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Introduction: PIM kinases are targets for therapeutic intervention since they are
associated with a number of malignancies by boosting cell survival and
proliferation. Over the past years, the rate of new PIM inhibitors discovery has
increased significantly, however, new generation of potent molecules with the
right pharmacologic profiles were in demand that can probably lead to the
development of Pim kinase inhibitors that are effective against human cancer.

Method: In the current study, amachine learning and structure based approacheswere
used to generate novel and effective chemical therapeutics for PIM-1 kinase. Four
different machine learning methods, namely, support vector machine, random forest,
k-nearest neighbour and XGBoost have been used for the development of models.
Total, 54 Descriptors have been selected using the Boruta method.

Results: SVM, Random Forest and XGBoost shows better performance as compared to
k-NN. An ensemble approach was implemented and, finally, four potential molecules
(CHEMBL303779,CHEMBL690270,MHC07198, andCHEMBL748285)were found tobe
effective for themodulationof PIM-1 activity.Molecular docking andmolecular dynamic
simulation corroborated the potentiality of the selected molecules. The molecular
dynamics (MD) simulation study indicated the stability between protein and ligands.

Discussion: Our findings suggest that the selected models are robust and can be
potentially useful for facilitating the discovery against PIM kinase.
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Introduction

Proto-oncogene PIM-1 kinase is a member of the serine/threonine protein kinase family
(Narlik-Grassow et al., 2014). PIM kinases are involved in cancer cell survival, proliferation,
and tumor growth and are overexpressed in a number of hematological malignancies, in
addition to solid cancers such as pancreatic, prostate, and colon cancers (Amson et al., 1989;
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Li et al., 2006; Nawijn et al., 2011). PIM-1, PIM-2, and PIM-3 are the
three highly homologous genes that make up the PIM family. This
kinase family is highly homologous with the kinase domains,
especially in the linker region and the ATP-binding sites (Warfel
and Kraft, 2015). These enzymes are constitutively expressed in
tumors and are becoming more widely acknowledged as crucial
survival signal mediators in malignancies, stress responses, and
neurological development. PIM-1 kinase is a genuine oncogene
that is the focus of drug development research initiatives since it
has been linked to the emergence of leukemias, lymphomas, and
prostate cancer (Li et al., 2011; Le et al., 2015; Huang et al., 2022).
PIM kinases regulate the network of signaling pathways that are
critical for tumorigenesis and development, making them attractive
drug targets (Drygin et al., 2012; Tursynbay et al., 2016).

The crystal structure of PIM-1 has been published by numerous
independent groups in both the presence and the absence of its
inhibitors (Wang et al., 2013; Nonga et al., 2021). Structural research
on PIM-1 has found a number of distinctive characteristics that set it
apart from other kinases with known structures. The catalytic
domain of PIM-1 kinase spans amino acid positions 38 to
290 and includes a conserved glycine loop motif at positions
45 to 50, phosphate-binding sites at positions 44 to 52 and 67,
and a proton acceptor site at position 167. The hunt for small-
molecule ATP-competitive inhibitors with the potential to develop
into novel targeted oncology treatments has been sparked by the
involvement of the PIM kinases in important cancer hallmarks. The
majority of PIM-1 inhibitors have failed to evolve into a new
anticancer medication despite having excellent biochemical
potency, largely because they were found to have subpar
pharmacological qualities (Dakin et al., 2012; Drygin et al., 2012;
Ogawa et al., 2012; Vivek et al., 2017; Zhao et al., 2017; Park et al.,
2021). Due to their therapeutic value in cancer, the discovery of
PIM-1 inhibitors has increasingly attracted much attention in past
few years. The rate of new PIM inhibitor discovery has increased
significantly, and there has been demand for a new generation of
potent molecules with the right pharmacologic profiles that can
probably lead to the development of PIM kinase inhibitors that are
effective against human cancer.

This work was undertaken to develop machine learning-based
classification models to identify a new class of PIM-1 inhibitors.
Under this approach, four different machine learning methods were
applied to develop the classification models. These models were
further used to screen chemical libraries to retrieve novel potent
PIM-1 inhibitors. In addition, we also carried out molecular docking
and molecular dynamics simulations to investigate the interaction
and stability within the catalytic site of PIM-1 kinase. This
multistage approach allows us to screen large chemical libraries
efficiently and effectively in a reasonable time. Moreover, it can also
help us identify novel chemical scaffolds for potent PIM-1
inhibitors.

Materials and methods

Data collection and model building

All chemical compounds with activity against PIM-1 were
collected from the literature and the ChEMBL database (Gaulton

et al., 2012). Inorganic and duplicate compounds were removed
from the list. Generally, compounds with IC50 ≤ 10 μMwill likely be
“active,” predicting a large number of active molecules. However,
such a high fraction of active compounds cannot be expected from
any experimental platform. Therefore, in order to make the most
efficient use of costly experimental validation, the optimal model
should identify compounds with affinity higher than 10 μM. The
higher the value, the higher the drug dose needed to achieve the
required potency and, thus, the higher the chance of “off-target”
activity. To address this issue, we chose to set the decision boundary
at IC50 ≤ 1 μM for active molecules. Molecular descriptors were
calculated using the PaDEL software (Yap, 2011). A two-tier
selection procedure was applied to select the best descriptors.
First, we randomly selected one descriptor from a pair
showing >0.85 correlation. Second, descriptors were reduced
using the Boruta method (Kursa et al., 2010). We used four
different machine learning methods, namely, Support Vector
Machine (SVM) (Mitchell, 1997), random forest (Breiman, 2001),
Extreme Gradient Boosting (XGBoost) (Chen and Guestrin, 2016),
and kappa nearest neighbor (kNN) (Voulgaris andMagoulas, 2008),
to build the classification models. All the classification experiments
and calculations were conducted using the R.3.0.2 environment
(http://www.R-project.org/) and Python (http://www.python.org/)
platform. The compounds used in training and test sets are given in
Supplementary Tables S1 and S2, respectively.

Model validation

A receiver operating characteristic (ROC) plot and area under the
curve (AUC) were used to assess the performance of themodel (Hanley
andMcNeil, 1983; Park et al., 2004). In Table 1, the terms precision (Eq.
1), recall (Eq. 2), accuracy (Eq. 3), and F1 score (Eq. 4) are defined along
with their relationships to the statistical performance calculations used
to assess the quality of the model.

Precision � True positive

True positive + FalseNegative
, (1)

Recall � True positive

True positive + FalseNegative
, (2)

Accuracy � TP + TN

TP + TN + FP + FN
, (3)

F1 � 1.
PrecisionXRecall

Precision + Recall
. (4)

Applicability domain

In order to highlight the region of the chemical space that contains
the chemicals for which the model is expected to make accurate
predictions, a well-validated predictive model needs to have a defined
applicability domain (AD) (Rakhimbekova et al., 2020). Any predictive
model must verify its constraints in terms of its structural domain and
response space. As a result, determining amodel’s AD and evaluating the
accuracy of its predictions are both challenging tasks. These QSAR
models typically use the training set to cover a certain chemical space.
The model’s predictions are accurate if any query compound falls within
this definition of AD. If not, the prediction might not conform to the
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model’s presumptions. Principal component analysis (PCA) (Sushko
et al., 2010) has been employed in our work to define the AD of the
compounds used in this study.

Y-randomization

To test the robustness of the proposed models, y-randomization
was applied. This technique involves randomly mixing up the values
of the target variable in the training set (Rücker et al., 2007; Lipiński
and Szurmak, 2017). The same parameters used in the initial model
are then applied to a new prediction generated with the scrambled
data. Every estimate of the model’s accuracy was recorded. In total,
50% of the compounds in the training set were resampled and used
in a 500-run y-randomization test.

Similarity calculations

The Tanimoto coefficient (Tc) (Eq. 5) was computed using
MACCS-166 fingerprints to quantify chemical similarity. The
active and inactive chemicals in the training set were compared
against false and true positive compounds in systematic pairwise
similarity computations.

Tc � C

A + B − C
. (5)

Substructure analyses

Molecular substructures related to PIM activity were analyzed
using the distribution of MACSS fingerprints in active and inactive
compounds (Eq. 6).

Frequency � ∑
N
i FP 1|0( )

N
X100. (6)

Analysis of probability scores

Additionally, the probability scores of the developed
classification models were examined. In general, a molecule
is defined as inactive if its probability score is lower than 0.5,
while a compound with a probability score of 0.5 is considered
active (Ponzoni et al., 2019). The more this score approaches 1,
the more confident we are in our prediction. Here, we examined
the probability score distributions for TP (true positive), TN

TABLE 1 Evaluation metrics for the test set.

Method Descriptors Precision Recall Accuracy (Q) F1 score AUC

XGBoost All descriptors 0.82 0.81 0.83 0.97 0.89

Boruta 0.81 0.79 0.85 0.80 0.88

MACCS 0.80 0.76 0.81 0.77 0.92

Random forest All descriptors 0.85 0.81 0.86 0.98 0.91

Boruta 0.86 0.81 0.87 0.83 0.92

MACCS 0.80 0.76 0.82 0.78 0.90

SVM All descriptors 0.74 0.73 0.78 0.86 0.83

Boruta 0.75 0.72 0.78 0.71 0.82

MACCS 0.70 0.73 0.70 0.69 0.82

kNN All descriptors 0.77 0.75 0.80 0.75 0.84

Boruta 0.72 0.67 0.75 0.68 0.78

MACCS 0.81 0.76 0.82 0.77 0.82

TABLE 2 Probability scores and docking scores of the selected compounds.

Compound ID Classifier probability Binding energy

XGBoost Random forest SVM kNN

CHEMBL303779 0.82 0.74 0.84 0.78 −8.34

CHEMBL690270 0.76 0.70 0.92 0.85 −7.56

CHEMBL748285 0.72 0.74 0.68 0.63 −9.78

EBM-MPC 0.81 0.75 0.71 0.71 −8.45
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(true negative), FP (false positive), and FN (false negative)
results.

Chemical database screening

The developed models were used to screen the hits against PIM-
1. The NCI library and Maybridge databases were used for virtual
screening. The National Cancer Institute maintains a repository of
compounds that have been evaluated as potential anticancer agents.
These compounds represent unique structural diversity based on
synthetic and natural products. The Maybridge library consists of a
highly diverse set of over 53,000 lead-like compounds. Maybridge
Hit-to-Lead was designed for medicinal chemistry, allowing SAR
development and hit-to-lead optimization. The following filters
were used to select the hits: Filter 1: compounds predicted to be
active by all the validated models; Filter 2: compounds having a
probability score; and Filter 3: compounds falling within the
chemical space of the training set. These compounds were
further processed for molecular docking, followed by molecular
dynamics simulations. Finally, compounds with the best affinity and
conformance within the active site were selected and analyzed.

Molecular docking

Molecular docking was implemented to identify the best
physical confirmation of inhibitor binding within the active site
of PIM-1 kinase. The PIM kinase enzyme structure was taken from
the Protein Data Bank (PDB ID: 5KZI). All of the docking
simulations for this work were performed using AutoDock Vina
(Trott and OlsonAutoDock, 2009) with a 1 spacing, default
exhaustiveness, and full ligand flexibility. The grid resolution was
internally set to 1Å. We set the number of binding modes to 10 and
exhaustiveness to 8. A cubical grid of size 60 × 60 × 60 size with
0.375 Å spacing was used around the active sites of the protein. To
acquire the structure in the PDBQT format, polar hydrogen atoms
were added using AutoDock Tools 92.

Molecular dynamics simulations

Selected best compounds were further subjected to molecular
dynamics (MD) simulations using Groningen Machine for
Chemical Simulations (GROMACS v5.1.5) (Pronk et al., 2013).
The parameters and coordinate files for PIM-1 kinase and
selected potential hit compounds were generated using the
CHARMM27 forcefield in GROMACS and PRODRG,
respectively. The TIP3P water model was used for each
simulation system, which was neutralized by the addition of Na+

ions in a dodecahedron periodic box. Energy minimization was
performed for 50,000 nstep using the steepest descent algorithm to
avoid steric clashes. Equilibration of each system was performed in
two stages: the first phase was carried out with a constant number of
particles, volume, and temperature (NVT) ensemble for 500 ps at
300 K, using the V-rescale thermostat (Bussi et al., 2007); and in the
second phase, the pressure of each system was equilibrated for
500 ps at a constant number of particles, pressure, and temperature

(NPT) at 1 bar using a Parrinello–Rahman barostat (Parrinello and
Rahman, 1981). Each equilibrated system was simulated for 30 ns
under periodic boundary conditions to avoid edge effects.
Electrostatic interactions were handled by the particle mesh
Ewald (PME) method, while the heavy-atom bonds were
restrained using the LINCS algorithm.

Results

Model development and evaluation

In total, 54 descriptors from the set of 240 were eventually
selected using the Boruta method (Supplementary Table S3). All
these descriptors belonged to 12 different classes. The descriptors
include autocorrelation, information content, atom-type
electrotopological state, Burden modified eigenvalues, molecular
distance edge, carbon type, and molecular linear free energy
relation. The models were trained using four machine learning
methods (SVM, random forest, XGBoost, and kNN). Evaluation
metrics for the developed models are given in Table 1, including
accuracy, recall, precision, F1 Score (a measure of a model’s
accuracy, which takes into account both precision and recall),
and Area Under the Curve (AUC) values. SVM, random forest,
and XGBoost performed than kNN according to these metrics in
combination with the selected descriptor set. Among the three,
random forest achieved the best accuracy, at 0.87 for the test set
(with selected descriptors), as compared to SVM (0.78) and
XGBoost (0.84). In addition, these models also had significant
AUC values (Figure 1).

Applicability domain and y-randomization

An applicability domain (AD) analysis was performed to
check the reliability of the generated classification models.
Figure 2 shows a scatter plot of the PC1 and PC2 coordinates
derived from the set of selected PIM-1 compound descriptors.
The training and test compounds share similar PC1 and
PC2 coordinates, suggesting that predictions were within the
applicability domain (AD) of both the training and test sets. To
check the robustness of the developed models, y-randomization
tests were performed (Rücker et al., 2007). Y-randomization test
accuracies were found to be lower, and none of the random trials
achieved higher scores than our main models (Figure 3). The
average accuracy across all randomly generated models were
found to be less than 0.58. This confirms that the selected
models are robust and reliable and were not generated by
chance correlations. A pairwise comparison of the compounds
in each cluster was found to reflect reasonable Tanimoto
coefficient similarities between them.

Probability analyses

Probability scores of the selected models, reflecting the
probability of belonging to each class, were also analyzed. It is
known that a compound with a probability score of ≥0.5 is classified
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as active, whereas a molecule with a probability below <0.5 is
classified as inactive. As this score approaches 1, the higher the
value, the higher the model’s confidence in the prediction is
(Minerali et al., 2020; Esposito et al., 2021). In our study, we
analyzed the distribution of probability scores among TN (true
negative), FP (false positive), TP (true positive), and FN (false
negative) results. For the SVM model, compounds with a
probability score of more than 0.80 (an average value) were more
likely to be active, whereas compounds with a probability score of
0.36 were more likely to be inactive. In the case of the random forest
model, a compound with a probability score of more than 0.87 was
more likely to be active, whereas a compound with a probability
score of 0.24 was more likely to be inactive. Random forest achieved

values of 0.95 and 0.11 for active and inactive compounds,
respectively, indicating greater success in predicting compound
activity with the desired probability score (Supplementary Figure
S1). False positive compounds were predicted with probability
scores of 0.63, 0.65, and 0.69 for the random forest, XGBoost,
and SVM models, respectively. In contrast, false negative
compounds were found to have probability scores of 0.31, 0.42,
and 0.14 for the random forest, SVM, and XGBoost models,
respectively. Each predictive model’s effectiveness in the early
recognition of hits was visually evaluated using a cumulative gain
plot (Table 2). The cumulative gain curve is an evaluation curve that
evaluates the model’s performance and contrasts the outcomes with
a random selection. It displays the percentage of targets identified

FIGURE 1
ROC curves of the models based on four machine learning approaches for (A) all descriptors; (B) selected descriptors (Boruta method); (C)MACCS
fingerprints.

FIGURE 2
Applicability domain plot based on principal component analysis (PCA) for (A) training set and (B) test set.
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when taking into account a particular portion of the population that
has the highest likelihood of being a target based on the model. The
comparison showed that the XGBoost and random forest methods
performed better than SVM and kNN in terms of early recognition
of hits (Figure 4).

MACCS fingerprint analyses

Molecular substructures related to the PIM-1 activity of the
compounds can be identified by analyzing the bits in the MACCS
fingerprints. We analyzed the MACCS fingerprints showing a
reasonable difference between active and inactive compounds
(Supplementary Table S4). The occurrence of MACCS fingerprints
differed significantly between active and inactive compounds in the
training dataset, suggesting that the substructures represented by these
features may be closely related to PIM-1 activity. Descriptions and the
number of occurrences of these substructures are listed in Supplementary
Table S4. It was found that MACCS38, MACCS52, MACCS92,
MACCS98, MACCS107, MACCSFP142, etc. are prevalent in active
molecules. This is consistent with previous studies, which shows that

compounds with such functional groups have therapeutic potential
against PIM kinase (Tsuganezawa et al., 2012; El-Hawary et al., 2018;
Park et al., 2021).

Database screening and molecular
interaction analyses

The NCI and Maybridge databases were used to screen the potential
hits from validated models. Commonly predicted active compounds with
high probability scores were selected and further filtered out within the
applicability domain (AD) of the training set. These compounds were
further subjected to molecular docking simulation (Table 2). Finally, four
compounds (CHEMBL303779, CHEMBL690270, CHEMBL748285, and
N-[(1-ethylbenzimidazol-2-yl)methyl]-3-(4-methoxyphenyl)-1H-
pyrazole-4-carboxamide (EBM-MPC)) were observed to have reasonable
binding affinity and stable interaction with the catalytic residues in the
active site (Table.3 and Figure 5). A literature survey revealed that Leu44,
Lys67, Glu121, and Asp186 are crucial for the interaction of inhibitors
(Tsuganezawa et al., 2012; El-Hawary et al., 2018; Park et al., 2021). It can
be observed in Figure 4 that CHEMBL690270, CHEMBL303779, and
EBM-MPC form hydrogen bond interactions with Lys67 and
hydrophobic interactions with Asp186 (Figure 6). In contrast,
CHEMBL748285 forms hydrogen bonds with Asp186 (Figure 6). The
quinazoline ring of compounds was involved in multiple p–alkyl
interactions. In addition, a number of hydrophobic contacts,
particularly residues Leu44, Gly47, Phe49, Ile104, and Leu120, stabilize
interaction with hits. PIM inhibitors fall into two broad categories: ATP
mimetics, which form hydrogen bonds with the glutamate residue that
serves as the hinge (Glu121), andnon-ATPmimetics, which bind far from
the hinge or interact with the hinge through hydrophobic interactions
with a number of residues in the specific hydrophobic pocket that serves
as the hinge environment (El-Hawary et al., 2018; Park et al., 2021). The
Tanimoto coefficient (Tc) similarity score of these selected hits was found
to be ≤ 0.5 with high-activity compounds (Figure 5B).

MD simulation analyses

By analyzing 100-ns MD trajectories, the structural changes to
PIM-1 upon inhibitor binding were studied. We examined the RMSD

FIGURE 3
Y-randomization models. (A) Accuracy; (B) AUC values. A total of 500 y-randomization runs were performed.

FIGURE 4
Probabilistic distribution plot showing cumulative gain for the
developed models.
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of the protein backbone and the RMSF of the protein’s alpha-carbon
atoms. As shown in Figure 6, all the systems exhibited stability
throughout the 100-ns simulation. The average RMSD value for all
four systems was observed to be below 0.31 nm, which indicated that
simulated complexes displayed RMSD values below the threshold. The
average RMSD values further showed that the CHEMBL690270 PIM-1
complex displayed less deviation (0.26 nm), whereas
CHEMBL303779 and CHEMBL748285 demonstrated similar
average values of 0.34 nm (Figure 7A). RMSF is a significant value,
used to characterize each residue’s fluctuation rate upon ligand binding.
It was observed that the inhibitor binding residues (Leu44, Phe49,
Lys67, Glu121, and Asp186) did not fluctuate significantly (Figure 7B).

Discussion

This study was designed with the aim of building a classification
model to predict potential hits for PIM-1 kinase. Four different
machine learning approaches were used to build the models. Our

proposed models performed well in terms of accuracy, F1 score,
precision, and recall. We used the area under the receiver operating
characteristic curve approach to compare classifiers. The ROC curve
is a graphical representation that contrasts a classifier’s true
positive rate and false positive rate at various threshold levels.
The area under this curve, or AUC, is thus a useful metric for
assessing machine learning algorithms, since it shows the degree of
separability (Parrinello and Rahman, 1981). A ROC curve with a
higher AUC value implies greater sensitivity in identifying
active molecules and specificity in rejecting inactive compounds
(Figure 1). In addition, our study also distinguished and ranked
the top 18 variables, including 2D autocorrelation, Burden modified
eigenvalues, and topological charge. These descriptors have the
capacity to distinguish between active and inactive compounds.

QSAR Classification models must undergo an extensive
validation process, and the reliability of those models must be
objectively determined. The OECD guidelines state that a model
must have a clearly defined domain of applicability (Dwyer et al.,
2013). Additionally, the dataset for such models with a defined AD

TABLE 3 Binding mode analysis of the four selected inhibitors.

Compound Hydrogen
bonding

Hydrophobic interaction H-bond
range (Å)

Hydrophobic interaction
range (Å)

CHEMBL303779 Lys67 and Arg122 Gly45, Gly47, Gly48, Phe49, Ala65, Lys67, Ile104, Leu120, Glu121,
Arg122, Pro123, Val126, and Leu174

2.7–3.2 3.3–4.9

CHEMBL690270 Lys67 and Asp186 Leu44, Gly45, Phe49, Lys67, Ile104, Val126, Asp128, Glu171, Asn172,
Leu174, and Asp186

2.4–2.6 3.3–4.7

EBM-MPC Lys67 and Glu121 Gly47, Val52, Lys67, Ile104, Leu120, Glu121, Pro123, Val126, Leu174,
and Asp186

2.8–3.0 3.6–4.89

CHEMBL748285 Asn172 and Asp186 Leu44, Val52, Phe49, Asn172, Leu174, Leu182, Leu184, and Asp186 1.6–3.1 3.6–4.4

FIGURE 5
Chemical space and similarity analyses for selected compounds. (A)Chemical space of selected compounds; (B) heatmap of the distancematrix for
the selected compounds and active compounds in the training set.
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should cover a broad chemical space and a diverse range of
structural types. The AD of PIM kinase inhibitors has been
defined using a principal component analysis-based approach for
model development. A sufficient level of assurance in the produced
models can be seen in the 2D plot obtained from the first two PCs,
which represents the training and test set compounds, illustrating
their structural variety and similar chemical space (Figure 2). To
assess the likelihood of a random correlation for a chosen descriptor,
y-randomization was utilized. This technique is used to assess the
reliability or robustness of QSAR models and is recognized as one of
the most effective validation processes (Rücker et al., 2007). By
comparing a developed model’s performance to the average measure
of 500 random models, which are obtained by using the same
parameters as those used to construct the original model along
with a randomly scrambled target variable class, the statistical
significance of the developed model can be examined. The results
of the y-randomization tests demonstrated that the models created

for this study did not exhibit these connections by chance and that a
true structure–activity relationship existed (Figure 3).

Fingerprints describe the molecular makeup of a compound. The
description of each molecule is given as a string of binary substructures
called a fingerprint. The corresponding fingerprint bit is set to 1 if the
specified substructure is present in the given molecule; otherwise, it is
set to 0. In our study, we used MACCS fingerprints to represent the
presence of structures and their representative substructures in active
and inactive compounds. These molecules contained MACCS65,
MACCS128, and MACCS90. Compounds having such substructures
were found to exhibit reasonable levels of activity toward PIM-1 kinase
(Akué-Gédu et al., 2010; Dwyer et al., 2013; Hu et al., 2015; Wurz et al.,
2015; Li et al., 2016).

To identify potent PIM-1 inhibitors, virtual screening of the NCI
and Maybridge databases was performed using the validated models.
To gain structural insight relevant to the inhibitory activities of the
newly identified inhibitors, their binding modes in the binding site of

FIGURE 6
Binding mode analyses of selected compounds within the active site of PIM-1 kinase. Active site residues are shown as gray sticks; the protein
backbone is shown as a light gray wire; hydrogen bonds are shown with a green dashed line.
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PIM-1 were examined. Figure 6 shows the most stable binding
configurations of selected four compounds derived via docking
simulations with potent inhibitors. These compounds appear to be
accommodated in a similar way in the binding site of PIM1 (Xia et al.,
2009; Abdelaziz et al., 2018; Ibrahim et al., 2022). The necessity of the
interactions with the hinge region and Gly-loop residues (Qian et al.,
2005; Pogacic et al., 2007; Tsuganezawa et al., 2012; Casuscelli et al.,
2013; Fan et al., 2016; Abdelaziz et al., 2018; Bima et al., 2022; Ibrahim
et al., 2022; Shaik et al., 2022) for tight binding to PIM-1 was also
implicated with potent inhibitors (Xia et al., 2009; Ibrahim et al., 2022).
Moreover, these four compounds can also interact with the activation
loop including the Asp186 residue. A hydrophobic cavity is formed
among the Ala65, Ile104, Phe187, Val52, Lys67, and Leu120 residues,
and this maintains molecular stability through various hydrophobic
forces. Similar interactions have also been noted in earlier published
investigations, highlighting the significance of these amino acids for the
assembly of PIM-1 inhibitor complexes (Tsuganezawa et al., 2012; El-
Hawary et al., 2018; Park et al., 2021). Residue Lys67 is known to be
significant in stabilizing the interaction with the compound and to play
an important role in the catalytic activity of PIM-1 (Pogacic et al., 2007;
Fan et al., 2016). In our study, we found that all four compounds
interacted with Lys67, either with hydrogen bonds or through
hydrophobic contact. Compared to the currently available PIM-1
inhibitors, the four selected compounds exhibit low Tanimoto
coefficient (Tc) similarities, highlighting their structural novelty and
druggability. Moreover, all these compounds were found to have a
similar chemical boundary (Figure 5). Therefore, models constructed
using these selected descriptors have good interpretability and
reliability.

Molecular docking studies were conducted to analyze the binding
mode of inhibitors at the PIM-1 catalytic domain. Notably, these
inhibitors are positioned in the active site, between the residues Leu44,
Gly45, Phe49, Lys67, Ile104, Lys67, Leu172, Leu174, and Asp186
(Table 3). These inhibitors were found to have stabilized the complex
with hydrogen and hydrophobic interactions with residues, namely,
Lys67 and Asp186. This is consistent with earlier research that
revealed that these amino acid residues were essential for the
catalytic activity of PIM-1 kinase (Qian et al., 2005; Banaganapalli
et al., 2016; Shaik et al., 2021; Bima et al., 2022; Shaik et al., 2022).

Although molecular docking has strong computational
capabilities, its predictions of the shape of the protein–ligand
binding are frequently inaccurate. Thus, in this study, we

performed 100-ns MD simulations to test the stability of the
chosen compounds in the PIM-1 binding pocket. It was
determined that selected compounds remained stable in the
binding pocket, as analyzed through the RMSD, RMSF, and
hydrogen bonds. Most notably, stable hydrogen bonds with the
residues Lys67 and Asp186 were observed in the complexes with the
compounds (namely, CHEMBL748285, and CHEMBL690270).

Conclusion

The PIM kinase family has become a focus of attention in drug
discovery. In particular, the search for inhibitors simultaneously
targeting PIM-1 isoforms is of great interest because it opens new
horizons toward the discovery of new chemicals capable of
therapeutically modulating many biochemical pathways involved in
the emergence and development of various cancers. In the present
study, ensemble learning based on four different machine learning
approaches, together withmolecular docking andmolecular dynamics
simulation, was successfully utilized to identify novel scaffold
inhibitors against PIM kinase. By combining machine learning and
structure-based approaches, it was possible to evaluate the
quantitative contributions of the molecules to the activity. This
permitted the guided design of four new molecules, predicted to
be potential PIM-1 inhibitors. The molecular docking analyses
showed that the active inhibitors were able to interact with the
amino acids (Lys67, Asp186, Leu44, Glu171, etc.) crucial for
catalytic activity of PIM kinase. The interactions were found to be
stable, as investigated through 100-nsmolecular dynamics simulation.
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