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A {(3,4),4}-fullerene graph G is a 4-regular plane graphwith exactly eight triangular
faces and other quadrangular faces. An edge subset S ofG is called an anti-Kekulé
set, if G − S is a connected subgraph without perfect matchings. The anti-Kekulé
number ofG is the smallest cardinality of anti-Kekulé sets and is denoted by ak(G).
In this paper, we show that 4≤ ak(G)≤ 5; at the same time, we determine that the
{(3, 4), 4}-fullerene graph with anti-Kekulé number 4 consists of two kinds of
graphs: one of which is the graph H1 consisting of the tubular graph Qn (n≥0),
where Qn is composed of n (n≥0) concentric layers of quadrangles, capped on
each end by a cap formed by four triangles which share a common vertex (see
Figure 2 for the graph Qn); and the other is the graph H2, which contains four
diamonds D1, D2, D3, and D4, where each diamond Di (1≤ i≤4) consists of two
adjacent triangles with a common edge ei (1≤ i≤4) such that four edges e1, e2, e3,
and e4 form a matching (see Figure 7D for the four diamonds D1 − D4). As a
consequence, we prove that if G ∈ H1, then ak(G) � 4; moreover, if G ∈ H2, we
give the condition to judge that the anti-Kekulé number of graph G is 4 or 5.
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1 Introduction

A {(3,4),4}-fullerene graph G is a 4-regular plane graph with exactly eight triangular faces
and other quadrangular faces. This concept of the {(3, 4), 4}-fullerene comes from Deza’s
{(R,k)}-fullerene (Deza and Sikirić, 2012). Fixing R ⊂ N, a {(R, k)}-fullerene graph is a k-
regular (k≥ 3), and it is mapped on a sphere whose faces are i-gons (i ∈ R). A {(a,b),k}-
fullerene is {(R, k)}-fullerene with R � a, b{ } (1≤ a≤ b). The {(a, b), k}-fullerene draws
attention because it includes the mostly widely researched graphs, such as fullerenes (i.e.,{(5,
6), 3}-fullerenes), boron–nitrogen fullerenes (i.e.,{(4, 6), 3}-fullerenes), and (3,6)-fullerenes
(i.e.,{(3, 6), 3}-fullerenes) (Yang and Zhang, 2012).

The anti-Kekulé number of a graph was introduced by Vukičević and Trinajstić (2007).
They introduced the anti-Kekulé number as the smallest number of edges that have to be
removed from a benzenoid to remain connected but without a Kekulé structure. Here, a
Kekulé structure corresponds to a perfect matching in mathematics; it is known that
benzenoid hydrocarbon has better stability if it has a lower anti-Kekulé number. Veljan
and Vukičević (2008) found that the anti-Kekulé numbers of the infinite triangular,
rectangular, and hexagonal grids are 9, 6 and 4, respectively. Zhang et al. (2011) proved
that the anti-Kekulé number of cata-condensed phenylenes is 3. For fullerenes, Vukičević
(2007) proved that C60 has anti-Kekulé number 4, and Kutnar et al. (2009) showed that the
leapfrog fullerenes have the anti-Kekulé number 3 or 4 and that for each leapfrog fullerene,
the anti-Kekulé number can be established by observing the finite number of cases
independent of the size of the fullerene. Furthermore, this result was improved by Yang
et al. (2012) by proving that all fullerenes have anti-Kekulé number 4.
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In general, Li et al. (2019) showed that the anti-Kekulé number
of a 2-connected cubic graph is either 3 or 4; moreover, all (4,6)-
fullerenes have the anti-Kekulé number 4, and all the (3,6)-fullerenes
have anti-Kekulé number 3. Zhao and Zhang (2020) confirmed all
(4,5,6)-fullerenes have anti-Kekulé number 3, which consist of four
sporadic (4,5,6)-fullerenes (F12, F14, F18, and F20) and three classes of
(4,5,6)-fullerenes with at least two and at most six pentagons.

Here, we consider the {(3, 4), 4}-fullerene graphs. In the next
section, we recall some concepts and results needed for our
discussion. In Section 3, by using Tutte’s Theorem on perfect
matching of graphs, we determine the scope of the anti-Kekulé
number of the {(3, 4), 4}-fullerene. Finally, we show that the {(3, 4),
4}-fullerene with anti-Kekulé number 4 consists of two kinds of
graphs H1,H2. As a consequence, we prove that if G ∈ H1, then
ak(G) � 4. Moreover, if G ∈ H2, we give the condition to judge that
the anti-Kekulé number of graph G is 4 or 5.

2 Definitions and preliminary results

Let G � (V, E) be a simple and connected plane graph with
vertex set V(G) and edge set E(G). For V′ ⊆ V(G), G − V′ denotes
the subgraph obtained from G by deleting the vertices in V′ together
with their incident edges. If V′ = v, we write G − v. Similarly, for
E′ ⊆ E(G), G − E′ denotes the graph with vertex set V(G) and edge
set E(G) − E′. If E′ = e, we write G − e. Let V′ be a non-empty set;
G[V′] denotes the induced subgraph of G induced by the vertices of
V′; similarly, if E′ ⊆ E(G),G[E′] denotes the induced subgraph ofG
induced by the edges of E′.

For a subgraph H of G, the induced subgraph of G induced by
vertices of V(G) − V(H) is denoted by �H. A plane graph G
partitions the rest of the plane into a number of arcwise-
connected open sets. These sets are called the faces of G. A face
is said to be incident with the vertices and edges in its boundary, and
two faces are adjacent if their boundaries have an edge in common.
Let F(G) be the set of the faces of G.

An edge-cut of a connected plane graph G is a subset of edges
C ⊆ E(G) such that G − C is disconnected. A k-edge-cut is an edge-
cut with k edges. A graph G is k-edge-connected if G cannot be
separated into at least two components by removing less than k
edges. An edge-cut C of a graph G is cyclic if its removal separates
two cycles. A graph G is cyclically k-edge-connected if G cannot be
separated into at least two components, each containing a cycle, by
removing less than k edges. A cycle is called a facial cycle if it is the
boundary of a face.

For subgraphs H1 and H2 of a plane graph G, E(H1, H2) �
E(V(H1), V(H2)) represents the set of edges whose two end
vertices are in V(H1) and V(H2) separately. If V(H1) and
V(H2) are two non-empty disjoint vertex subsets such that
V(H1) ∪ V(H2) � V(G), then E(H1, H2) is an edge-cut of G,
and we simply write ∇(H1) � ∇(V(H1)) or ∇(H2) � ∇(V(H2)).
We use z(G) to denote the boundary of G, that is, the boundary of
the infinite face of G.

Amatching M of a graphG is a set of edges ofG such that no two
edges fromM have a vertex in common. A matchingM is perfect if it
covers every vertex of G. A perfect matching is also called a Kekulé
structure in chemistry.

Let G be a connected graph with at least one perfect matching.
For S ⊆ E(G), we call S an anti-Kekulé set if G − S is connected but
has no perfect matchings. The smallest cardinality of anti-Kekulé
sets of G is called the anti-Kekulé number and denoted by ak(G).

For the edge connectivity of the {(3, 4), 4}-fullerene, we have the
following results.

Lemma 2.1. ((Yang et al., 2023) Lemma 2.3) Every {(3, 4), 4}-
fullerene is cyclically 4-edge-connected.

Lemma 2.2. ((Yang et al., 2023) Corollary 2.4) Every {(3, 4), 4}-
fullerene is 4-edge-connected.

Qn is the graph consisting of n concentric layers of quadrangles,
capped on each end by a cap formed by four triangles which share a
common vertex as shown in Figure 2. In particular, Q0 is what we
call an octahedron (see Figure 5F).

Lemma 2.3. ((Yang et al., 2023) Lemma 2.5) If G has a cyclical 4-
edge-cut E � e1, e2, e3, e4{ }, thenG � Qn (n≥ 1), where the four edges
e1, e2, e3, and e4 form a matching, and each ei belongs to the
intersection of two quadrilateral faces for i = 1, 2, 3, 4.

Tutte’s theorem plays an important role in the process of proof.

Theorem 2.4. (Lovász and Plummer, 2009) (Tutte’s theorem) A
graph G has a perfect matching if and only if for any X ⊆ V(G),
o(G −X)≤ |X|, where o(G −X) denotes the number of odd
components of G − X.

Here, an odd component of G − X is trivial if it is just a single
vertex and non-trivial otherwise.

All graph-theoretical terms and concepts used but unexplained
in this article are standard and can be found in many textbooks, such
as Lovász and Plummer (2009).

3 Main results

From now on, let G always be a {(3, 4), 4}-fullerene; we called a
4-edge-cut E inG trivial if E � ∇(v), that is, E consists of the four edges
incident to v. By Lemma 2.3, if E is a cyclical 4-edge-cut, then the four
edges in E form a matching. Moreover, if E is not a cyclical 4-edge-cut,
then E is trivial. So, we have the following lemma.

Lemma 3.1. Let G be a {(3, 4), 4}-fullerene, E � e1, e2, e3, e4{ } be an
4-edge-cut, but it is not cyclical, then E is trivial.

Proof. Since E � e1, e2, e3, e4{ } is an 4-edge-cut, G − E is not
connected. Then, G − E has at least two components. Moreover,
as G is 4-edge-connected by Lemma 2.2, G − E has at most two
components. So, G − E has exactly two components.

Let G1, G2 be two components of G − E. Since E is not cyclical,
without loss of generality, we suppose that G1 is a forest; then, we
have

n − e � l, (1)
where n, e, l is the number of vertices, edges, and trees in G1,
respectively. Furthermore, since each vertex of G is of degree 4, we
have
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4n − 4 � 2e. (2)
Combing with equalities 1) and 2), we know n = l = 1 and e = 0,

which means G1 only consists of a single vertex. So, E is trivial. □
Lemma 3.1 plays an important role in the proof of the following

theorem. Next, we explore the scope of the anti-Kekulé number of
{(3, 4), 4}-fullerene.

Theorem 3.2. Let G be a {(3, 4), 4}-fullerene, then 4≤ ak(G)≤ 5.

Proof. First, we show ak(G)≤ 5. Let t be any triangle in G and the
boundary of t was labeled v1v2v3 along the clockwise direction.
Denote the other two edges incident to v1 (v2) by e1, e2 (e4, e5), set
e3 = v1v2, then e1, e2, e3, e4, and e5 are pairwise different, set E′ �
e1, e2, e3, e4, e5{ } (see Figure 1) and G′ = G − E′.

In order to show ak(G)≤ 5, we only need to prove that G′ is
connected and has no perfect matchings. Then, G′ has no perfect
matchings since the two edges v1v3, v2v3 cannot be covered by a
perfect matching at the same time in G′.

In the following, we show that G′ is connected. We proved this
using reduction to absurdity, suppose G′ is not connected, then G′
has a component (say G1) containing vertices v1, v2, and v3, as v1,
v2, and v3 are connected by the path v1v3v2 in G1. On the other
hand, since e3 = v1v2 connects two vertices v1, v2 in G and E′ �
e1, e2, e3, e4, e5{ } is an edge cut of G, even if we remove five edges,
e1, e2, e3, e4, and e5, to disconnect G, it is actually the same as
removing four edges, e1, e2, e4, and e5 (see Figure 1); that is, E1 �
e1, e2, e4, e5{ } is an 4-edge-cut. Moreover, due to Lemma 2.3, E1
cannot be a cyclical 4-edge-cut as e1, e2, e4, and e5 is not a
matching. Then, according to Lemma 3.1, E1 is a trivial 4-
edge-cut. Thus, G1 or G1 is a single vertex, both of which are
impossible by the definition of G. So G′ is connected. Thus,

ak G( )≤ 5. (3)
Finally, we show ak(G)≥ 4. By the definition of an anti-Kekulé

set, suppose E1′ � e1′, e2′, e3′, . . . , ek′{ }was the smallest anti-Kekulé set
of G, that is, ak(G) � k. Then, G1′ � G − E1′ was connected and has
no perfect matching. Hence, according to Theorem 2.4, there exists a
non-empty subset X0 ⊆ V(G1′) such that o(G1′ −X0)> |X0|, since
|V(G1′)| � |V(G)| and |V(G)| is even, o(G1′ −X0) and |X0| have the
same parity. Consequently,

o G1′ −X0( )≥ X0| | + 2 (4)
For the sake of convenience, we let α � o(G1′ −X0). If we chose

an X0 with the maximum size, then G1′ −X0 has no even
components. On the contrary, we suppose there exists an even
component (say F) of G1′ −X0. For any vertex v ∈ V(F),
o(F − v)≥ 1. Let X′ � X0 ∪ v{ }, thus o(G1′ −X′) � o(G1′ −X0)
+o(F − v)≥ |X0| + 2 + 1 � |X′| + 2, which is a contradiction to
the choice of X0.

In addition,E1′ is the smallest anti-Kekulé set ofG, thenG1′ + ei′ has
perfect matchings for any edge ei′ ∈ E1′ for 1 ≤ i ≤ k. On the other hand,
the number of odd components of G1′ −X0 was not decreased or
decreased by at most one or two if we add one edge ei′ to G1′, that is,

X0| |≥ o G1′ + ei′ −X0( )≥ α-2. (5)
By inequality (4), we have

X0| |≤ α-2. (6)
Combined with inequalities (5) and (6), we have α � |X0| + 2

and each edge ei′ ∈ E1′ connects two odd components ofG1′ −X0. Let
H1, H2, H3, . . ., Hα be the odd components of G1′ −X0. Then, due to
Lemma 2.2, |∇(Hi)|≥ 4 (1≤ i≤ α); therefore,

4α − 2k≤ ∑
α

i�1
∇ Hi( )| | − 2 E1′

∣∣∣∣
∣∣∣∣≤ 4 X0| | � 4 α − 2( ). (7)

Thus, k ≥ 4, that is, ak(G)≥ 4. We know that 4≤ ak(G)≤ 5.
By Theorem 3.2, we know that 4≤ ak(G)≤ 5. Next, we give the

characterization of {(3, 4), 4}-fullerenes with anti-Kekulé number 4.
Before, we define H1 � Qn | n≥ 0{ }, where Qn is shown in Figure 2.
The structure of two adjacent triangles is called a diamond. In a
diamond, the common edge of the two triangles is called the
diagonal edge. The subgraph consisting of four diamonds such
that the four diagonal edges form a matching is denoted by D,
that is, D � ⋃4

i�1Di (see Figure 7D for the four diamonds D1 − D4).
Let H2 � G|D ⊆ G{ }. So, we have the following theorem.

FIGURE 1
Edges e1e2, e3, e4, and e5.

FIGURE 2
{(3,4),4}-FullereneQn, where the bold segments indicate the cap
of Qn (n ≥0).
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Theorem 3.3. Let G be a {(3, 4), 4}-fullerene, if ak(G) � 4, then
G ∈ H1 or G ∈ H2.

Proof. Let E0 be the anti-Kekulé set of G such that |E0| � 4, set G0 =
G − E0. Then, G0 is connected without perfecting matchings. Thus,
by Theorem 2.4, there exists a non-empty subset X0 ⊆ V(G0) such
that o(G0 −X0)> |X0|. For convenience, let α � o(G0 −X0), since α
and |X0| have the same parity, that is,

α≥ X0| | + 2. (8)
We choose an X0 satisfying Ineq. (8) with the maximum size. Then,

a proof similar to the proof of Theorem 3.2 is used to prove ak(G)≥ 4.
We can knowG0 − X0 has no even components. LetH1,H2,H3, . . .,Hα

be all the odd components of G0 − X0, set H � ∪α
i�1Hi.

Let H1, H2, H3, . . ., Hβ be the non-trivial odd components of
G0 − X0, setH* � ∪β

i�1Hi. Let Hβ+1, Hβ+2, Hβ+3, . . ., Hα be the trivial
odd components of G0 − X0, set H0 � ∪α

i�β+1Hi. Then, V(G) is
divided into X0, V(H*), V(H0)(see Figure 3 the partition of V(G)).

Since ak(G) � 4, all equalities in Ineq. (7) of Theorem 3.2 hold.
The first equality in Ineq. (7) holds if and only if
|∇(Hi)| � 4(1≤ i≤ α), and the second equality in Ineq. 7) holds
if and only if there is no edge in the subgraphG0[X0]; that is, X0 is an
independent set of G0. Moreover, each edge of E0 connects two
components in H and |X0| � α − 2. Since |∇(Hj)| � 4 (1≤ j≤ α),
∇(Hj) is a cyclical 4-edge-cut of G or not.

Next, we distinguish the following two cases to complete the
proof of Theorem 3.3.

Case 1: There exists one Hj such that ∇(Hj) is a cyclical 4-
edge-cut.

By Lemma 2.3, G � Qn (n≥ 1), which means the four edges of
∇(Hj) form a matching. Without loss of generality, we supposed Hj

consists of s layers of quadrangular faces and the cap ofHj is entirely
in the interior of the boundary cycle z(Hj). Then,
G[V(Hj ∪ z(Hj))] induced by the vertices of Hj and the
boundary of z(Hj) consists of n − s layers of quadrangular faces
and a cap, for convenience, set m = n − s, let L1, L2, L3, . . ., Lm be all
the layers and C be the cap of G[V(Hj ∪ z(Hj))], where
quadrangular layer Li is adjacent to Li−1 and Li+1 for 2 ≤ i ≤ m −
1, L1 is adjacent to Hj, and Lm is adjacent to C. Set R1 = Hj ∩ L1 and
Rm+1 = C ∩ Lm. For 2 ≤ i ≤ m, let Ri = Li−1 ∩ Li. The vertices on
Ri (i � 1, 2, 3, . . . , m + 1) are recorded as vi1, vi2, vi3, and vi4 (i = 1, 2,
3, . . ., m + 1) in a clockwise direction and vi1, vi3, and vi2, vi4, are on
the same line, respectively (see Figure 4). Since ∇(Hj) is a cyclical 4-
edge-cut, set ∇(Hj) � {e1′, e2′, e3′, e4′}. Without loss of generality, set
ei′ � v1iv2i (1≤ i≤ 4). The vertices shared by the four triangles on the
two caps are represented by v′, v″, respectively, such that v′ is in Hj

and v″ is in Hj.
Next, we analyze whether the edges of ∇(Hj) belongs to E0 or

not, which is divided into the following five subcases.
Subcase 1.1: All the edges of ∇(Hj) belong E0.
That is, ei′ ∈ E0 for all i = 1, 2, 3, 4. Since each edge of E0 connects

two components ofH and there are four edges e1′, e2′, e3′, e4′ belonging
to E0. All the vertices ofHj belong toV(H*), which means X0 =∅, a
contradiction.

Subcase 1.2: Exactly three edges of ∇(Hj) belong to E0.
Without loss of generality, suppose e1′, e2′, e3′ ∈ E0, then v24 ∈ X0

and v21, v22, v23 ∈ V(H), that is, v21, v22, v23 belong to V(H*)
or V(H0).

If all of v21, v22, and v23 belong toV(H0), then v21v22, v22v23 ∈ E0,
immediately |E0|> 4, which contradicts |E0| � 4. This contradiction
means at least one of v21, v22, and v23 belongs toV(H*) (sayV(H1)),

FIGURE 3
V(G) is divided into X0, V(H*), and V(H0).

FIGURE 4
Labeling of G[V(Hj ∪ z(Hj))].
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then by Lemma 2.3 and Lemma 3.1, either ∇(H1) is a cyclical 4-
edge-cut and the four edges in ∇(H1) form a matching or ∇(H1) is
trivial. However, sinceH1 is a non-trivial odd component ofG0 − X0,
|V(H1)|≥ 3. Thus, ∇(H1) is not a trivial 4-edge-cut. That is, ∇(H1)
is a cyclical 4-edge-cut, and the four edges in ∇(H1) form a
matching. Now, if v21 (or v23) belong to V(H1), then v21v24,
v21v11 (or v23v24, v23v13) belong to ∇(H1), but they do not form
a matching, a contradiction. Thus, both v21, v23 ∈ V(H0) and
v22 ∈ V(H1). Immediately, we have v21v22, v22v23 ∈ E0 and
|E0|> 4, which contradicts |E0| � 4. This contradiction means
there cannot be three edges of ∇(Hj) belonging to E0.

Subcase 1.3: Exactly two edges of ∇(Hj) belong to E0.
Then, by symmetry, e1′, e2′ ∈ E0 or e1′, e3′ ∈ E0.
First, if e1′, e2′ ∈ E0, then v23, v24 ∈ X0 and v23v24 ∈ E(X0), which

contradicts that E(X0) � ∅.
Claim 1: For a quadrangular face q with z(q) � abcda with

clock direction such that a ∈ X0, b ∈ V(H0), then c, d ∈ V(H0) or
c, d ∈ V(H*) or c ∈ X0, d ∈ V(H0).

Proof. Since E(X0) � ∅, d ∈ V(H0) ∪ V(H*). If d ∈ V(H0), then
c ∉ V(H*) by Lemma 2.3 and Lemma 3.1, thus c ∈ X0 or c ∈ V(H0).

If d ∈ V(H*), then also by Lemma 2.3 and Lemma 3.1, we can
know c ∈ V(H*) and the claim holds.

By Claim 1, next, if e1′, e3′ ∈ E0, then v22, v24 ∈ V(X0),
v21, v23 ∈ V(H). If all the vertices of v21, v22, v23, and v24 belong
to the cap ofHj, that is, all of v21, v22, v23, and v24 are adjacent to v″,
then as |E0| � 4 and e1′, e3′ ∈ E0, we can know v″ ∈ H0 and v21v″,
v23v″ ∈ E0, and we have the {(3, 4), 4}-fullerenes Qs+1, that is, m = 1.

If all the vertices of v21, v22, v23, and v24 do not belong to the cap
of Hj, that is, the layer L2 consists of four quadrangular faces, then,
for the quadrangular face q ∈ F(L2), the vertices on z(q) belong to
X0, H

0, H0, H0 or X0, H
0, H*, H* or X0, H

0, X0, H
0 by Claim 1.

If the former case holds, that is, there exists one face q ∈ F(L2)
such that the boundary of q is of the form X0, H

0, H0, and H0, then
immediately we can have |E0|> 4, a contradiction.

If the second case holds, that is, there exists one face q ∈ F(L2)
such that the boundary of q is of the formX0,H

0,H*, andH*, then by
Claim 1 and since |E0| � 4, we can know all the faces of L2 are of the
form X0, H

0, H*, and H*, that is, all the vertices ofHj ∪ L1 belong to
V(H*). In this case, we also have G ∈ H1.

By the aforementioned discussion and Claim 1, next, we suppose
all the quadrangular faces of L2 are of the form X0, H

0, X0, and H0.
Then, we can use the aforementioned same analysis to the layer L3 as
L2, since G � Qn and Hj consists of s layers of quadrangular faces;
after finite steps (say t steps), we obtain t layers L2, L3, . . ., Lt+1 such
that all the faces of Li(2≤ i≤ t + 1) are of formX0,H

0,X0, andH
0 and

either the four vertices on z(Rt+2) are adjacent to v′′ (v′′ ∈ V(H0))
or all the vertices of Hj ∪ L1 ∪ L2 ∪/∪ Lt+1 belong to V(H*).

If the four vertices on z(Rt+2) are adjacent to v′′ (v′′ ∈ V(H0)),
then m = t + 1, n = s + t + 1 and G ∈ H1. If all the vertices of
Hj ∪ L1 ∪ L2 ∪/∪ Lt+1 belong to V(H*) (say V(H1)), suppose H1

consists of p layers of quadrangular faces, thenm = t + p + 2, n = s +
t + p + 2, and also G ∈ H1.

To sum up, if exactly two edges of ∇(Hj) belong to E0, then
G ∈ H1.

Subcase 1.4: Exactly one edge of ∇(Hj) belong to E0.
Without loss of generality, suppose e1′ ∈ E0, then v22, v23, v24 ∈

X0, v22v23, v23v24 ∈ E(X0), which contradicts that X0 is an
independent set of G0.

Subcase 1.5: No edge of ∇(Hj) belongs to E0.
Thus, ⋃4

i�1v2i ⊆ X0, so v21v22, v22v23, v23v24, v24v21 ∈ E(X0),
which contradicts E(X0) � ϕ.

Case 2: ∇(Hj) is not a cyclical 4-edge-cut of G for all 1 ≤ j ≤ α.
For convenience, set E0 � e1, e2, e3, e4{ }. Here, first, we give the

idea of proof, then we will show that G0 = G − E0 is bipartite by
proving |V(Hi)| � 1 (1≤ i≤ α). Since G has exactly eight triangular
faces and |E0| � 4, which implies that each edge ei of E0 is the
common edge of two triangles, by discussing all possible subgraphs
formed by facial cycles containing an edge of E0, we show that
G ∈ H1 or G ∈ H2.

Since ∇(Hj) is not a cyclical 4-edge-cut of G for all 1 ≤ j ≤ α, Hj

or Hj is a singleton by Lemma 3.1. Since X0 is non-empty and
α � |X0| + 2, which meansHj is a singleton vertex, that is, |V(Hj)| �
1 (1≤ j≤ α).

Let Y0 denote the set of all singletons yi from eachHi (1≤ i≤ α),
and denote the vertices of X0 by xi (1≤ i≤ |X0|), so G0 � (X0, Y0) is
bipartite. For convenience, we color the vertices white in X0 and
black in Y0.

Next, we consider possible subgraphs of G containing all edges
of E0. By the Euler theorem, G has exactly eight triangular faces

FIGURE 5
G[E0] has one component and the {(3,4),4}-fullerene Q0 (A–F).
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because G0 � (X0, Y0) is bipartite; each edge ei of E0 is the common
edge of two triangles and connects two vertices in Y0, that is, every
edge ei ∈ E0 belongs to a diamond, say Di, i = 1, 2, 3, 4 and
F(Di) ∩ F(Dj) � ∅ (i ≠ j, i, j � 1, 2, 3, 4).

Claim 2: If G[E0] has one component, then G � Q0, where Q0 is
the octahedron.

Proof. If G[E0] has one component, then we have the subgraphs
shown in Figures 5A, B, C) if G[E0] is a tree and Figures 5D, E if
G[E0] has cycles. If G[E0] is isomorphism to the graph shown in
Figure 5A, then the two diamonds D1, D2 are adjacent and they
form one cap of Qn. Set D12 = D1 ∪ D2, then ∇(D12) forms an 4-
edge-cut. On the other hand, by Lemma 2.3 and Lemma 3.1,
∇(D12) is a cyclical 4-edge-cut and G � Qp or ∇(D12) is trivial. If
∇(D12) is a cyclical 4-edge-cut, then G � Qp(p≥ 1) and e3 belongs
to a quadrangular face, which contradicts that the two faces
containing e3 are triangles. If ∇(D12) is a trivial 4-edge-cut,
that is, D12 is a singleton, which is impossible as the two
vertices of e4 belong to V(D12). Thus, G[E0] cannot be
isomorphism to the subgraph shown in Figure 5A. All the
situations of Figures 5B–D contradicts F(Di) ∩ F(Dj) �
∅ (i ≠ j, i, j � 1, 2, 3, 4).

If G[E0] is isomorphic to the graph shown in Figure 5E, then in
order to guarantee F(Di) ∩ F(Dj) � ∅ (i ≠ j, i, j � 1, 2, 3, 4), the
four diamonds D1, D2, D3, and D4 forms two caps of Qn such that the
cycle induced by E0 is exactly the intersecting of the two caps.
Immediately, we have the graph Q0 (see Figure 5F the octahedron
Q0), that is, G � Q0 if G[E0] has one component, so G ∈ H1.

In accordance with Claim 2, next, we assume that G[E0] is not
connected, so G[E0] has at least two and at most four components.
Then, we have the following three cases.

Subcase 2.1: G[E0] has exactly two components.
By symmetry, the subgraph induced by E0 has four cases as shown in

Figures 6A–D. Then, the graphGwhich contains the subgraphs shown in
Figure 6B contradicts F(Di) ∩ F(Dj) � ∅ (i ≠ j, i, j � 1, 2, 3, 4). If
G contains the subgraph shown in Figure 6C, then the three edges e1, e2,
and e3 belong to the same triangular face as every 3-length cycle of a {(3,
4), 4}-fullerene must be the boundary of a triangular face by Lemma 2.2,
which contradicts that F(Di) ∩ F(Dj) � ∅ (i ≠ j, i, j � 1, 2, 3, 4).

If G[E0] is isomorphic to the graph as shown in Figure 6A, then
the three edges e1, e2, and e3 belong to three diamonds D1, D2, and
D3, respectively, and we have the subgraph A1 consisting of D1, D2,
and D3 (see Figure 6E) such that |∇(A1)| � 2 and A1, D4 are disjoint.
By the definition of G, we can know the two 3-degree vertices on

FIGURE 6
G[E0] has two components and the {(3,4),4}-fullerenes Ql (l≥ 1) (A–G).

FIGURE 7
G[E0] has three components (A,C) or four components (B,D).

Frontiers in Chemistry frontiersin.org06

Yang and Jia 10.3389/fchem.2023.1132587

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1132587


z(A1) must be adjacent and we obtain G � Q0, which contradicts
that A1, D4 are disjoint.

If G[E0] is isomorphic to the graph as shown in Figure 6D, then
D1, D2 are adjacent, and D3, D4 are adjacent. Set B1 = D1 ∪ D2, B2 =

D3 ∪D4. Since the two edges e1, e2 are disjoint, the edges e3, e4, B1, B2
are disjoint. Then, ∇(Bi) (i � 1, 2) forms a cyclical 4-edge-cut (see
Figure 6F), by Lemma 2.3, G � Ql(l≥ 1).

SinceG0 � (X0, Y0) is bipartite, it should be noted that each edge ei
of E0 is in these eight triangles and connects two vertices in Y0; thus, the
edges of E(G) − E(B1) − E(B2) are X0Y0 − edges and G − B1 − B2 has
only quadrangles (see Figure 6G). Moreover, by Lemma 2.3, we can
know G − B1 − B2 consists of l − 2 (l≥ 2) layers of quadrangles (each
layer is made up of four quadrangles). Thus, we have G ∈ H1.

Subcase 2.2: G[E0] has exactly three components.
Then, both of the two components of G[E0] are K2, and one

component is K1,2 (see Figure 7A). Without loss of generality, we
suppose the component K1,2 is induced by the edges e3, e4. Then, the
two diamonds D3, D4 are adjacent, and D1, D2 are disjoint. Set C1 =
D3 ∪ D4 (see Figure 7C).

Then, due to Lemma 2.3 and Lemma 3.1, ∇(C1) forms a cyclical
4-edge-cut, thus,G�Qs, whereQs is the tubular {(3, 4), 4}-fullerene as
shown in Figure 2, which means each of the two caps of Qs must
contain two adjacent diamonds, contradicts that D1, D2 are disjoint.

Subcase 2.3: G[E0] has four components.
Then, the four diagonal edges e1, e2, e3, and e4 are disjoint (see

Figure 7B), that is, the four diamonds D1, D2, D3, and D4 cannot
intersect at the diagonal edges. We have the four diamonds D1, D2,
D3, and D4 as shown in Figure 7D. Then, G ∈ H2.

So far, we have completed the proof of Theorem 3.3.
Inspired by Theorem 3.3, we immediately get the following

theorems.

Theorem 3.4. Let G be a {(3, 4), 4}-fullerene, if G ∈ H1,
then ak(G) � 4.

FIGURE 8
{(3,4),4}-Fullerenes Qn.

FIGURE 9
Graph G − E0; n is an odd number (A), and n is an even number (B).
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Proof. Let G ∈ H1, that is, G � Qn (n≥ 0). By Theorem 3.2 and the
definition of the anti-Kekulé number, we only need to find an anti-
Kekulé set E0 of G such that |E0| � 4.

For convenience, let the plane embedding graph of Qn as shown
in Figure 8.Qn consist of n + 1 concentric rings with four vertices on
each ring and two vertices on two caps; these n + 1 concentric rings
are recorded as R1, R2, R3, . . ., Rn+1 from the inside to the outside.
Next, the vertices of Qn are labeled as follows: the vertices shared by
the four triangles on the two caps are represented by v′, v″,
respectively, and the vertices on Ri (i � 1, 2, 3, . . . , n + 1) are
recorded as vi1, vi2, vi3, and vi4 (i = 1, 2, 3, . . ., n + 1) in a
clockwise direction such that vi1, vi3 (vi2,, and vi4) are on the
same line (see Figure 8 the labeling of Qn).

Next, we will prove Theorem 3.4 in two cases.
Case 1: n is an odd number.
Let E0 � v′v11, v′v13, v′′vn+1,2, v′′vn+1,4{ } (see Figure 9A), and set

G1 = G − E0. Then, E0 is not a cyclically 4-edge-cut of G by Lemma
2.3. Moreover, E0 is not a trivial 4-edge-cut as the four edges in E0 are
not incident with a common vertex. That is, G1 is connected.

Then, we prove that G1 = G − E0 has no perfect matching, and
there are only quadrangular faces in G1, so, G1 is bipartite. We color
the vertices of G1 with black and white such that adjacent vertices in
G1 are assigned two distinct colors (see Figure 9A). Let M0 denote
the set of white vertices and N0 denote the set of black vertices, then
G1 � G1(M0, N0), |M0| � 2n + 2, |N0| � 2n + 4. In accordance with
Theorem 2.4, there exist M0 ⊆ V(G1) such that o(G1 −M0)
� |N0| � 2n + 4> |M0| � 2n + 2, so G1 has no perfect matching.

Case 2: n is an even number.
Let E0 � v′v11, v′v13, v′′vn+1,1, v′′vn+1,3{ } (see Figure 9B), and set

G2 = G − E0. Also, G2 is connected.
There are only quadrangular faces in G2; so, G2 is also bipartite

with one bipartition 2n + 2 vertices and the other bipartition 2n + 4
vertices, which means G2 has no perfect matching.

Therefore, we find the anti-Kekulé set E0 of G with |E0| � 4,
which means ak(G) � 4, if G ∈ H1.

Due to Theorem 3.4, if G ∈ H1, then ak(G) � 4. However, the
anti-Kekulé number of G can be 4 or 5 if G ∈ H2. Next, we use a
method to judge whether the anti-Kekulé number of G can be 4 or
5 when G ∈ H2. Before we give some definitions of G if G ∈ H2.
Let G ∈ H2, the four diamonds of G be D1, D2, D3, and D4 and the
four diagonal edges be e1, e2, e3, and e4 such that ei ∈ E(Di), i = 1,
2, 3, 4. Set E0 � e1, e2, e3, e4{ } and e1 = v1v2, e2 = v3v4, e3 = v5v6, and
e4 = v7v8. The eight vertices of the four diagonal edges are called
eight stars, and their union is denoted by V0 � ⋃8

i�1vi.
Set G0 = G − E0. Then, G0 is bipartite, without loss of generality,

we supposed the bipartitions of G0 wereV1,V2. Then, by the proof of
Theorem 3.3, we can know if ak(G) � 4, then V0 ⊂ V1 or V0 ⊂ V2,
which means ak(G) � 5 when V0⊄V1 and V0⊄V2. Thus, we have the
following theorem.

Theorem 3.5. Let G be a {(3, 4), 4}-fullerene, G ∈ H2, if V0 ⊂ V1 or
V0 ⊂ V2, then ak(G) � 4, otherwise, ak(G) � 5.

Proof. By Theorem 3.2, we only need to show if V0 ⊂ V1 or V0 ⊂ V2,
then ak(G) � 4. Without loss of generality, suppose V0 ⊂ V1. Then,
G[V1] consists of the four edges e1, e2, e3, and e4 and some singleton
vertices. Since the four edges e1, e2, e3, and e4 cannot be incident with a
common vertex, E0 is not a trivial 4-edge-cut. However, E0 also cannot

be a cyclical 4-edge-cut by Lemma 2.3, as ei belongs to the intersection of
two triangular faces for i = 1, 2, 3, 4. Thus, G0 = G − E0 is connected.

On the other hand, by the degree-sum formula
4|V2| � 4|V1| − 8, which means |V1| ≠ |V2|. Thus, G0 cannot have
perfect matchings by Theorem 2.4. So, we find the anti-Kekulé set E0
with |E0| � 4. Immediately, we have ak(G) � 4. Otherwise, by
Theorem 3.2, ak(G) � 5.

By Theorem 3.5, for a {(3, 4), 4}-fullerene GwithG ∈ H2, we can
give the method to judge the anti-Kekulé number of graph G is 4 or
5 as follows:

Step 1: Delete the four diagonal edges e1, e2, e3, and e4.
Step 2: Color the vertices of G0 � G − e1, e2, e3, e4{ } with black and

white.
Step 3: If we find the eight stars are in the same color, then

ak(G) � 4, otherwise, ak(G) � 5.

4 Conclusion

In this paper, we have obtained the scope of the anti-Kekulé
number of {(3, 4), 4}-fullerenes in Theorem 3.2; at the same time, we
characterized {(3, 4), 4}-fullerenes with anti-Kekulé number 4 in
Theorem 3.3, which includes two kinds of graphs H1,H2.

As a consequence, we proved that if G ∈ H1, then ak(G) � 4.
Interestingly, by the proof of Theorem 3.3, we found the {(3, 4), 4}-
fullerene G belongs to H2, but the anti-Kekulé number of G is not
always 4; therefore, at the end of this paper, we gave a condition for
judging whether the anti-Kekulé number of graph G is 4 or 5.
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