., 2012; Zhao et al., 2019; Zhang et al.,

FIGURE 1
The origin, components, functions, toxicity and mechanisms of
toad venom. Originated from the skin and auricular glands of Chinese
toad, toad venom contains mostly alkaloids and bufadienolides,
functioning to treat heart disease, inflammation, infection, pain
and cancer through regulating Na+/K+-ATPase, SRC-3 and -1, etc.
Drugs containing toad venom are only approved in China.
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2020b; Yang et al., 2021b), breast cancer (Zhu et al., 2018), oral
cancer (Jo et al., 2021), gastric cancer (Xiong et al., 2019), Ehrlich
ascites carcinoma (Giri et al., 2018), melanoma (Pan et al., 2019;
Zhang et al., 2020c; Kim et al., 2020), nasopharyngeal carcinoma
(Pan et al., 2020; Hou et al., 2022), osteosarcoma (Cao et al., 2017;
Dai et al., 2018b; Zhang et al., 2019a), cholangiocarcinoma (Ren
et al., 2019), myeloma (Baek et al., 2015), etc.

3 Therapeutic application of
bufadienolides in PCa

3.1 Mono-therapy of TVAs in PCa

Bufalin is one of the most intensively studied compounds among
all TVAs (Wang et al., 2018b; Lan et al., 2019; Soumoy et al., 2022). A
study by Zhang et al. (2018) showed that bufalin worked as an
anticancer agent via a p53-mediated mechanism in PCa cells both
in-vitro and in-vivo. In p53-mutant DU145 cells and p53-wild type
LNCaP cells, bufalin (5–100 nM, 48 h) treatment could upregulate
the expression of cleaved poly (ADP-ribose) polymerase (PARP),
and downregulate steroid receptor co-activator 1/3 (SRC1/3), AR
and prostate specific antigen (PSA). This study showed that bufalin
increased p53 expression in LNCaP cells, but decreased p53 in
DU145 cells, however, cleaved PARP or p53 was not observed in
p53-null PC-3 cells although inhibited proliferation was identified,
suggesting a p53-mediated efficacy (Zhang et al., 2018). The
microarray detection of certain mRNA levels indicated that in
LNCaP cells, bufalin treatment increased p53 and its
transcriptional target P21CIP1, as well as mRNAs related to
cellular stress and DNA damage response, and certain
senescence-associated genes, such as CYR61/CCNI, CTGF/CCN2
and CDKN1A, which were then been validated by the subsequent
assays of cell cycle distribution (sub G0/1) and the presence of

senescence-like phenotype (Zhang et al., 2018). The knockdown
of p53 could attenuate bufalin-induced apoptosis as indicated by the
decreased level of cleaved PARP. Finally, in the in-vivo model of
LNCaP xenograft, bufalin (1.5 mg/kg body weight, IP, daily) for
9 weeks inhibited tumor growth, resulting in a 67% decrease as
compared to untreated group, without affecting body weight
significantly which might suggest a safe profile. More
importantly, in bufalin-treated tumors, phospho-p53 was
increased, confirming the on-target effect and a network of
bufalin with p53 (Zhang et al., 2018).

A recent study by Zhang et al. (2019) found that bufalin can alter
the expression of both microRNAs (miRNAs) and long non-coding
RNAs (lncRNAs) that are critical for PCa (Zhang et al., 2019b). In
CRPC DU145 and PC-3 cells, bufalin suppressed the cell viability in
a dose-dependent manner, with an IC50 value of 0.89 and 1.28 μM,
respectively. At lower than the corresponding IC50 (to be more
specific, at half of the corresponding IC50), bufalin could
significantly reduce the migration and invasion of DU145 and
PC-3 cells as confirmed by the wound healing assay and
transwell assay. The authors screened lncRNA alteration after
bufalin treatment (0.1–5 µM) using a lncRNA microarray, and
they identified that HOX transcript antisense RNA (HOTAIR)
was one of the mostly reduced (Zhang et al., 2019b). HOTAIR
targets and inhibits miR-520b as confirmed by RNA
immunoprecipitation assay; meanwhile, miR-520b can negatively
regulate the expression of fibroblast growth factor receptor 1 protein
(FGFR1) which plays a pivotal role in PCa progression and
metastasis (Yang et al., 2013; Wang et al., 2019). The authors
also investigated and confirmed the positive correlation of
HOTAIR and FGFR1 with PCa bone metastasis, and that the
overexpression of HOTAIR could reverse bufalin-induced cancer-
suppressing effects. Thus, this study indicated that bufalin can
inhibit PCa proliferation, migration and invasion via regulating
the HOTAIR-miR520b-FGFR1 loop (Zhang et al., 2019b).

FIGURE 2
The structures of bufalin and its derivatives found in toad venom which show cancer-suppressing effects. Structurally, bufalin can be regarded as a
parent compound, and all other TVAs are modified on bufalin at different positions. The structural differences are highlighted in red.
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MiRNA-181, composed with subunits miRNA-181a and b,
targets apoptosis-associated proteins such as Bcl-2 family
members, functioning as a tumor suppressor (Liu et al., 2017;
Pei et al., 2020). Zhai et al. (2013) found that in bufalin (10 μM,
24 h)-treated PC-3 cells, miRNA-181a, but not the others such as
miRNA-10b, −17, 18a, 20a, 21, −106, −155, −221 and −372, was
markedly upregulated (5-fold), which was later confirmed to be a
dose-dependent manner (1, 10 and 15 µM) (Zhai et al., 2013). In
PC-3 cells, bufalin (15 µM) significantly decreased the expression
of Bcl-2, an anti-apoptotic protein, accompanied with caspase-3
protein activation (via testing the level of cleaved caspase-3), which
is essential in promoting apoptosis (Kesavardhana et al., 2020). At
the same time, the rescue experiments showed that bufalin-
induced apoptosis and caspase-3 proteins activation can be
partially reversed by miR-181a inhibitor co-treatment (100 nM),
validating the targeted effects of bufalin toward miR-181a (Zhai
et al., 2013).

Structurally, bufalin is a hydrophobic compound that may
encounter poor absorption and bioavailability (Shao et al., 2021).
Thus, Liu and Huang (2016) constructed an amphiphilic
targeting brush-type copolymers that can deliver bufalin to
CRPC cells, which exhibited controlled drug release and
higher anticancer capability than free bufalin both in-vitro and
in-vivo (Liu and Huang, 2016). This constructed BUF-loaded
micellar nanoparticle BUF-NP-(G3-C12) was found to have an
IC50 value of 8.0 ng/mL, which was lower than that of free bufalin
(which was 13.3 ng/mL) in CRPC DU145 cells; and consistent
results were also observed in inducing apoptosis. In
DU145 xenograft model, when used by intravenous injection
iv) at an equivalent 1.0 mg bufalin/kg, BUF-NP-(G3-C12)
showed significantly higher tumor-inhibiting effects than that
of free bufalin. Importantly, it didn’t change body weight as
compared to vehicle control, suggesting its safety (Liu and
Huang, 2016). Further evaluation is clearly needed to develop
it as a drug candidate for PCa.

Chen et al. (2017) reported that arenobufagin, among five
bufadienolides including cinobufotalin, bufarenogin, 19-
oxocinobufotalin and 19-hydroxybufalin, showed the highest
potency in suppressing the progress of epithelial-mesenchymal
transition (EMT) in PC-3 cells, leading to decreased ability of
migration and invasion (Chen et al., 2017). Arenobufagin
(8 nM) time-dependently (24, 36 and 48 h) downregulated
EMT markers in PC-3 cells, including slug, zinc finger E-box
binding homeobox 1 (ZEB1), snail, N-cadherin, vimentin and
Twist1 as confirmed by the Western bolt experiment. In
addition, β-catenin was reduced at both mRNA and
expression levels by arenobufagin, which then lead to the
downregulation of its downstream genes including Met, LEF,
TCF, c-Myc and cyclin D1. These effects can be reversed by β-
catenin overexpression, suggesting the network of arenobufagin
with β-catenin. Arenobufagin (1 mg/kg) reduced tumor growth
without altering the body weight or causing harms to major
organs including heart, liver, spleen, lung and kidney. In the in-
vivo PC-3 cells pulmonary metastases model, arenobufagin
markedly reduced the number and size of tumor metastatic
foci in lung tissues, suggesting its dual role in preventing
tumor growth and metastasis, warranting further study (Chen
et al., 2017).

Niu et al. (2018) reported the anticancer effects and the mode
of action of another TVA, cinobufagin, in CRPC PC-3 cells.
Cinobufagin could significantly suppress PC-3 cells proliferation,
with an approximately IC50 of 100 nM (24 h) or 50 nM (48 h),
suggesting a dose- and time-dependent manner. When tested in
colony formation, cinobufagin possessed a much lower IC50

(slightly lower than 5 nM). Mechanistically, cinobufagin
induced apoptosis of PC-3 cells via down-regulating anti-
apoptotic MCL-1 protein (Niu and Qin, 2018). Cinobufagin
appears to be much more potent than bufalin, which has an
IC50 of 1.28 μM in PC-3 cells.

3.2 Combinational therapy of TVAs in PCa

In addition to its role in working alone to suppress PCa, TVA
bufalin has also been found to work as a chemo-sensitizer when
combined with other conventional therapeutics.

Bufalin was identified as a possible DNA topoisomerase II (Top
II) inhibitor (Hashimoto et al., 1997; Pastor and Cortes, 2003).
Previous in-vitro studies showed that sequential administration of
different Top isomer inhibitors exhibited improved outcomes as
compared to simultaneous administration, suggesting a feasible
combinational strategy (Cho and Cho-Chung, 2003; Griffith and
Kemp, 2003). Recently, Gu and Zhang (2021) investigated the
combination of low-dose (0.4–0.8 mg/kg) bufalin with
hydroxycamptothecin, a Top I inhibitor (Gu and Zhang, 2021). In
this study, CRPC DU145 cells xenograft model in nude mice were
constructed and treated by hydroxycamptothecin (2 mg/kg)
combined with 0.4 mg/kg, 0.6 mg/kg or 0.8 mg/kg bufalin,
respectively. The results showed that among all treatments, the
combination of hydroxycamptothecin with 0.6 mg/kg bufalin
showed the strongest tumor-reducing effect (93% inhibition) than
the other two combinations or monotherapy, bufalin at 1 mg/kg
(~30% inhibition) or hydroxycamptothecin at 2 mg/kg (58%
inhibition), without altering body weight significantly (Gu and
Zhang, 2021). This combination, named as H6B, induced
significantly higher apoptosis but reduced proliferating cell nuclear
antigen (PCNA) proteins in the tumors than the other treatments as
confirmed by the TUNEL assay and immunohistochemistry,
respectively. Western blot assay showed that H6B increased pro-
apoptotic proteins such as Bax, p53 and programmed cell death
protein 4 (PDCD4); whereas it decreased anti-apoptotic proteins such
as Bcl-XL and p-AKT (Gu and Zhang, 2021). While this study
presented a possible combinational treatment that was safe and
can be further validated in other models and even in humans, it
remains unclear if H6B inhibit Top I/II in the treated tumor tissue.

4Other therapeutic implication of TVAs
in PCa

Growing evidence has suggested that TVAs may have other
therapeutic application in treating PCa.

Firstly, both cinobufagin and bufalin could inhibit
P-glycoprotein (P-gp, also named as ABCB1 or multidrug
resistance mutation 1, MDR1) (Yuan et al., 2017; Madugula and
Neerati, 2020; Zhan et al., 2020; Neerati and Munigadapa, 2022).
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Since P-gp plays an essential role, and sometime the leading role in
inducing anticancer drug of both conventional and targeted
therapies resistance via transporting them out of cancer cells
(Robey et al., 2018; Wang et al., 2020b; Feng et al., 2020; Thomas
and Tampe, 2020; Wang et al., 2021), cinobufagin and bufalin may
likely have potentials in sensitizing certain conventional
chemotherapeutics that are substrates of P-gp. In addition, as all
of these bufadienolides possess the same pharmacophore which
indicates that they may have similar bioactivities, it is reasonable to
predict that other TVAs (in addition to cinobufagin and bufalin)
may also impact P-gp and may have synergistic/sensitizing effects in
PCa treatment when used by combination (Wu et al., 2020a; Gao
et al., 2020; Chen et al., 2021), warranting further exploration.
Furthermore, it’s also worth studying whether TVAs impact
other members of ABC transporters. Thus, a broader screening
and validation is necessary to explore their full potential.

Secondly, TVAs can induce cytochrome P450 3A in the
pharmacokinetic (PK) study (Jiang et al., 2012; Dai et al., 2019),
suggesting that they may affect other drugs metabolism and requiring
a real-time monitor of PK profiles when used by combination.

Thirdly, since TVAs could alleviate cancer-related pain, it is
meaningful in trying optimal combinational strategies with certain
anticancer drugs (Xu et al., 2019).

Furthermore, there are several bufalin-derived TVAs that
show better inhibitory effect in PCa cells than bufalin,
including compound 6 (Figure 2), a de-hydroxyl bufalin,
showed higher AR binding affinity but lower inhibition on the
Na+/K+-ATPase, which may suggest a higher cytotoxic effect to
PCa cells but lower toxic effect to heart, warranting further
evaluation (Tian et al., 2014).

While several TVAs derivatives also exhibited promising
anticancer effects in PCa and other cancer types (Yuan et al.,
2014; Meng et al., 2021; Sampath et al., 2022), their application
remains to be fully exploited. It’s also noteworthy that except for
bufalin, arenobufagin, and cinobufagin, very few studies of bufotalin
and resibufogenin in PCa have been reported in the past decade.

5 Toxic and potential adverse effects of
TVAs

One of themajor challenges in using TVAs is the toxic effect, which
may significantly cripple their application potential in PCa. Thus, the
toxic effects and the associated mechanism are discussed briefly.

5.1 Cardiac toxic effects via regulating Na+/
K+-ATPase

Several TVAs have been confirmed to induce cardiac toxicity.
Resibufogenin (0.2 mg/kg, iv) could significantly increase heart
burden as indicated by contractile force in rabbit, cat and dog,
leading to delayed afterdepolarization and triggered arrhythmias
(Xie et al., 2001). These effects were partially mediated by its
disturbance of Na+/K+-ATPase which caused calcium (Ca+)
overload (Xie et al., 2001). Similarly, in human cardiomyocytes
model, bufalin (30–300 nM) showed a biphasic effect on the
contractility, which was strengthening contractility, accelerating

conduction, and increasing beating rate at the earlier stage, while
in the opposite when at the later stage (Li et al., 2020).

5.2 Neuron toxicity due to inhibit voltage-
gated potassium channels

TVAs are known to cause neuron toxicity as reported previously
(Brubacher et al., 1999; Dasgupta, 2003;Ma et al., 2007). In addition to
the inhibition of Na+/K+-ATPase, in rat hippocampal neurons (Wang
et al., 2014a), both resibufogenin and cinobufagin could also inhibit
outward delayed rectifier potassium current (Hao et al., 2011), which
may work together to induce toxicity in neuron system. However, we
believe that more studies are needed to reveal the doses or
concentrations on inducing human neuron cells related toxicity.

5.3 Drug-drug interactions due to the
inhibition of human cytochrome P450 3A4
(CYP3A4)

A study by Li et al. (2009) found that bufalin had an inhibitory
toward recombinant human CYP3A4 in vitro, with an IC50 of
14.52 μM, leading to increased elimination half-time, peak plasma
level of midazolam (a substrate of CYP3A4) in the rat model. Thus,
when being used with combination, adverse effects due to
CYP3A4 inhibition of TVAs should be monitored and prevented.

5.4 The narrow therapeutic window

It’s known that in mouse model the median lethal dose (LD50) of
bufalin in nude mice is 2.2 mg/kg (Tu et al., 2000), which is pretty
close to the doses of achieving therapeutic effects of tumor inhibition
(normally not more than 1 mg/kg), suggesting a very narrow
therapeutic window, and that the accumulative TVAs may
further worsen certain toxic effects. Thus, when being tested in
humans, a close monitor of serum concentration is necessary.

6 Discussion and future perspectives

Cancers have become a great burden to modern people due to
high prevalence and high cost in treatment and care (Desai et al., 2021;
Wells, 2021). Cancer-related deaths rank the second among all deaths
caused by different diseases (Siegel et al., 2022). As our major research
interest, PCa stands out for three reasons, the most diagnosed cancer
in men, the secondmost cancer deaths inmen globally, and extremely
high rate of drug resistance (Wade and Kyprianou, 2018). Currently,
effective therapeutic strategies for PCa include surgery, cytotoxic
chemotherapy agents, AR inhibitors, PARP inhibitors, and
radiopharmaceuticals, etc. (Do and Webster, 2021). Unfortunately,
the vast majority of PCa patients will develop acquired resistance to
most of these therapeutic agents (Moreira-Silva et al., 2022).

Toad venom is a traditional Chinesemedicine that has been applied
(mostly used by certain extraction/mixture in combination with other
drugs) in clinic for hundreds of years in China (Li et al., 2021a). It
should be mentioned that all the approved drugs contain the extraction
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of toad venom but not the isolated active components such as these
discussed bufadienolides in this review. For example, while Chansu
injection, an approved drug in China for infective diseases, has been
evaluated for its potential in cancer treatment, its effectiveness and
safety among cancer patients are yet to be proved (Jia et al., 2022). A
clinical study, published in 2016 in stage III-IV patients of non-Hodgkin
lymphoma, showed that the combination of Chansu injection with
EOAP (etoposide, vincristine, cytosine arabinoside and prednisone)
failed to improve the therapeutic effect when compared to EOAP group
(Niu et al., 2016). Another clinical evaluation showed that while Chansu
injection might enhance the treatment effects of certain anticancer
agents (Ma et al., 2018), we believe that further broader clinical trials are
still needed to validate the efficacy.

It’s assumed that bufadienolides have several advantages over those
approved drugs, because 1) bufadienolides are new therapeutic agents
with distinct structures, and laboratory studies have suggested that PCa
cells are sensitive to them. Thus, it’s likely that PCa cells may not be able
to quickly develop resistance. 2) The above mentioned approved drugs
are all single-targeted agents, which can be antagonized by adaptation of
PCa cells. Bufadienolides are known for multi-targeted compounds,
rendering them hard to develop resistance by PCa cells. 3) Reports have
shown that P-gp can induce resistance of some PCa drugs including
docetaxel (Kato et al., 2015), PARP inhibitor talazoparib (Naito et al.,
2021; Teyssonneau et al., 2022), etc. As P-gp is one of bufadienolides’
targets, thus, to reverse or achieve sensitizing effects, it’s reasonable to
use combinational regimens, including combination composed with
approved drugs in PCa. However, cautions remain since 1) the efficacy
and safety of pure isolated bufadienolides in human is unknown; 2)
bufadienolides may have intensive drug-drug interactions as they have
interactions with cytochrome P450 3A (Jiang et al., 2012; Dai et al.,
2019); and 3) it’s unclear of the exact targets.

Though these components have been extensively studied in the
past decade, none of them have been approved. The application of
TVAs in PCa is still at early stage but is attracting more attentions
recently.

6.1 Summary of TVAs in PCa

The above literature review has summarized the application of
TVAs in PCa (Table 1; Figure 3). Generally, TVAs could suppress

PCa cells proliferation via inducing apoptosis and regulating certain
miRNAs and lncRNAs; meanwhile, they also show activity in
reducing PCa cells migration and invasion in-vitro and in-vivo
through negatively regulating critical players involved in
metastasis. It’s known that bufalin targets steroid receptor
coactivators SRC-3 and SRC-1 (Wang et al., 2014b), while
growing evidence suggests that bufalin is a multi-targeting or
multi-functional agent, especially in the treatment of cancers.

By far, except for bufalin that has been extensively studied, the
therapeutic applications of other TVAs in PCa are yet to be fully
revealed. While we suspect that since they all share a very similar
scaffold, there may be limited differences of the underlying
mechanisms, requiring further validations.

It also comes to our notice that TVAs have been approved and/or
under active clinical evaluations only in China. Currently,
combinational therapies of using some of TVAs are also actively
tested in clinical trials, such as the combination of thalidomide with
cinobufagin to treat lung cancer cachexia (Xie et al., 2018). Other TVAs-
related clinical trial was either conductedmore than 10 years ago (Meng
et al., 2009), or using formulations made of toad venom extraction
rather than isolated single component (Meng et al., 2012; Wu et al.,
2020b; Tan et al., 2021). Since both the active components (major and
minor) and the associated mechanisms remain largely elusive, thus,
these formulations will likely meet many obstacles to be approved in
other countries outside China due to different new drugs regulations.
More studies using corresponding isolated pure compounds are in
urgent need to support their further evaluation in humans.

6.2 Future perspectives

While the anticancer of TVAs in PCa can be confirmed in lab
(in-vitro and in-vivo), much more works are needed before they can
be eventually applied in patients worldwide. The authors propose
that six future directions are worth trying.

(1) Rational design of TVAs derivatives or analogs via the assistance
of computer-aided drug design (CADD). These structures of
bufadienolides can serve as leading compounds that may
undergo structural modification for improved target-binding
and anticancer effects. By far, this research area is extremely

TABLE 1 Key facts of bufadienolides in the treatment of PCa (as of August 2022).

TVAs Mechanisms/Targets Effects Ref

Bufalin Suppressing p53 Reducing tumor growth (1.5 mg/kg, IP) Zhang et al. (2018)

Regulating HOTAIR Inhibiting PCa cells metastasis Zhang et al. (2019b)

Regulating miRNA181a/apoptotic proteins Inducing PC-3 apoptosis Zhai et al. (2013)

Un-defined Inhibiting DU145 cells in-vitro and in-vivo Liu and Huang (2016)

Inhibiting Top II and inducing apoptosis Sensitizing hydroxycamptothecin Gu and Zhang (2021)

Arenobufagin Down-regulating EMT Inhibiting PC-3 metastasis in-vivo Chen et al. (2017)

Cinobufagin Down-regulating MCL-1 Killing PC-3 cells Niu and Qin (2018)

Inhibiting P-gp Sensitizing drugs that are P-gp substrates Griffith and Kemp (2003)

Note: HOTAIR, HOX, transcript antisense RNA; EMT, epithelial-mesenchymal transition; P-gp, P-glycoprotein.
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undeveloped. Very few studies have been published, andmost of
them are focusing on the modification of hydroxyl groups at
different positions (Sampath et al., 2022). Further and varied
structural modification at other positions and functional groups
are necessary.

(2) In-depth pharmacological/mechanistic study for target(s)
identification and verification. While bufadienolides appear to
regulating multifaceted signal pathways and targets in PCa, it
remains elusive regarding the decisive factor. Proteomics study
and gene sequence after TVAs treatment along with the
associated pharmacological and validation studies is required.

(3) Following the pharmacological/mechanistic study, toxicological
mechanisms, beside their inhibition on Na+/K+-ATPase or other
ion channels, are needed. In addition, it is also possible that
certain metabolites of TVAs may contribute to toxic effects,
requiring further validation.

(4) PK study. The PK study can answer the time-course of the
absorption, distribution, metabolism and elimination, as well as
toxicity of bufadienolides, which may offer solutions for the
doses and frequency of administration in PCa patients.
Unfortunately, there is no PK data using isolated TVAs in
humans. Recently in 2019, a PK study using bufalin in rats were
published (Wei et al., 2019). It is shown that bufalin (10 mg/kg,
oral administration) reached the peak serum concentration
(14.722 ± 4.681 ng/mL) after only 15 min, which had a half
time of 5.7 ± 3.06 h (Wei et al., 2019). Bufalin could quickly
undergo metabolism into more than nine different metabolites.
This study provided very useful information of using bufalin in
rats, which may help to design and develop protocols in
monitoring metabolism of TVAs in humans. In addition,
these identified metabolites may help to reveal potential
pharmacological effects as well as toxic effects in humans.

(5) More in-vivo models validation of bufadienolides in PCa. In
addition to in-vitro models, in-vivo models including patient-

derived xenograft models are warranted. Furthermore, due to its
innate toxic effects, the combinational regimens of low-dose
bufadienolides with certain conventional chemotherapeutics
will be promising.

(6) Deciphering associated resistance reasons and developing
combinational strategy. Drug resistance is a major obstacle in
PCa treatment (Do andWebster, 2021; Zhao et al., 2021). While
we suspect that PCa cells may not develop resistance to
bufadienolides easily, it’s largely unknown when and how, as
well as the resistance rate and resistant mechanisms. For the full
application and indications, more studies are needed to reveal
resistant reasons.

Finally, more clinical trials in PCa are necessary to test the
efficacies of TVAs including their pharmaceutical formulations.

7 Conclusion

PCa, due to its high incidence rate and prevalence of drug
resistance, is one of the leading threats to men’s health. Chinese
traditional medicine toad venom and TVAs have emerged as
promising therapeutic agents in PCa, which have been validated
by cell- and animal-based models. Further in-depth studies are also
clearly needed for the underlying mechanisms, toxicology, and for
exploring combinational therapies in PCa.
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FIGURE 3
TVAs suppress cancer growth via various pathways. TVAs appear
to be able to suppress P-gp, activate p53, and regulate critical players
in EMT, inhibit Top II and modulate certain mi/lncRNA, leading to PCa
cells apoptosis which thereby suppressing cancer progression.
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