OPEN ACCESS

EDITED BY
Baoyindureng Wu, Xinjiang University, China

REVIEWED BY

Guifu Su,
Beijing University of Chemical
Technology, China
Qiuli Li,
Lanzhou University, China
Hong Bian,
Xinjiang Normal University, China
*CORRESPONDENCE
Rui Yang,
\boxtimes yangrui@hpu.edu.cn

SPECIALTY SECTION

This article was submitted to Theoretica and Computational Chemistry,
a section of the journal
Frontiers in Chemistry
RECEIVED 27 December 2022
ACCEPTED 06 February 2023
PUBLISHED 24 February 2023

CITATION

Yang R and Jia H (2023), Anti-Kekulé
number of the $\{(3,4), 4\}$-fullerene*.
Front. Chem. 11:1132587.
doi: 10.3389/fchem.2023.1132587

COPYRIGHT

© 2023 Yang and Jia. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms

Anti-Kekulé number of the $\{(3,4)$, 4\}-fullerene*

Rui Yang* and Huimin Jia
School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, Henan, China

Abstract

A $\{(3,4), 4\}$-fullerene graph G is a 4 -regular plane graph with exactly eight triangular faces and other quadrangular faces. An edge subset S of G is called an anti-Kekulé set, if $G-S$ is a connected subgraph without perfect matchings. The anti-Kekulé number of G is the smallest cardinality of anti-Kekulé sets and is denoted by $a k(G)$. In this paper, we show that $4 \leq a k(G) \leq 5$; at the same time, we determine that the $\{(3,4), 4\}$-fullerene graph with anti-Kekulé number 4 consists of two kinds of graphs: one of which is the graph \mathcal{H}_{1} consisting of the tubular graph $Q_{n}(n \geq 0)$, where Q_{n} is composed of $n(n \geq 0)$ concentric layers of quadrangles, capped on each end by a cap formed by four triangles which share a common vertex (see Figure 2 for the graph Q_{n}); and the other is the graph \mathcal{H}_{2}, which contains four diamonds D_{1}, D_{2}, D_{3}, and D_{4}, where each diamond $D_{i}(1 \leq i \leq 4)$ consists of two adjacent triangles with a common edge $e_{i}(1 \leq i \leq 4)$ such that four edges e_{1}, e_{2}, e_{3}, and e_{4} form a matching (see Figure 7D for the four diamonds $D_{1}-D_{4}$). As a consequence, we prove that if $G \in \mathcal{H}_{1}$, then $a k(G)=4$; moreover, if $G \in \mathcal{H}_{2}$, we give the condition to judge that the anti-Kekulé number of graph G is 4 or 5 .

KEYWORDS
anti-Kekulé set, anti-Kekulé number, $\{(3,4), 4\}$-fullerene, perfect matching, matching

1 Introduction

A \{(3,4),4\}-fullerene graph G is a 4-regular plane graph with exactly eight triangular faces and other quadrangular faces. This concept of the $\{(3,4), 4\}$-fullerene comes from Deza's $\{(R, k)\}$-fullerene (Deza and Sikirić, 2012). Fixing $R \subset N$, a $\{(R, k)\}$-fullerene graph is a k regular $(k \geq 3)$, and it is mapped on a sphere whose faces are i -gons $(i \in R)$. A $\{(a, b), k\}$ fullerene is $\{(R, k)\}$-fullerene with $R=\{a, b\}(1 \leq a \leq b)$. The $\{(a, b), k\}$-fullerene draws attention because it includes the mostly widely researched graphs, such as fullerenes (i.e., $\{(5$, 6), 3$\}$-fullerenes), boron-nitrogen fullerenes (i.e., $\{(4,6), 3\}$-fullerenes), and (3,6)-fullerenes (i.e., $\{(3,6), 3\}$-fullerenes) (Yang and Zhang, 2012).

The anti-Kekulé number of a graph was introduced by Vukičević and Trinajstić (2007). They introduced the anti-Kekule number as the smallest number of edges that have to be removed from a benzenoid to remain connected but without a Kekulé structure. Here, a Kekulé structure corresponds to a perfect matching in mathematics; it is known that benzenoid hydrocarbon has better stability if it has a lower anti-Kekulé number. Veljan and Vukičević (2008) found that the anti-Kekulé numbers of the infinite triangular, rectangular, and hexagonal grids are 9, 6 and 4, respectively. Zhang et al. (2011) proved that the anti-Kekulé number of cata-condensed phenylenes is 3 . For fullerenes, Vukičević (2007) proved that C_{60} has anti-Kekulé number 4, and Kutnar et al. (2009) showed that the leapfrog fullerenes have the anti-Kekulé number 3 or 4 and that for each leapfrog fullerene, the anti-Kekule number can be established by observing the finite number of cases independent of the size of the fullerene. Furthermore, this result was improved by Yang et al. (2012) by proving that all fullerenes have anti-Kekulé number 4.

In general, Li et al. (2019) showed that the anti-Kekulé number of a 2 -connected cubic graph is either 3 or 4 ; moreover, all $(4,6)$ fullerenes have the anti-Kekulé number 4, and all the (3,6)-fullerenes have anti-Kekulé number 3. Zhao and Zhang (2020) confirmed all (4,5,6)-fullerenes have anti-Kekulé number 3, which consist of four sporadic ($4,5,6$)-fullerenes $\left(F_{12}, F_{14}, F_{18}\right.$, and $\left.F_{20}\right)$ and three classes of $(4,5,6)$-fullerenes with at least two and at most six pentagons.

Here, we consider the $\{(3,4), 4\}$-fullerene graphs. In the next section, we recall some concepts and results needed for our discussion. In Section 3, by using Tutte's Theorem on perfect matching of graphs, we determine the scope of the anti-Kekule number of the $\{(3,4), 4\}$-fullerene. Finally, we show that the $\{(3,4)$, $4\}$-fullerene with anti-Kekulé number 4 consists of two kinds of graphs $\mathcal{H}_{1}, \mathcal{H}_{2}$. As a consequence, we prove that if $G \in \mathcal{H}_{1}$, then $a k(G)=4$. Moreover, if $G \in \mathcal{H}_{2}$, we give the condition to judge that the anti-Kekulé number of graph G is 4 or 5 .

2 Definitions and preliminary results

Let $G=(V, E)$ be a simple and connected plane graph with vertex set $V(G)$ and edge set $E(G)$. For $V^{\prime} \subseteq V(G), G-V^{\prime}$ denotes the subgraph obtained from G by deleting the vertices in V^{\prime} together with their incident edges. If $V^{\prime}=v$, we write $G-v$. Similarly, for $E^{\prime} \subseteq E(G), G-E^{\prime}$ denotes the graph with vertex set $V(G)$ and edge set $E(G)-E^{\prime}$. If $E^{\prime}=e$, we write $G-e$. Let V^{\prime} be a non-empty set; $G\left[V^{\prime}\right]$ denotes the induced subgraph of G induced by the vertices of V^{\prime}; similarly, if $E^{\prime} \subseteq E(G), G\left[E^{\prime}\right]$ denotes the induced subgraph of G induced by the edges of E^{\prime}.

For a subgraph H of G, the induced subgraph of G induced by vertices of $V(G)-V(H)$ is denoted by \bar{H}. A plane graph G partitions the rest of the plane into a number of arcwiseconnected open sets. These sets are called the faces of G. A face is said to be incident with the vertices and edges in its boundary, and two faces are adjacent if their boundaries have an edge in common. Let $F(G)$ be the set of the faces of G.

An edge-cut of a connected plane graph G is a subset of edges $C \subseteq E(G)$ such that $G-C$ is disconnected. A k-edge-cut is an edgecut with k edges. A graph G is k-edge-connected if G cannot be separated into at least two components by removing less than k edges. An edge-cut C of a graph G is cyclic if its removal separates two cycles. A graph G is cyclically k-edge-connected if G cannot be separated into at least two components, each containing a cycle, by removing less than k edges. A cycle is called a facial cycle if it is the boundary of a face.

For subgraphs H_{1} and H_{2} of a plane graph $G, E\left(H_{1}, H_{2}\right)=$ $E\left(V\left(H_{1}\right), V\left(H_{2}\right)\right)$ represents the set of edges whose two end vertices are in $V\left(H_{1}\right)$ and $V\left(H_{2}\right)$ separately. If $V\left(H_{1}\right)$ and $V\left(H_{2}\right)$ are two non-empty disjoint vertex subsets such that $V\left(H_{1}\right) \cup V\left(H_{2}\right)=V(G)$, then $E\left(H_{1}, H_{2}\right)$ is an edge-cut of G, and we simply write $\nabla\left(H_{1}\right)=\nabla\left(V\left(H_{1}\right)\right)$ or $\nabla\left(H_{2}\right)=\nabla\left(V\left(H_{2}\right)\right)$. We use $\partial(G)$ to denote the boundary of G, that is, the boundary of the infinite face of G.

A matching M of a graph G is a set of edges of G such that no two edges from M have a vertex in common. A matching M is perfect if it covers every vertex of G. A perfect matching is also called a Kekulé structure in chemistry.

Let G be a connected graph with at least one perfect matching. For $S \subseteq E(G)$, we call S an anti-Kekulé set if $G-S$ is connected but has no perfect matchings. The smallest cardinality of anti-Kekulé sets of G is called the anti-Kekulé number and denoted by $a k(G)$.

For the edge connectivity of the $\{(3,4), 4\}$-fullerene, we have the following results.

Lemma 2.1. ((Yang et al., 2023) Lemma 2.3) Every $\{(3,4), 4\}-$ fullerene is cyclically 4-edge-connected.

Lemma 2.2. ((Yang et al., 2023) Corollary 2.4) Every $\{(3,4), 4\}-$ fullerene is 4-edge-connected.
Q_{n} is the graph consisting of n concentric layers of quadrangles, capped on each end by a cap formed by four triangles which share a common vertex as shown in Figure 2. In particular, Q_{0} is what we call an octahedron (see Figure 5F).

Lemma 2.3. ((Yang et al., 2023) Lemma 2.5) If G has a cyclical 4-edge-cut $E=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$, then $G \cong Q_{n}(n \geq 1)$, where the four edges e_{1}, e_{2}, e_{3}, and e_{4} form a matching, and each e_{i} belongs to the intersection of two quadrilateral faces for $i=1,2,3,4$.

Tutte's theorem plays an important role in the process of proof.

Theorem 2.4. (Lovász and Plummer, 2009) (Tutte's theorem) A graph G has a perfect matching if and only if for any $X \subseteq V(G)$, $o(G-X) \leq|X|$, where $o(G-X)$ denotes the number of odd components of $G-X$.

Here, an odd component of $G-X$ is trivial if it is just a single vertex and non-trivial otherwise.

All graph-theoretical terms and concepts used but unexplained in this article are standard and can be found in many textbooks, such as Lovász and Plummer (2009).

3 Main results

From now on, let G always be a $\{(3,4), 4\}$-fullerene; we called a 4-edge-cut E in G trivial if $E=\nabla(v)$, that is, E consists of the four edges incident to v. By Lemma 2.3, if E is a cyclical 4-edge-cut, then the four edges in E form a matching. Moreover, if E is not a cyclical 4-edge-cut, then E is trivial. So, we have the following lemma.

Lemma 3.1. Let G be a $\{(3,4), 4\}$-fullerene, $E=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be an 4-edge-cut, but it is not cyclical, then E is trivial.

Proof. Since $E=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is an 4-edge-cut, $G-E$ is not connected. Then, $G-E$ has at least two components. Moreover, as G is 4-edge-connected by Lemma $2.2, G-E$ has at most two components. So, $G-E$ has exactly two components.

Let G_{1}, G_{2} be two components of $G-E$. Since E is not cyclical, without loss of generality, we suppose that G_{1} is a forest; then, we have

$$
\begin{equation*}
n-e=l \tag{1}
\end{equation*}
$$

where n, e, l is the number of vertices, edges, and trees in G_{1}, respectively. Furthermore, since each vertex of G is of degree 4, we have

FIGURE 1
Edges $e_{1} e_{2}, e_{3}, e_{4}$, and e_{5}

$$
\begin{equation*}
4 n-4=2 e \tag{2}
\end{equation*}
$$

Combing with equalities 1) and 2), we know $n=l=1$ and $e=0$, which means G_{1} only consists of a single vertex. So, E is trivial. \square

Lemma 3.1 plays an important role in the proof of the following theorem. Next, we explore the scope of the anti-Kekule number of $\{(3,4), 4\}$-fullerene.

Theorem 3.2. Let G be a $\{(3,4), 4\}$-fullerene, then $4 \leq a k(G) \leq 5$.

Proof. First, we show $a k(G) \leq 5$. Let t be any triangle in G and the boundary of t was labeled $v_{1} v_{2} v_{3}$ along the clockwise direction. Denote the other two edges incident to $v_{1}\left(v_{2}\right)$ by $e_{1}, e_{2}\left(e_{4}, e_{5}\right)$, set $e_{3}=v_{1} v_{2}$, then $e_{1}, e_{2}, e_{3}, e_{4}$, and e_{5} are pairwise different, set $E^{\prime}=$ $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ (see Figure 1) and $G^{\prime}=G-E^{\prime}$.

In order to show $a k(G) \leq 5$, we only need to prove that G^{\prime} is connected and has no perfect matchings. Then, G^{\prime} has no perfect matchings since the two edges $v_{1} v_{3}, v_{2} v_{3}$ cannot be covered by a perfect matching at the same time in G^{\prime}.

In the following, we show that G^{\prime} is connected. We proved this using reduction to absurdity, suppose G^{\prime} is not connected, then G^{\prime} has a component (say G_{1}) containing vertices v_{1}, v_{2}, and v_{3}, as v_{1}, v_{2}, and v_{3} are connected by the path $v_{1} v_{3} v_{2}$ in G_{1}. On the other hand, since $e_{3}=v_{1} v_{2}$ connects two vertices v_{1}, v_{2} in G and $E^{\prime}=$ $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ is an edge cut of G, even if we remove five edges, $e_{1}, e_{2}, e_{3}, e_{4}$, and e_{5}, to disconnect G, it is actually the same as removing four edges, e_{1}, e_{2}, e_{4}, and e_{5} (see Figure 1); that is, $E_{1}=$ $\left\{e_{1}, e_{2}, e_{4}, e_{5}\right\}$ is an 4-edge-cut. Moreover, due to Lemma 2.3, E_{1} cannot be a cyclical 4-edge-cut as e_{1}, e_{2}, e_{4}, and e_{5} is not a matching. Then, according to Lemma 3.1, E_{1} is a trivial 4-edge-cut. Thus, G_{1} or $\overline{G_{1}}$ is a single vertex, both of which are impossible by the definition of G. So G^{\prime} is connected. Thus,

$$
\begin{equation*}
a k(G) \leq 5 \tag{3}
\end{equation*}
$$

Finally, we show $a k(G) \geq 4$. By the definition of an anti-Kekulé set, suppose $E_{1}^{\prime}=\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots, e_{k}^{\prime}\right\}$ was the smallest anti-Kekulé set of G, that is, $a k(G)=k$. Then, $G_{1}^{\prime}=G-E_{1}^{\prime}$ was connected and has no perfect matching. Hence, according to Theorem 2.4, there exists a non-empty subset $X_{0} \subseteq V\left(G_{1}^{\prime}\right)$ such that $o\left(G_{1}^{\prime}-X_{0}\right)>\left|X_{0}\right|$, since $\left|V\left(G_{1}^{\prime}\right)\right|=|V(G)|$ and $|V(G)|$ is even, $o\left(G_{1}^{\prime}-X_{0}\right)$ and $\left|X_{0}\right|$ have the same parity. Consequently,

FIGURE 2
$\{(3,4), 4\}$-Fullerene Q_{n}, where the bold segments indicate the cap of $Q_{n}(n \geq 0)$.

$$
\begin{equation*}
o\left(G_{1}^{\prime}-X_{0}\right) \geq\left|X_{0}\right|+2 \tag{4}
\end{equation*}
$$

For the sake of convenience, we let $\alpha=o\left(G_{1}^{\prime}-X_{0}\right)$. If we chose an X_{0} with the maximum size, then $G_{1}^{\prime}-X_{0}$ has no even components. On the contrary, we suppose there exists an even component (say F) of $G_{1}^{\prime}-X_{0}$. For any vertex $v \in V(F)$, $o(F-v) \geq 1$. Let $X^{\prime}=X_{0} \cup\{v\}$, thus $o\left(G_{1}^{\prime}-X^{\prime}\right)=o\left(G_{1}^{\prime}-X_{0}\right)$ $+o(F-v) \geq\left|X_{0}\right|+2+1=\left|X^{\prime}\right|+2$, which is a contradiction to the choice of X_{0}.

In addition, E_{1}^{\prime} is the smallest anti-Kekulé set of G, then $G_{1}^{\prime}+e_{i}^{\prime}$ has perfect matchings for any edge $e_{i}^{\prime} \in E_{1}^{\prime}$ for $1 \leq i \leq k$. On the other hand, the number of odd components of $G_{1}^{\prime}-X_{0}$ was not decreased or decreased by at most one or two if we add one edge e_{i}^{\prime} to G_{1}^{\prime}, that is,

$$
\begin{equation*}
\left|X_{0}\right| \geq o\left(G_{1}^{\prime}+e_{i}^{\prime}-X_{0}\right) \geq \alpha-2 \tag{5}
\end{equation*}
$$

By inequality (4), we have

$$
\begin{equation*}
\left|X_{0}\right| \leq \alpha-2 \tag{6}
\end{equation*}
$$

Combined with inequalities (5) and (6), we have $\alpha=\left|X_{0}\right|+2$ and each edge $e_{i}^{\prime} \in E_{1}^{\prime}$ connects two odd components of $G_{1}^{\prime}-X_{0}$. Let $H_{1}, H_{2}, H_{3}, \ldots, H_{\alpha}$ be the odd components of $G_{1}^{\prime}-X_{0}$. Then, due to Lemma 2.2, $\left|\nabla\left(H_{i}\right)\right| \geq 4(1 \leq i \leq \alpha)$; therefore,

$$
\begin{equation*}
4 \alpha-2 k \leq \sum_{i=1}^{\alpha}\left|\nabla\left(H_{i}\right)\right|-2\left|E_{1}^{\prime}\right| \leq 4\left|X_{0}\right|=4(\alpha-2) \tag{7}
\end{equation*}
$$

Thus, $k \geq 4$, that is, $a k(G) \geq 4$. We know that $4 \leq a k(G) \leq 5$.
By Theorem 3.2, we know that $4 \leq a k(G) \leq 5$. Next, we give the characterization of $\{(3,4), 4\}$-fullerenes with anti-Kekulé number 4. Before, we define $\mathcal{H}_{1}=\left\{Q_{n} \mid n \geq 0\right\}$, where Q_{n} is shown in Figure 2. The structure of two adjacent triangles is called a diamond. In a diamond, the common edge of the two triangles is called the diagonal edge. The subgraph consisting of four diamonds such that the four diagonal edges form a matching is denoted by D, that is, $D=\bigcup_{i=1}^{4} D_{i}$ (see Figure 7D for the four diamonds $D_{1}-D_{4}$). Let $\mathcal{H}_{2}=\{G \mid D \subseteq G\}$. So, we have the following theorem.

FIGURE 3
$V(G)$ is divided into $X_{0}, V\left(H^{*}\right)$, and $V\left(H^{0}\right)$.

FIGURE 4
Labeling of $G\left[V\left(\overline{H_{j}} \cup \partial\left(H_{j}\right)\right)\right]$.

Theorem 3.3. Let G be a $\{(3,4), 4\}$-fullerene, if $a k(G)=4$, then $G \in \mathcal{H}_{1}$ or $G \in \mathcal{H}_{2}$.

Proof. Let E_{0} be the anti-Kekulé set of G such that $\left|E_{0}\right|=4$, set $G_{0}=$ $G-E_{0}$. Then, G_{0} is connected without perfecting matchings. Thus, by Theorem 2.4, there exists a non-empty subset $X_{0} \subseteq V\left(G_{0}\right)$ such that $o\left(G_{0}-X_{0}\right)>\left|X_{0}\right|$. For convenience, let $\alpha=o\left(G_{0}-X_{0}\right)$, since α and $\left|X_{0}\right|$ have the same parity, that is,

$$
\begin{equation*}
\alpha \geq\left|X_{0}\right|+2 \tag{8}
\end{equation*}
$$

We choose an X_{0} satisfying Ineq. (8) with the maximum size. Then, a proof similar to the proof of Theorem 3.2 is used to prove $a k(G) \geq 4$. We can know $G_{0}-X_{0}$ has no even components. Let $H_{1}, H_{2}, H_{3}, \ldots, H_{\alpha}$ be all the odd components of $G_{0}-X_{0}$, set $H=\cup_{i=1}^{\alpha} H_{i}$.

Let $H_{1}, H_{2}, H_{3}, \ldots, H_{\beta}$ be the non-trivial odd components of $G_{0}-X_{0}$, set $H^{*}=\cup_{i=1}^{\beta} H_{i}$. Let $H_{\beta+1}, H_{\beta+2}, H_{\beta+3}, \ldots, H_{\alpha}$ be the trivial odd components of $G_{0}-X_{0}$, set $H^{0}=\cup_{i=\beta+1}^{\alpha} H_{i}$. Then, $V(G)$ is divided into $X_{0}, V\left(H^{*}\right), V\left(H^{0}\right)$ (see Figure 3 the partition of $\left.V(G)\right)$.

Since $a k(G)=4$, all equalities in Ineq. (7) of Theorem 3.2 hold. The first equality in Ineq. (7) holds if and only if $\left|\nabla\left(H_{i}\right)\right|=4(1 \leq i \leq \alpha)$, and the second equality in Ineq. 7) holds if and only if there is no edge in the subgraph $G_{0}\left[X_{0}\right]$; that is, X_{0} is an independent set of G_{0}. Moreover, each edge of E_{0} connects two components in H and $\left|X_{0}\right|=\alpha-2$. Since $\left|\nabla\left(H_{j}\right)\right|=4(1 \leq j \leq \alpha)$, $\nabla\left(H_{j}\right)$ is a cyclical 4-edge-cut of G or not.

Next, we distinguish the following two cases to complete the proof of Theorem 3.3.

Case 1: There exists one H_{j} such that $\nabla\left(H_{j}\right)$ is a cyclical 4-edge-cut.

By Lemma 2.3, $G \cong Q_{n}(n \geq 1)$, which means the four edges of $\nabla\left(H_{j}\right)$ form a matching. Without loss of generality, we supposed H_{j} consists of s layers of quadrangular faces and the cap of H_{j} is entirely in the interior of the boundary cycle $\partial\left(H_{j}\right)$. Then, $G\left[V\left(\overline{H_{j}} \cup \partial\left(H_{j}\right)\right)\right]$ induced by the vertices of $\overline{H_{j}}$ and the boundary of $\partial\left(H_{j}\right)$ consists of $n-s$ layers of quadrangular faces and a cap, for convenience, set $m=n-s$, let $L_{1}, L_{2}, L_{3}, \ldots, L_{m}$ be all the layers and C be the cap of $G\left[V\left(\overline{H_{j}} \cup \partial\left(H_{j}\right)\right)\right]$, where quadrangular layer L_{i} is adjacent to L_{i-1} and L_{i+1} for $2 \leq i \leq m-$ $1, L_{1}$ is adjacent to H_{j}, and L_{m} is adjacent to C. Set $R_{1}=H_{j} \cap L_{1}$ and $R_{m+1}=C \cap L_{m}$. For $2 \leq i \leq m$, let $R_{i}=L_{i-1} \cap L_{i}$. The vertices on $R_{i}(i=1,2,3, \ldots, m+1)$ are recorded as $v_{i 1}, v_{i 2}, v_{i 3}$, and $v_{i 4}(i=1,2$, $3, \ldots, m+1$) in a clockwise direction and $v_{i 1}, v_{i 3}$, and $v_{i 2}, v_{i 4}$, are on the same line, respectively (see Figure 4). Since $\nabla\left(H_{j}\right)$ is a cyclical 4-edge-cut, set $\nabla\left(H_{j}\right)=\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, e_{4}^{\prime}\right\}$. Without loss of generality, set $e_{i}^{\prime}=v_{1 i} v_{2 i} \quad(1 \leq i \leq 4)$. The vertices shared by the four triangles on the two caps are represented by $v^{\prime}, v^{\prime \prime}$, respectively, such that v^{\prime} is in H_{j} and $v^{\prime \prime}$ is in $\overline{H_{j}}$.

Next, we analyze whether the edges of $\nabla\left(H_{j}\right)$ belongs to E_{0} or not, which is divided into the following five subcases.

Subcase 1.1: All the edges of $\nabla\left(H_{j}\right)$ belong E_{0}.
That is, $e_{i}^{\prime} \in E_{0}$ for all $i=1,2,3,4$. Since each edge of E_{0} connects two components of H and there are four edges $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, e_{4}^{\prime}$ belonging to E_{0}. All the vertices of $\overline{H_{j}}$ belong to $V\left(H^{*}\right)$, which means $X_{0}=\varnothing$, a contradiction.

Subcase 1.2: Exactly three edges of $\nabla\left(H_{j}\right)$ belong to E_{0}.
Without loss of generality, suppose $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime} \in E_{0}$, then $v_{24} \in X_{0}$ and $v_{21}, v_{22}, v_{23} \in V(H)$, that is, v_{21}, v_{22}, v_{23} belong to $V\left(H^{*}\right)$ or $V\left(H^{0}\right)$.

If all of v_{21}, v_{22}, and v_{23} belong to $V\left(H^{0}\right)$, then $v_{21} v_{22}, v_{22} v_{23} \in E_{0}$, immediately $\left|E_{0}\right|>4$, which contradicts $\left|E_{0}\right|=4$. This contradiction means at least one of v_{21}, v_{22}, and v_{23} belongs to $V\left(H^{*}\right)$ (say $V\left(H_{1}\right)$),

FIGURE 5
$G\left[E_{0}\right]$ has one component and the $\{(3,4), 4\}$-fullerene $Q_{0}(A-F)$.
then by Lemma 2.3 and Lemma 3.1, either $\nabla\left(H_{1}\right)$ is a cyclical 4-edge-cut and the four edges in $\nabla\left(H_{1}\right)$ form a matching or $\nabla\left(H_{1}\right)$ is trivial. However, since H_{1} is a non-trivial odd component of $G_{0}-X_{0}$, $\left|V\left(H_{1}\right)\right| \geq 3$. Thus, $\nabla\left(H_{1}\right)$ is not a trivial 4-edge-cut. That is, $\nabla\left(H_{1}\right)$ is a cyclical 4-edge-cut, and the four edges in $\nabla\left(H_{1}\right)$ form a matching. Now, if v_{21} (or v_{23}) belong to $V\left(H_{1}\right)$, then $v_{21} v_{24}$, $v_{21} v_{11}$ (or $v_{23} v_{24}, v_{23} v_{13}$) belong to $\nabla\left(H_{1}\right)$, but they do not form a matching, a contradiction. Thus, both $v_{21}, v_{23} \in V\left(H^{0}\right)$ and $v_{22} \in V\left(H_{1}\right)$. Immediately, we have $v_{21} v_{22}, v_{22} v_{23} \in E_{0}$ and $\left|E_{0}\right|>4$, which contradicts $\left|E_{0}\right|=4$. This contradiction means there cannot be three edges of $\nabla\left(H_{j}\right)$ belonging to E_{0}.

Subcase 1.3: Exactly two edges of $\nabla\left(H_{j}\right)$ belong to E_{0}.
Then, by symmetry, $e_{1}^{\prime}, e_{2}^{\prime} \in E_{0}$ or $e_{1}^{\prime}, e_{3}^{\prime} \in E_{0}$.
First, if $e_{1}^{\prime}, e_{2}^{\prime} \in E_{0}$, then $v_{23}, v_{24} \in X_{0}$ and $v_{23} v_{24} \in E\left(X_{0}\right)$, which contradicts that $E\left(X_{0}\right)=\varnothing$.

Claim 1: For a quadrangular face q with $\partial(q)=a b c d a$ with clock direction such that $a \in X_{0}, b \in V\left(H^{0}\right)$, then $c, d \in V\left(H^{0}\right)$ or $c, d \in V\left(H^{*}\right)$ or $c \in X_{0}, d \in V\left(H^{0}\right)$.

Proof. Since $E\left(X_{0}\right)=\varnothing, d \in V\left(H^{0}\right) \cup V\left(H^{*}\right)$. If $d \in V\left(H^{0}\right)$, then $c \notin V\left(H^{*}\right)$ by Lemma 2.3 and Lemma 3.1, thus $c \in X_{0}$ or $c \in V\left(H^{0}\right)$.

If $d \in V\left(H^{*}\right)$, then also by Lemma 2.3 and Lemma 3.1, we can know $c \in V\left(H^{*}\right)$ and the claim holds.

By Claim 1 , next, if $e_{1}^{\prime}, e_{3}^{\prime} \in E_{0}$, then $v_{22}, v_{24} \in V\left(X_{0}\right)$, $v_{21}, v_{23} \in V(H)$. If all the vertices of v_{21}, v_{22}, v_{23}, and v_{24} belong to the cap of $\overline{H_{j}}$, that is, all of v_{21}, v_{22}, v_{23}, and v_{24} are adjacent to $v^{\prime \prime}$, then as $\left|E_{0}\right|=4$ and $e_{1}^{\prime}, e_{3}^{\prime} \in E_{0}$, we can know $v^{\prime \prime} \in H^{0}$ and $v_{21} v^{\prime \prime}$, $v_{23} v^{\prime \prime} \in E_{0}$, and we have the $\{(3,4), 4\}$-fullerenes Q_{s+1}, that is, $m=1$.

If all the vertices of v_{21}, v_{22}, v_{23}, and v_{24} do not belong to the cap of $\overline{H_{j}}$, that is, the layer L_{2} consists of four quadrangular faces, then, for the quadrangular face $q \in F\left(L_{2}\right)$, the vertices on $\partial(q)$ belong to $X_{0}, H^{0}, H^{0}, H^{0}$ or $X_{0}, H^{0}, H^{*}, H^{*}$ or $X_{0}, H^{0}, X_{0}, H^{0}$ by Claim 1.

If the former case holds, that is, there exists one face $q \in F\left(L_{2}\right)$ such that the boundary of q is of the form X_{0}, H^{0}, H^{0}, and H^{0}, then immediately we can have $\left|E_{0}\right|>4$, a contradiction.

If the second case holds, that is, there exists one face $q \in F\left(L_{2}\right)$ such that the boundary of q is of the form X_{0}, H^{0}, H^{*}, and H^{\star}, then by Claim 1 and since $\left|E_{0}\right|=4$, we can know all the faces of L_{2} are of the form X_{0}, H^{0}, H^{*}, and H^{*}, that is, all the vertices of $\overline{H_{j} \cup L_{1}}$ belong to $V\left(H^{*}\right)$. In this case, we also have $G \in \mathcal{H}_{1}$.

By the aforementioned discussion and Claim 1, next, we suppose all the quadrangular faces of L_{2} are of the form X_{0}, H^{0}, X_{0}, and H^{0}. Then, we can use the aforementioned same analysis to the layer L_{3} as L_{2}, since $G \cong Q_{n}$ and H_{j} consists of s layers of quadrangular faces; after finite steps (say t steps), we obtain t layers $L_{2}, L_{3}, \ldots, L_{t+1}$ such that all the faces of $L_{i}(2 \leq i \leq t+1)$ are of form X_{0}, H^{0}, X_{0}, and H^{0} and either the four vertices on $\partial\left(R_{t+2}\right)$ are adjacent to $v^{\prime \prime}\left(v^{\prime \prime} \in V\left(H^{0}\right)\right)$ or all the vertices of $\overline{H_{j} \cup L_{1} \cup L_{2} \cup \cdots \cup L_{t+1}}$ belong to $V\left(H^{*}\right)$.

If the four vertices on $\partial\left(R_{t+2}\right)$ are adjacent to $v^{\prime \prime}\left(v^{\prime \prime} \in V\left(H^{0}\right)\right)$, then $m=t+1, n=s+t+1$ and $G \in \mathcal{H}_{1}$. If all the vertices of $\overline{H_{j} \cup L_{1} \cup L_{2} \cup \cdots \cup L_{t+1}}$ belong to $V\left(H^{*}\right)$ (say $V\left(H_{1}\right)$), suppose H_{1} consists of p layers of quadrangular faces, then $m=t+p+2, n=s+$ $t+p+2$, and also $G \in \mathcal{H}_{1}$.

To sum up, if exactly two edges of $\nabla\left(H_{j}\right)$ belong to E_{0}, then $G \in \mathcal{H}_{1}$.

Subcase 1.4: Exactly one edge of $\nabla\left(H_{j}\right)$ belong to E_{0}.
Without loss of generality, suppose $e_{1}^{\prime} \in E_{0}$, then $v_{22}, v_{23}, v_{24} \in$ $X_{0}, v_{22} v_{23}, v_{23} v_{24} \in E\left(X_{0}\right)$, which contradicts that X_{0} is an independent set of G_{0}.

Subcase 1.5: No edge of $\nabla\left(H_{j}\right)$ belongs to E_{0}.
Thus, $\bigcup_{i=1}^{4} v_{2 i} \subseteq X_{0}$, so $v_{21} v_{22}, v_{22} v_{23}, v_{23} v_{24}, v_{24} v_{21} \in E\left(X_{0}\right)$, which contradicts $E\left(X_{0}\right)=\phi$.

Case 2: $\nabla\left(H_{j}\right)$ is not a cyclical 4-edge-cut of G for all $1 \leq j \leq \alpha$.
For convenience, set $E_{0}=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. Here, first, we give the idea of proof, then we will show that $G_{0}=G-E_{0}$ is bipartite by proving $\left|V\left(H_{i}\right)\right|=1 \quad(1 \leq i \leq \alpha)$. Since G has exactly eight triangular faces and $\left|E_{0}\right|=4$, which implies that each edge e_{i} of E_{0} is the common edge of two triangles, by discussing all possible subgraphs formed by facial cycles containing an edge of E_{0}, we show that $G \in \mathcal{H}_{1}$ or $G \in \mathcal{H}_{2}$.

Since $\nabla\left(H_{j}\right)$ is not a cyclical 4-edge-cut of G for all $1 \leq j \leq \alpha, H_{j}$ or $\overline{H_{j}}$ is a singleton by Lemma 3.1. Since X_{0} is non-empty and $\alpha=\left|X_{0}\right|+2$, which means H_{j} is a singleton vertex, that is, $\left|V\left(H_{j}\right)\right|=$ $1(1 \leq j \leq \alpha)$.

Let Y_{0} denote the set of all singletons y_{i} from each $H_{i}(1 \leq i \leq \alpha)$, and denote the vertices of X_{0} by $x_{i}\left(1 \leq i \leq\left|X_{0}\right|\right)$, so $G_{0}=\left(X_{0}, Y_{0}\right)$ is bipartite. For convenience, we color the vertices white in X_{0} and black in Y_{0}.

Next, we consider possible subgraphs of G containing all edges of E_{0}. By the Euler theorem, G has exactly eight triangular faces
A

B

C

D

F

FIGURE 6
$G\left[E_{0}\right]$ has two components and the $\{(3,4), 4\}$-fullerenes $Q_{l}(l \geq 1)(\mathrm{A}-\mathrm{G})$.

$G\left[E_{0}\right]$ has three components (A, C) or four components (\mathbf{B}, D).
because $G_{0}=\left(X_{0}, Y_{0}\right)$ is bipartite; each edge e_{i} of E_{0} is the common edge of two triangles and connects two vertices in Y_{0}, that is, every edge $e_{i} \in E_{0}$ belongs to a diamond, say $D_{i}, i=1,2,3,4$ and $F\left(D_{i}\right) \cap F\left(D_{j}\right)=\varnothing(i \neq j, i, \quad j=1,2,3,4)$.

Claim 2: If $G\left[E_{0}\right]$ has one component, then $G \cong Q_{0}$, where Q_{0} is the octahedron.

Proof. If $G\left[E_{0}\right]$ has one component, then we have the subgraphs shown in Figures 5A, B, C) if $G\left[E_{0}\right]$ is a tree and Figures 5D, E if $G\left[E_{0}\right]$ has cycles. If $G\left[E_{0}\right]$ is isomorphism to the graph shown in Figure 5 A , then the two diamonds D_{1}, D_{2} are adjacent and they form one cap of Q_{n}. Set $D_{12}=D_{1} \cup D_{2}$, then $\nabla\left(D_{12}\right)$ forms an 4-edge-cut. On the other hand, by Lemma 2.3 and Lemma 3.1, $\nabla\left(D_{12}\right)$ is a cyclical 4-edge-cut and $G \cong Q_{p}$ or $\nabla\left(D_{12}\right)$ is trivial. If $\nabla\left(D_{12}\right)$ is a cyclical 4-edge-cut, then $G \cong Q_{p}(p \geq 1)$ and e_{3} belongs to a quadrangular face, which contradicts that the two faces containing e_{3} are triangles. If $\nabla\left(D_{12}\right)$ is a trivial 4 -edge-cut, that is, $\overline{D_{12}}$ is a singleton, which is impossible as the two vertices of e_{4} belong to $V\left(\overline{D_{12}}\right)$. Thus, $G\left[E_{0}\right]$ cannot be isomorphism to the subgraph shown in Figure 5A. All the situations of Figures 5B-D contradicts $F\left(D_{i}\right) \cap F\left(D_{j}\right)=$ $\varnothing(i \neq j, i, \quad j=1,2,3,4)$.

If $G\left[E_{0}\right]$ is isomorphic to the graph shown in Figure 5E, then in order to guarantee $F\left(D_{i}\right) \cap F\left(D_{j}\right)=\varnothing(i \neq j, i, \quad j=1,2,3,4)$, the four diamonds D_{1}, D_{2}, D_{3}, and D_{4} forms two caps of Q_{n} such that the cycle induced by E_{0} is exactly the intersecting of the two caps. Immediately, we have the graph Q_{0} (see Figure 5F the octahedron Q_{0}), that is, $G \cong Q_{0}$ if $G\left[E_{0}\right]$ has one component, so $G \in \mathcal{H}_{1}$.

In accordance with Claim 2, next, we assume that $G\left[E_{0}\right]$ is not connected, so $G\left[E_{0}\right]$ has at least two and at most four components. Then, we have the following three cases.

Subcase 2.1: $G\left[E_{0}\right]$ has exactly two components.
By symmetry, the subgraph induced by E_{0} has four cases as shown in Figures 6A-D. Then, the graph G which contains the subgraphs shown in Figure 6B contradicts $F\left(D_{i}\right) \cap F\left(D_{j}\right)=\varnothing(i \neq j, i, \quad j=1,2,3,4)$. If G contains the subgraph shown in Figure 6C, then the three edges e_{1}, e_{2}, and e_{3} belong to the same triangular face as every 3 -length cycle of a $\{(3$, 4), 4\}-fullerene must be the boundary of a triangular face by Lemma 2.2 , which contradicts that $F\left(D_{i}\right) \cap F\left(D_{j}\right)=\varnothing(i \neq j, i, \quad j=1,2,3,4)$.

If $G\left[E_{0}\right]$ is isomorphic to the graph as shown in Figure 6A, then the three edges e_{1}, e_{2}, and e_{3} belong to three diamonds D_{1}, D_{2}, and D_{3}, respectively, and we have the subgraph A_{1} consisting of D_{1}, D_{2}, and D_{3} (see Figure 6E) such that $\left|\nabla\left(A_{1}\right)\right|=2$ and A_{1}, D_{4} are disjoint. By the definition of G, we can know the two 3-degree vertices on

FIGURE 8
$\{(3,4), 4\}$-Fullerenes Q_{n}.
$\partial\left(A_{1}\right)$ must be adjacent and we obtain $G \cong Q_{0}$, which contradicts that A_{1}, D_{4} are disjoint.

If $G\left[E_{0}\right]$ is isomorphic to the graph as shown in Figure 6D, then D_{1}, D_{2} are adjacent, and D_{3}, D_{4} are adjacent. Set $B_{1}=D_{1} \cup D_{2}, B_{2}=$
$D_{3} \cup D_{4}$. Since the two edges e_{1}, e_{2} are disjoint, the edges $e_{3}, e_{4}, B_{1}, B_{2}$ are disjoint. Then, $\nabla\left(B_{i}\right)(i=1,2)$ forms a cyclical 4-edge-cut (see Figure 6 F$)$, by Lemma 2.3, $G \cong \mathrm{Q}_{l}(l \geq 1)$.

Since $G_{0}=\left(X_{0}, Y_{0}\right)$ is bipartite, it should be noted that each edge e_{i} of E_{0} is in these eight triangles and connects two vertices in Y_{0}; thus, the edges of $E(G)-E\left(B_{1}\right)-E\left(B_{2}\right)$ are $X_{0} Y_{0}$ - edges and $G-B_{1}-B_{2}$ has only quadrangles (see Figure 6G). Moreover, by Lemma 2.3, we can know $G-B_{1}-B_{2}$ consists of $l-2(l \geq 2)$ layers of quadrangles (each layer is made up of four quadrangles). Thus, we have $G \in \mathcal{H}_{1}$.

Subcase 2.2: $G\left[E_{0}\right]$ has exactly three components.
Then, both of the two components of $G\left[E_{0}\right]$ are K_{2}, and one component is $K_{1,2}$ (see Figure 7A). Without loss of generality, we suppose the component $K_{1,2}$ is induced by the edges e_{3}, e_{4}. Then, the two diamonds D_{3}, D_{4} are adjacent, and D_{1}, D_{2} are disjoint. Set $C_{1}=$ $D_{3} \cup D_{4}$ (see Figure 7C).

Then, due to Lemma 2.3 and Lemma 3.1, $\nabla\left(C_{1}\right)$ forms a cyclical 4-edge-cut, thus, $G \cong Q_{s}$, where Q_{s} is the tubular $\{(3,4), 4\}$-fullerene as shown in Figure 2, which means each of the two caps of Q_{s} must contain two adjacent diamonds, contradicts that D_{1}, D_{2} are disjoint.

Subcase 2.3: $G\left[E_{0}\right]$ has four components.
Then, the four diagonal edges e_{1}, e_{2}, e_{3}, and e_{4} are disjoint (see Figure 7B), that is, the four diamonds D_{1}, D_{2}, D_{3}, and D_{4} cannot intersect at the diagonal edges. We have the four diamonds D_{1}, D_{2}, D_{3}, and D_{4} as shown in Figure 7D. Then, $G \in \mathcal{H}_{2}$.

So far, we have completed the proof of Theorem 3.3.
Inspired by Theorem 3.3, we immediately get the following theorems.

Theorem 3.4. Let G be a $\left\{(3,4)\right.$, 4\}-fullerene, if $G \in \mathcal{H}_{1}$, then $a k(G)=4$.

FIGURE 9
Graph $G-E_{0} ; n$ is an odd number (A), and n is an even number (B).

Proof. Let $G \in \mathcal{H}_{1}$, that is, $G \cong Q_{n}(n \geq 0)$. By Theorem 3.2 and the definition of the anti-Kekule number, we only need to find an antiKekulé set E_{0} of G such that $\left|E_{0}\right|=4$.

For convenience, let the plane embedding graph of Q_{n} as shown in Figure 8. Q_{n} consist of $n+1$ concentric rings with four vertices on each ring and two vertices on two caps; these $n+1$ concentric rings are recorded as $R_{1}, R_{2}, R_{3}, \ldots, R_{n+1}$ from the inside to the outside. Next, the vertices of Q_{n} are labeled as follows: the vertices shared by the four triangles on the two caps are represented by $v^{\prime}, v^{\prime \prime}$, respectively, and the vertices on $R_{i}(i=1,2,3, \ldots, n+1)$ are recorded as $v_{i 1}, v_{i 2}, v_{i 3}$, and $v_{i 4}(i=1,2,3, \ldots, n+1)$ in a clockwise direction such that $v_{i 1}, v_{i 3}\left(v_{i 2}\right.$, , and $\left.v_{i 4}\right)$ are on the same line (see Figure 8 the labeling of Q_{n}).

Next, we will prove Theorem 3.4 in two cases.
Case 1: n is an odd number.
Let $E_{0}=\left\{v^{\prime} v_{11}, v^{\prime} v_{13}, v^{\prime \prime} v_{n+1,2}, v^{\prime \prime} v_{n+1,4}\right\}$ (see Figure 9A), and set $G_{1}=G-E_{0}$. Then, E_{0} is not a cyclically 4-edge-cut of G by Lemma 2.3. Moreover, E_{0} is not a trivial 4-edge-cut as the four edges in E_{0} are not incident with a common vertex. That is, G_{1} is connected.

Then, we prove that $G_{1}=G-E_{0}$ has no perfect matching, and there are only quadrangular faces in G_{1}, so, G_{1} is bipartite. We color the vertices of G_{1} with black and white such that adjacent vertices in G_{1} are assigned two distinct colors (see Figure 9A). Let M_{0} denote the set of white vertices and N_{0} denote the set of black vertices, then $G_{1}=G_{1}\left(M_{0}, N_{0}\right),\left|M_{0}\right|=2 n+2,\left|N_{0}\right|=2 n+4$. In accordance with Theorem 2.4, there exist $M_{0} \subseteq V\left(G_{1}\right)$ such that $o\left(G_{1}-M_{0}\right)$ $=\left|N_{0}\right|=2 n+4>\left|M_{0}\right|=2 n+2$, so G_{1} has no perfect matching.

Case 2: n is an even number.
Let $E_{0}=\left\{v^{\prime} v_{11}, v^{\prime} v_{13}, v^{\prime \prime} v_{n+1,1}, v^{\prime \prime} v_{n+1,3}\right\}$ (see Figure 9B), and set $G_{2}=G-E_{0}$. Also, G_{2} is connected.

There are only quadrangular faces in G_{2}; so, G_{2} is also bipartite with one bipartition $2 n+2$ vertices and the other bipartition $2 n+4$ vertices, which means G_{2} has no perfect matching.

Therefore, we find the anti-Kekule set E_{0} of G with $\left|E_{0}\right|=4$, which means $a k(G)=4$, if $G \in \mathcal{H}_{1}$.

Due to Theorem 3.4, if $G \in \mathcal{H}_{1}$, then $\operatorname{ak}(G)=4$. However, the anti-Kekulé number of G can be 4 or 5 if $G \in \mathcal{H}_{2}$. Next, we use a method to judge whether the anti-Kekulé number of G can be 4 or 5 when $G \in \mathcal{H}_{2}$. Before we give some definitions of G if $G \in \mathcal{H}_{2}$. Let $G \in \mathcal{H}_{2}$, the four diamonds of G be D_{1}, D_{2}, D_{3}, and D_{4} and the four diagonal edges be e_{1}, e_{2}, e_{3}, and e_{4} such that $e_{i} \in E\left(D_{i}\right), i=1$, $2,3,4$. Set $E_{0}=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ and $e_{1}=v_{1} v_{2}, e_{2}=v_{3} v_{4}, e_{3}=v_{5} v_{6}$, and $e_{4}=v_{7} v_{8}$. The eight vertices of the four diagonal edges are called eight stars, and their union is denoted by $V_{0}=\bigcup_{i=1}^{8} v_{i}$.

Set $G_{0}=G-E_{0}$. Then, G_{0} is bipartite, without loss of generality, we supposed the bipartitions of G_{0} were V_{1}, V_{2}. Then, by the proof of Theorem 3.3, we can know if $a k(G)=4$, then $V_{0} \subset V_{1}$ or $V_{0} \subset V_{2}$, which means $a k(G)=5$ when $V_{0} \not \subset V_{1}$ and $V_{0} \not \subset V_{2}$. Thus, we have the following theorem.

Theorem 3.5. Let G be a $\{(3,4), 4\}$-fullerene, $G \in \mathcal{H}_{2}$, if $V_{0} \subset V_{1}$ or $V_{0} \subset V_{2}$, then $\operatorname{ak}(G)=4$, otherwise, $a k(G)=5$.

Proof. By Theorem 3.2, we only need to show if $V_{0} \subset V_{1}$ or $V_{0} \subset V_{2}$, then $a k(G)=4$. Without loss of generality, suppose $V_{0} \subset V_{1}$. Then, $G\left[V_{1}\right]$ consists of the four edges e_{1}, e_{2}, e_{3}, and e_{4} and some singleton vertices. Since the four edges e_{1}, e_{2}, e_{3}, and e_{4} cannot be incident with a common vertex, E_{0} is not a trivial 4-edge-cut. However, E_{0} also cannot
be a cyclical 4-edge-cut by Lemma 2.3, as e_{i} belongs to the intersection of two triangular faces for $i=1,2,3,4$. Thus, $G_{0}=G-E_{0}$ is connected.

On the other hand, by the degree-sum formula $4\left|V_{2}\right|=4\left|V_{1}\right|-8$, which means $\left|V_{1}\right| \neq\left|V_{2}\right|$. Thus, G_{0} cannot have perfect matchings by Theorem 2.4. So, we find the anti-Kekulé set E_{0} with $\left|E_{0}\right|=4$. Immediately, we have $a k(G)=4$. Otherwise, by Theorem 3.2, $a k(G)=5$.

By Theorem 3.5, for a $\{(3,4), 4\}$-fullerene G with $G \in \mathcal{H}_{2}$, we can give the method to judge the anti-Kekule number of graph G is 4 or 5 as follows:

Step 1: Delete the four diagonal edges e_{1}, e_{2}, e_{3}, and e_{4}.
Step 2: Color the vertices of $G_{0}=G-\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ with black and white.
Step 3: If we find the eight stars are in the same color, then $a k(G)=4$, otherwise, $a k(G)=5$.

4 Conclusion

In this paper, we have obtained the scope of the anti-Kekule number of $\{(3,4), 4\}$-fullerenes in Theorem 3.2; at the same time, we characterized $\{(3,4), 4\}$-fullerenes with anti-Kekulé number 4 in Theorem 3.3, which includes two kinds of graphs $\mathcal{H}_{1}, \mathcal{H}_{2}$.

As a consequence, we proved that if $G \in \mathcal{H}_{1}$, then $\operatorname{ak}(G)=4$. Interestingly, by the proof of Theorem 3.3, we found the $\{(3,4), 4\}$ fullerene G belongs to \mathcal{H}_{2}, but the anti-Kekulé number of G is not always 4 ; therefore, at the end of this paper, we gave a condition for judging whether the anti-Kekule number of graph G is 4 or 5 .

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

Author contributions

RY performed the ideas and the formulation of overarching research goals and aims. HJ wrote the first manuscript draft and performed the review and revision of the first draft.

Funding

This work was supported by the National Natural Science Foundation of China (grant nos. 11801148 and 11626089) and the Foundation for the Doctor of Henan Polytechnic University (grant no. B2014-060).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Vukičević, D. (2007). Anti-Kekulé number of C_{60}. Australas. J. Comb. 38, 47-62.
Yang, Q., Ye, D., Zhang, H., and Lin, Y. (2012). On the anti-Kekulé number of fullerenes. Match Commun. Math. Comput. Chem. 67, 281-288.
Yang, R., Liu, C., and Wu, S. (2023). The facial resonance of $\{(3,4), 4\}$-fullerene. J. Comb. Math. Comb. Comput. Accepted.

Yang, R., and Zhang, H. (2012). Hexagonal resonance of (3,6)-fullerenes. J. Math. Chem. 50 (1), 261-273. doi:10.1007/s10910-011-9910-8
Zhang, Q., Bian, H., and Vumar, E. (2011). On the anti-Kekulé and anti-forcing number of cata-condensed phenylenes. Match Commun. Math. Comput. Chem. 65 (3), 799-806.

Zhao, L., and Zhang, H. (2020). On the anti-Kekulé number of (4,5,6)fullerenes. Discrete Appl. Math. 283, 577-589. doi:10.1016/j.dam.2020.02.006

