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Rapid advancement in nanotechnology has led to the development of a myriad of
useful nanomaterials that have novel characteristics resulting from their small size
and engineered properties. In particular, two-dimensional (2D) materials have
become a major focus in material science and chemistry research worldwide with
substantial efforts centered on their synthesis, property characterization, and
technological, and environmental applications. Environmental applications of
these nanomaterials include but are not limited to adsorbents for wastewater
and drinking water treatment, membranes for desalination, and coating materials
for filtration. However, it is also important to address the environmental
interactions and implications of these nanomaterials in order to develop
strategies that minimize their environmental and public health risks. Towards
this end, this review covers the most recent literature on the environmental
implementations of emerging 2D nanomaterials, thereby providing insights into
the future of this fast-evolving field including strategies for ensuring sustainable
development of 2D nanomaterials.
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1 Introduction

Nanomaterials are defined as having at least one dimension of approximately
1–100 nm and are known for having unique and size-dependent optical, mechanical,
electrical, and chemical properties. While relatively new, nanomaterials are entering the
commercialization stage in many industries, including the electronic, magnetic,
biomedical, pharmaceutical, cosmetic, energy, and paint industries, as well as for
coatings and catalytic applications (Novoselov et al., 2012; Chung et al., 2013; Kemp
et al., 2013). Two-dimensional (2D) nanomaterials are crystalline materials consisting of
atomically-thin layers that possess strong ionic or covalent in-plane bonding while being
stacked together by interlayer van der Waals bonding. There are several unique
characteristics of 2D nanomaterials compared to their counterparts with different
dimensionality and which makes them different from zero-dimensional (0D)
nanoparticles, one-dimensional (1D) nanowires, and three-dimensional (3D) networks.
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1.1 Why two-dimensional (2D)
nanomaterials?

2D nanomaterials are of particular interest due to their
exceptionally high specific surface area, making their surface
properties dominant compared to their bulk counterparts. This
high specific surface area makes 2D nanomaterials promising
building blocks to construct functional composites as well as
used as reinforced fillers to strengthen the resultant composites
(Zhang, 2015). Moreover, these high aspect ratio sheet-like solids
come in a wide array of chemical compositions, crystal phases, and
physical forms, and are anticipated to enable a host of future
technologies in areas that include electronics, sensors, coatings,
barriers, energy storage and conversion, and biomedicine (Bianco
et al., 2013; Kaul, 2014; Kalantar-zadeh et al., 2015; Cao et al.,
2016).

With atomic-scale thicknesses, 2D nanomaterials possess
maximum mechanical flexibility and optical transparency,
making them promising for the fabrication of highly flexible
and transparent electronic/optoelectronic devices (Geim and
Novoselov, 2009). Moreover, the large lateral size and atomic
thickness allow 2D nanomaterials to be highly favorable for
many surface-active applications, such as electrocatalysis,
photocatalysis, organic catalysis, and supercapacitors (An
et al., 2016; Chen et al., 2019; Wu et al., 2019; Zhao et al.,
2020a; Wang and Zhao, 2020; Chang et al., 2021; Ng et al.,
2021).

Another attractive feature of 2D nanomaterials is that their
electronic structures are highly sensitive to chemical modification,

external electric fields, mechanical deformation, doping, and
adsorption of other molecules or materials, which makes it easier
to modify their electronic properties in a desired manner (Geim and
Novoselov, 2009). Through chemical modification and integration
into heterostructures, 2D nanomaterials are being integrated into a
range of applications including highly conductive electrodes, planar
spintronics, and high-efficiency catalysts (Yu et al., 2013; Kaul, 2014;
Saadi et al., 2014).

2D nanomaterials have been extensively studied due to a vast
array of unique physicochemical properties, such as high electronic
conductivity, magnetic anisotropy, tunable band gap, and surface
activity (Novoselov et al., 2004; Wang et al., 2012a; Chhowalla et al.,
2013; Nicolosi et al., 2013; Li et al., 2014a; Xu et al., 2014). These
properties arise from the quantum confinement of electrons.

The combination of excellent mechanical properties, light
transmittance, and electronic properties makes 2D nanomaterials
highly attractive in the fabrication of next-generation wearable,
highly flexible, and transparent electronic/optoelectronic devices.

However, the synthesis, manufacturing, or application of these
2D nanomaterials can lead to unintended human exposures and
environmental releases. These may pose a significant threat to public
health and the environment. Even though the toxicity of 2D
nanomaterials, their microbial degradation pathways, and their
interactions with biological systems have been explored
previously (Fojtů et al., 2017), for sustainable development of
nanomaterials, it is important to have a better understanding of
the fate and transport of these materials in the environment. The
responsible development and applications of nanotechnology thus
requires a coordinated and sustained research effort to understand
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and manage the environmental implications and human health risks
of 2D nanomaterials.

In this review, literature on some of the emerging 2D
nanomaterials (i.e., graphene oxide (GO), Molybdenum Disulfide
(MoS2)) are summarized in terms of their environmental
implications and a few prospects. By providing an overview of
the properties and environmental implementations of 2D
nanomaterials, rational strategies can be developed to help guide
future sustainable development and safe best practices for the
handling and utilization of 2D nanomaterials.

2 Graphene family nanomaterials

Graphene is recognized as the “mother of all graphitic forms,”
i.e., the 2D building block of fullerenes, carbon nanotubes, and
graphite, and has given rise to the wide range of GFNs studied
today (Geim and Novoselov, 2007). Graphene nanomaterials
vary in layer number, lateral dimension, surface chemistry,
defect density, quality of the individual graphene sheets,
composition, and purity. The properties and applications of
some commonly used GFNs (Figure 1) have been summarized
in Table 1 briefly.

2.1 Other graphene derivatives and
elemental graphene analogues

Compared to the abundant literature on 2D materials like
graphene and graphene oxide, the study of other graphene

derivatives and elemental graphene analogues is still limited and
at an early stage. Predictions and preliminary measurements of their
properties confirm that they are complementary to conventional
(that is, layered bulk-derived) 2D materials, which highlights that
they deserve more attention as well in Tables 2, 3 (Zhang et al.,
2017a; Mannix et al., 2017; Molle et al., 2017; Pumera and Sofer,
2017).

3 2D materials beyond graphene

Encouraged by the success and widespread applications of GFNs,
researchers have explored other possible 2D structures beyond
graphene and its derivatives. Studies with these materials have led to
a vast library of 2D materials. (Geim and Grigorieva, 2013). Here, we
introduce some of these categories and their relevant attributes.

4 Environmental implications of
graphene family nanomaterials

A broad and detailed understanding of the environmental
implications of 2D materials will require knowledge of their release
and transport through environmental media, distribution in
environmental compartments, chemical and physical transformations,
bioaccumulation, and effects on environmental organisms and
ecosystems (Deng et al., 2011; Han et al., 2013; Chng et al., 2014;
Wang et al., 2015b; Lanphere et al., 2015; Qian et al., 2015; Song et al.,
2015). In the following sections, we survey previous work on the
environmental implications of GFNs and 2Dmaterials beyond graphene.

FIGURE 1
The structures of graphene family nanomaterials: (A) graphene, (B) graphene oxide, (C) hexagonal boron nitride, B shown in purple, N in blue, (D)
fluorographene, F shown in green, C in gray. Fluorine atoms are distributed in one of two ways on the graphene surface in fluorographene, dubbed the
“chair-type” and “boat-type conformations.” Depicted here is fluorographene in the more energetically favorable chair-type conformation. (E)
Phosphorene top and (F) side views. (B) Reprinted with permission fromMacmillan Publishers Ltd.: Nature Chemistry, (A). Bagri, (C). Mattevi, M. Acik,
Y. J. Chabal, M. Chhowalla and V. (B). Shenoy, Nat. Chem., 2010, 2, 581–587, Copyright 2010 (Bagri et al., 2010). All other structures produced by
CrystalMaker9.
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4.1 Environmental degradation of GFNs

With a burgeoning number of applications, the release of GFNs
into the environment poses the risk of their transformation and

degradation into other materials, such as carcinogenic polycyclic
aromatic hydrocarbons (PAH) or comparatively benign carbon
dioxide (CO2). This risk is particularly affected by their
transport, which leads to a wider exposure risk. Thus, it is

TABLE 1 Properties and applications of graphene family nanomaterials.

Materials Properties Applications Ref

Graphene

• Monolayer of sp2 bonded carbon atoms
in a honeycomb lattice.

• Single layer graphene, few layer graphene
(2–10 layers), and graphite nano- and
micro-platelets

• Excellent mechanical property and
thermal conductivity

• Composite materials,
membranes, paints, and coatings

Frank et al. (2007), Balandin et al. (2008),
Wang et al. (2010), Wassei and Kaner (2010),
Zhang et al. (2010), Zhao et al. (2010), Liang
et al. (2011), Zhang et al. (2011), Chang et al.
(2012), Zhu et al. (2015), Dahanayaka et al.
(2017), Kieu et al. (2017), Cataldi et al.
(2018), Zhang et al. (2018)

• Zero-gap semiconductor • Solar cells, photocatalysts,
sensors, and bioimaging agents

• Nanofiltration, membrane
distillation, and pervaporation

• Electronics, motion and
structural sensors, and
reinforced bio-nanocomposites

Graphene Oxide (GO) • Carboxylate groups provide negative
surface charge and colloidal stability in
aqueous solutions

• Desalination by reverse osmosis,
heavy metal removal, dye
removal and adsorption

Loh et al. (2010), Dimiev et al. (2012), Huang
et al. (2014a), Dervin et al. (2016)

Single-atom-thick carbon sheets with
hydroxyl (-OH) and epoxide (-O-)
functional groups on basal plane, and
carboxylate (-COOH) groups on edges,
introducing defects in lattice structure.

• Insulator • Tissue engineering, removal of
organic pollutants and
antibacterial activity

Reduced Graphene Oxide (rGO) • Different reduction processes result in
different properties, affecting the final
performance of materials or devices

• For antibacterial coating and
membrane

Fan et al. (2008), Wang et al. (2008),
Williams et al. (2008), Zhou et al. (2009),
Fernández-Merino et al. (2010), Mohanty
et al. (2010), Shao et al. (2010), Pham et al.
(2011), Feng et al. (2013), Shen et al. (2013),
Chua and Pumera (2014), Li et al. (2016a),
An et al. (2018)

Reduction of GO to reduce the functional
groups and to heal the structural defects

• Sensing and energy storage
applications

Fluorographene • Electrical and optical properties due to
presence of fluorine

• Anti-corrosion and self-cleaning
coatings

Balog et al. (2010), Robinson et al. (2010),
Yin et al. (2018), Fan et al. (2020)

• Desalination

Two-dimensional carbon sheet of sp3

hybridized carbons, with each carbon atom
bound to one fluorine

• Biosensor, electro-catalytic
applications

Hexagonal Boron Nitride (hBN) or white
graphene

• Electrically insulating • Thermal management material
and lubricant in cosmetics,
steels, paints, and sealants

Greim and Schwetz (2000), Elias et al. (2009),
Zhi et al. (2009), Sainsbury et al. (2012), Cho
et al. (2013), Jo et al. (2013), Gao et al. (2014),
Hu et al. (2014), Tan et al. (2017)Analogous to graphene in bulk structure.

Each layer is composed of equal number of
alternating B and N atoms in a honeycomb
lattice

• Excellent thermal conductivity and
mechanical properties, lubrication
properties

• Hydrogen technologies such as
fuel cells and water electrolysis

• Proton mobility, and chemical stability • Antibacterial agent

Graphitic carbon nitride (g-C3N4) • Basic surface functionalities, electron-
rich properties, H-bonding motifs etc.

• Effective water purification,
water filtration and seawater
desalination

Gillan, 2000; Yan et al. (2009), Liu et al.
(2011a), Wang et al. (2011a), Su et al. (2012),
Chu et al. (2013), Sano et al. (2013), Wang
et al. (2013), Huang et al. (2014b), Kumar
et al. (2014), Zhao et al. (2014), Ayán-Varela
et al. (2015), Cao et al. (2015), Hu et al.
(2017), Liu et al. (2018), Reddy et al. (2019)

Van der • Stability, against heat and chemicals • Oxidation of organic dyes and
the inactivation of
microorganisms

Waals layered structure composed of solely
carbon and nitrogen through sp2

hybridization

• Semiconducting properties • Photocatalytic processes

• Insoluble in acidic, neutral, or basic
solvents

The table focusses mainly on the chemistry of the materials and some on the physical form of the materials.
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necessary to gather knowledge on the environmental behavior, fate,
and transport of GFNs in the aquatic and terrestrial environments
where many factors can influence their composition and behavior. It
is especially important to assess their long-term impact in cases
where oxidizing species may promote the disintegration of graphene
into hazardous materials.

4.1.1 Sunlight-mediated transformations
In some previous studies, it was demonstrated that under UV

light irradiation, with or without Fenton reagent (Fe2+/Fe3+/H2O2),

GO undergoes photoreduction, and CO2 forms due to
photooxidation. These reactions are based on the photoreactions
of oxygen-containing functional groups and carbon (Matsumoto
et al., 2011; Koinuma et al., 2012; Zhou et al., 2012). Some other
studies focusing on the chemical stability of the materials has shown
that GO readily photo-reacts under simulated sunlight exposure,
forming fragmented photoproducts similar to rGO as well as low
molecular-weight species such as polycyclic aromatic hydrocarbons
(PAHs) (Figure 4) (Zhou et al., 2012; Bai et al., 2014; Hou et al.,
2015). When exposed to sunlight, graphene oxide degradation

TABLE 2 Properties and applications of graphene derivatives and elemental graphene analogues.

Materials Properties Application Ref

Graphane • Electrical and optical properties due to
the presence of hydrogen

• Hydrogen storage Elias et al. (2009), Balog et al. (2010),
Robinson et al. (2010)

Each carbon atom is sp3 bonded to a
hydrogen atom

• Insulating properties • Electronic device applications

Graphyne and graphdiyne • Extreme hardness, thermal resistance,
conductivity or superconductivity, and
through-sheet transport of ions

• Field emission, solar cells Wan and Haley (2001), Marsden and
Haley (2005), Haley, 2008; Du et al.
(2011), Wang et al. (2012b), Yang et al.
(2013), Li et al. (2014b)Carbon hexagons bonded by linear

acetylenic chains. (Figure 2)
• Photocatalytic activity

Boron carbon nitride (BCN) • Superior electrocatalytic activity • Electrocatalysis and sensing Wang et al. (2012c), Liu et al. (2015a)

Diamond-like structure combined with
the sp Novoselov et al. (2012) σ-bonds
among carbon, boron and nitrogen

• High electrical resistivity

Black phosphorus (BP) or phosphorene • Direct band-gap semiconductor • High-performance electronic and
optoelectronic device

Liu et al. (2014a), Wood et al. (2014)

Layered, phosphorus allotrope, held
together by weak interlayer forces with
significant van der Waals character.
(Figure 1)

• High carrier mobility

Silicene • Dirac cone, high Fermi velocity, and
high carrier mobility

• Quantum sensing, and energy devices Salomon and Kahn (2008), Vogt et al.
(2012), Zhao et al. (2016), Molle et al.
(2018)Low-buckled geometry with partial sp3

hybridization and composed of group-IV
elements

• Tunable band gap, and low thermal
conductivity

• Adsorption of organic molecule

Borophene • Enhanced tunability, novel thermal
and electronic properties, atomically
thin and light

• Optically transparent electrode Tang and Ismail-Beigi (2007), Yang
et al. (2008), Wu et al. (2012a), Penev
et al. (2012), Liu et al. (2013), Mannix
et al. (2015), Adamska et al. (2018)Triangular honeycomb lattice with a

variable network of hollow hexagons
(HHs) and characterized by anisotropy
and polymorphism

• Energetically unstable due to three
valence electrons

• Conductor or transistor

Antimonene • Band gap 2.28 eV • Solar cells, sensors Wang et al. (2015a), Zhang et al.
(2015a), Pizzi et al. (2016), Abellán
et al. (2017), Zhang et al. (2017b), Song
et al. (2017), Song et al. (2018)

Buckled honeycomb lattice composed of
group-V elements

• Enhanced stability and high carrier
mobility

• Photocatalytic hydrogen evolution,
photocatalytic degradation of pollutant

Germanene • Exhibits quantum spin Hall effect
(QSHE)

• Transistors, photodetectors, optical
devices, catalysts, energy storage devices,
solar cells, thermoelectric devices,
sensors, biomedical materials, and
spintronic devices

Zhao et al. (2020b), Liu et al. (2021),
Garg and Thakur (2022), Xi et al.
(2022), Zhao et al. (2022)

• 2D Si and Ge layers • Doping facilitates high-temperature
superconductivity

• Monolayer hexagonal structure
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TABLE 3 Properties and applications of 2D materials beyond graphene.

Transition metal dichalcogenides (TMDs)

• Single plane of metal atoms between two separate layers of chalcogen atoms. General formula of MX2, where M is transitionmetal element and X is
chalcogen. Two possible crystal structures: trigonal prismatic coordination with hexagonal closed packing (2H) or octahedral coordination with

trigonal symmetry (1T)

MATERIALS PROPERTIES APPLICATION Ref

Molybdenum Disulfide (MoS2) • Unparalleled in its lubricity, temperature
resistance, and stability

• Solid lubricant Lauritsen et al. (2004), Splendiani et al.
(2010), Eda et al. (2011), Radisavljevic
et al. (2011), Chou et al. (2013), Bang
et al. (2014), Feng et al. (2014), Finn
et al. (2014), Gan et al. (2014), Wu et al.
(2014), Liu et al. (2015b), Clark et al.
(2015), Leong et al. (2015), Parzinger
et al. (2015), Dervin et al. (2016), Shastry
et al. (2016)

• Hexagonal structure with similarities
to graphene (Figure 3A)

• Mechanical strength, stability, and layer-
dependent optoelectronic properties

• Transistors, photodetectors, and
batteries

• Depending on the stacking order
between the layers, it adopts different
crystal structures

• Direct band-gap semiconductors that
exhibit strong photoluminescence

• Imaging agent, and photothermal
ablation agent

• Catalyst in hydrodesulfurization
reaction pathways

• Water purification treatments

Tungsten Disulfide (WS2) • Superlubricity, ambipolar behavior and
electronic properties

• Catalyst for hydrogen evolution
reactions

Feng et al. (2007), Lalwani et al. (2013),
Notley (2013), Quinn et al. (2013), Voiry
et al. (2013), Liu et al. (2014b), Cheng
et al., 2014; Kaul (2014), Mahler et al.
(2014), Sun et al. (2014), Dervin et al.
(2016), Yue et al. (2018)

Layered structure that adopts structure,
like MoS2

• Direct band-gap semiconductors that
exhibit strong photoluminescence

• Bone tissue engineering,
nanoelectronic devices, water
purification, and lithium-ion
batteries

Tungsten Diselenide (WSe2) • Direct band-gap semiconductor • Optoelectronic device Tributsch (1978), Huang et al. (2014c),
Zhang et al. (2014), Wang et al. (2016a)

Layered semiconductor that shares its
hexagonal crystal structure with MoS2
and WS2

• It has electron or hole charge carriers • Heterostructure archetypes, such as
MoS2-WSe2 alloys and WSe2 gold-
plasmonic hybrid structures

• Enhanced photoluminescence

Molybdenum Diselenide (MoSe2) • Electrically tunable ambipolar behavior • Laser technologies, catalyst for
hydrogen evolution reactions

Pradhan et al. (2014), Saadi et al. (2014),
Luo et al. (2015), Huang et al. (2016), Lei
et al. (2016)

Trilayers of molybdenum sandwiched
between selenium ions causing a trigonal
prismatic metal bonding coordination,
but it is octahedral when the compound is
exfoliated

• Higher electrical conductivity compared to
MoS2

• Electrochemical biosensing of potent
toxins

2D Transition Metal Carbides, Carbonitrides, and Nitrides (MXenes) (Figure 3C)

• General formula Mn+1AXn where
M is a transition metal, X is carbon or
nitrogen, and A is IIIA and IVA group
elements and sometimes O, OH, or F.
(n = 1, 2, or 3)

• High electrical conductivity and high
hydophilicity

• Water purification, lithium-ion
batteries, composites, and
supercapacitors

Barsoum (2000), Naguib et al. (2011),
Naguib et al. (2014), Yang et al. (2022)

• Alternating MX and A layers joined with
high-energy covalent/metallic/ionic
character bonds

• Conductive or semiconductive

2D Oxides

Transition metal oxides (TMOs), such as
TiO2, MoO3, and WO3

• Chemically stable, compatible with
electrolytes, environmentally friendly
compared to transition metal
dichalcogenides

• UV-shielding and high dielectric
properties

Osada and Sasaki (2009), Geng et al.
(2010), Ma and Sasaki (2010), Geim
and Grigorieva (2013), Wang and
Sasaki (2014), Yuan et al. (2014)

Layers of corner-shared or edge-shared
MO6, where M is the transition metal.
(Figure 3D)

• Higher concentrations of vacancies • Nanoelectronic and photochemical
energy storage

• Magnetic and photoluminescent
properties

• Catalysis and biomedical devices

Researchers continue to isolate many new types of ultrathin 2D crystals, such as metal organic frameworks (MOFs), covalent organic frameworks (COFs), polymers, and ultra-thin metals

(Huang et al., 2011a; Huang et al., 2011b; Colson et al., 2011; Duan et al., 2014; Kissel et al., 2014; Kory et al., 2014; Peng et al., 2014; Tan et al., 2014; Fan et al., 2015; Rodenas et al., 2015).

New classes of 2D materials and new polytypes within existing classes are continually being reported, greatly enriching the family of ultrathin 2D materials.
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occurs mainly due to oxygen-containing functional groups on the
basal plane through reduction and creation of holes (Shams et al.,
2019).

Similarly, indirect phototransformation of GO presents another
pathway of degradation in surface water (Lowry et al., 2012). Varied
components of surface water, such as nitrates, minerals, and natural
organic matter (NOM), can promote degradation by acting as
chromophores and producing hydroxyl radicals, which are strong,
non-specific oxidants that react with many nanomaterials in water.

However, the resulting byproducts from GO photodegradation
can persist in water for a long period, and have different
characteristics than their parent material (Hou et al., 2015). This
makes the use of GO difficult especially where they will be
susceptible to phtodegradation. Moreover, phototransformation
will decrease the deposition rate of GO on many environmental
surfaces such as those coated with Suwannee River Humic Acid
(SRHA), which could be useful for the removal of GO from the
environment. Another study has shown that rGO is less susceptible

FIGURE 2
Structures of graphene (left), graphyne (middle), and graphdiyne (right). Each red parallelogram represents one unit cell. Reproduced by M. Inagaki
and F. Y. Kang, J. Mater. Chem. A, 2014, 2, 13,193–13206, with permission of The Royal Society of Chemistry (Inagaki and Kang, 2014).

FIGURE 3
Structures of 2D materials that were discovered or have attracted renewed interest after the isolation of graphene. (A) Transition metal
dichalcogenide (TMD) 2H crystal structure and (B) TMD 1T crystal structure. Here, transition metal atoms are shown in green, and chalcogen atoms
shown in yellow. (C) Ti3C2 crystal structure representative of the MXene family. (D) 2D transition metal oxide Ti0.91O2

0.36-. Ti shown in blue, C in grey, O
in red.
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to photodegradation compared to GO (Shams et al., 2019). Hence,
for coating and photocatalytic applications, use of rGO will be better
compared to GO.

A study of the environmental instability of few-layer BP in
ambient conditions suggests a photo-induced oxidation reaction of
BP and degradation in the presence of oxygen absorbed in water
(Favron et al., 2014; Ziletti et al., 2015). This degradation is a slower
process, taking several hours to days but is dependent upon the
thickness of the flakes. The degradation increases as thickness is
reduced (Island et al., 2015).

However, these studies were performed in model condition in
lab or with only with natural surface water. Whereas, these
degradation rates, and by products can alter at different water
condition. So more future research could be accomplished using
different GFNs in other conditions such as in saline water. Also,
oxidation of 2D materials in air, can have significant impact on the
functional properties and the behavior of the materials which in
result can also impact the degradation (Wang et al., 2017). Graphene
usually has excellent oxidation resistance but at temperature higher
than 250°C, or their structural defect graphene can play an
important role in their oxidation (Liu et al., 2008; Barinov et al.,
2009; Chen et al., 2011; Kang et al., 2012).

4.1.2 Microbial transformations
There are some microbes (i.e., E. coli) that can degrade

functionalized graphene compounds because graphene oxide acts
as a terminal electron acceptor for heterotrophic and environmental
bacteria (Salas et al., 2010; Akhavan and Ghaderi, 2012). Model
environmental microbes from the genus Shewanella (a metal-
reducing bacteria) also include a group of heterotrophic
anaerobes that are found in lakes, oceans, marine sediments, and

related environments (Hau and Gralnick, 2007). These microbes use
different electron acceptors in their respiratory pathway to
immobilize toxic metals and have environmental ubiquity, which
makes them amenable to reactions with graphitic material. These
reactions can further induce the biodegradation of GO, although
they are dependent on some external factors. In addition, several
enzymes like MPO and HRP can degrade graphene. However, the
effectiveness of these enzymes rely on hydrophilicity, colloid
stability and surface negative charge (Kurapati et al., 2015;
Kurapati et al., 2017). Similar to bacteria one study found the use
of fungi for graphene degradation with the help of LiP enzyme (Keli
et al., 2018). This knowledge is useful for applications of
environmental bacteria in green nanochemistries and for creating
high performance nanomaterials (Salas et al., 2010; Wang et al.,
2011b). Moreover, using oxidants for chemical degradation of
graphene nanomaterials can be toxic to environment and costly.
However, future research should also focus on the varied factors like
temperature, presence of oxygen, pH etc. On the biodegradation of
these nanomaterials. Moreover, the existing biodegradation studies
only focused on GO and not on rGO, whose applications are also
increasing with time. In addition, which specific enzyme is secreting
from microbes and is responsible for the degradation should be
studied in more detail.

4.1.3 Disinfectant mediated transformations
Commonly used disinfectants in water distribution and

treatment systems are chlorine, monochloramine, chlorine
dioxide, ozone, and UV irradiation (Harza, 2005). In the
United States, water purification and wastewater disinfection is
accomplished almost solely by chlorination techniques. It was
hypothesized that chlorine-based disinfectants in the water

FIGURE 4
Pathways of direct and indirect photolysis of GO under sunlight. Reproduced with permission fromW.-C. Hou, I. Chowdhury, D. G. Goodwin, W. M.
Henderson, D. H. Fairbrother, D. Bouchard and R. G. Zepp, Environ. Sci. Technol., 2015, 49, 3435–3443. Copyright 2015, American Chemical Society (Hou
et al., 2015). Reproduced with permission from Carbon, 110, Wen-Che Hou, W. Matthew Henderson, Indranil Chowdhury, David G.Goodwin, Xiaojun
Chang, Sharon Martin, D. Howard Fairbrother, Dermont Bouchard, Richard G. Zepp, The contribution of indirect photolysis to the degradation of
graphene oxide in sunlight, 426–437, Copyright 2016, with permission from Elsevier (Hou et al., 2016). Structures produced by AutoCAD 2017.
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treatment environment significantly transform and degrade GFNs
through oxidation, and that the resulting products, chlorinated
GFNs and chlorinated PAHs, have increased mobility in the
aquatic environment compared to the parent material (Frutos
et al., 2011). Historically, halogenated PAHs are known to be
toxic and carcinogenic (Fu et al., 1999). In some study, effect of
photochlorination on GO was investigated (Li et al., 2016b; Du et al.,
2017). These studies showed that photochlorination decomposes
GO to rGO. The studies further showed that changes in oxygen
containing functional groups of GO were due to the oxidation of the
quinone groups in GO by chlorine, and further oxidation by Cl•
and/or ClO• radicals. However, the mechanism of how the addition
of functional groups to GFNs affects the toxicity or mobility of the
degradation products remains unexplored. Also, how this change
will affect aggregation, adsorption, transport, and interactions of GO
with other surfaces needs to be investigated.

4.1.4 Photocatalytic transformation
In one study, C3N4/graphene oxide (GO) aerogel was prepared

to degrade methyl orange (MO), an organic contaminant, under
visible light irradiation to 73% within 5 h in aqueous solution (Wan
et al., 2016). In the study, contribution of C3N4/graphene oxide
(GO) from adsorption and degradation was distinguished. This
result was comparable to another study, where the composite was
prepared similarly and MO degradation was noticed (Tong et al.,
2015). In both the mentioned studies, the composite showed stable
photocatalytic activity for MO degradation after four decomposition
cycles. In another study, metal (Fe2+, Zn2+) was incorporated with
g-C3N4 for rhodamine B (RhB) degradation. This study also showed
that the composite can be regenerated and reused without
appreciable loss of RhB degradation activity up to five cycles
(Zhu et al., 2010). These results summarizes that g- C3N4

incorporated with other material has higher efficiency in
pollutant degradation compared to pure g- C3N4 and shows
excellent recyclability (Cheng et al., 2013; Li et al., 2013; Chen
et al., 2014a; Zhang et al., 2015b). However, C3N4/GO aerogel has
excellent adsorption ability, due to which, it is difficult to distinguish
photocatalytic degradation from adsorption. While considering
(RhB) degradation, there was no mention about the individual
percentage of adsorption and degradation of the material
(Zhu et al., 2014). Different synthesis approach of a composite,
can result to the formation of a composite with different structure
and distinctive properties. Overall it affects the surface area and
catalytic activity of the composite (Zhu et al., 2005; Zhu et al., 2007;
Li et al., 2014c). Effect of different synthesis techniques should be
addressed in pollutant degradation and environmental remediation.
Removal of g-C3N4 from the system after adsorption is barely
mentioned in the above discussed studies. Even though, C3N4/
GO aerogel can be easily separated by filtration from the reaction
systems for recycling (Tong et al., 2015), other approach, like in situ
methods for removal should be reviewed as well.

4.2 Toxicity of GFNs

Many nanoparticles can generate reactive oxygen species (ROS)
due to their redox activity and cause oxidative stress to organisms.
Among different nanoparticles, some researchers found that carbon

nanotubes and graphene can penetrate plant cells and stimulate
phytotoxicity at high doses (Lin and Xing, 2007; Liu et al., 2009;
Stampoulis et al., 2009; Ghodake et al., 2010; Begum et al., 2011;
Khodakovskaya et al., 2011; Anjum et al., 2013; Lee and Kim, 2014).
The hydrophobic property and aggregation tendency of carbon
based nanomaterials would enhance their capability to interact
with many organic substances (De La Torre-Roche et al., 2013).
Accumulation in addition to visible signs of necrotic damage lesions,
all indicate an oxidative stress mechanism mediated through the
necrotic pathway.

GO exposure can reduce swimming speed and cause
settlement inhibition to aquatic organisms (Mesarič et al.,
2013). Graphene can penetrate through the plasma
membranes due to its sharp edges and cause cell death (Liu
et al., 2011b; Begum and Fugetsu, 2013). Furthermore, graphene
can significantly interact with cell membrane lipids due to its
hydrophobic surface, and cause toxicity (Sanchez et al., 2012).
This toxicity, may be due to the loss of membrane integrity,
including initial cell deposition on graphene-based materials and
membrane stress caused by direct contact with sharp nanosheets
(Liu et al., 2011b). Besides concentration, toxicity also depends
on the physicochemical properties of graphene, such as the

FIGURE 5
Aggregation & Stability of graphene oxide (due to presence of
NOM and divalent cations (Ca2+, Mg2+) in surface water and
wastewater. Reprinted with permission from I. Chowdhury, M. C.
Duch, N. D. Mansukhani, M. C. Hersam and D. Bouchard, Environ.
Sci. Technol., 2013, 47, 6288–6296. Copyright 2013, American
Chemical Society (Chowdhury et al., 2013). Reprinted with permission
from I. Chowdhury, N. D. Mansukhani, L. M. Guiney, M. C. Hersam and
D. Bouchard, Environ. Sci. Technol., 2015, 49, 10,886–10893.
Copyright 2015, American Chemical Society (Chowdhury et al.,
2015b).
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density of the functional groups, size, conductivity, and chemical
nature of the reducing agent used for deoxygenation of GO, as
well as on the cell types exposed to the materials which needs to
be explored further (Gurunathan et al., 2012). Similarly toxicity
due to other graphene nanomaterials should also be assessed.

4.3 Aggregation and deposition of GFNs

Aggregation and deposition of GO are dependent on various
cations present in the aquatic and soil environments as they affect
the surface charges of GO (Bargar et al., 1998; Ren et al., 2014; Duan
et al., 2017). Recent studies indicate that GO can resist aggregation
in natural and synthetic surface waters and can remain stable for
extended periods due to steric repulsio. (Chowdhury et al., 2013; Wu
et al., 2013). Figure 5 indicates that GO remains stable in natural
surface water, but gets rapidly destabilized in effluent wastewater.
Photo-transformed GO are significantly affected by the presence of
CaCl2 with hydrodynamic diameter increasing with irradiation time,
indicating an increased rate of aggregation (Chowdhury et al.,
2015a). The deposition behavior also depends on many other
factors, such as the presence of natural organic matter (NOM)
(Chowdhury et al., 2015a). Presence of NOM and divalent cations
(Ca2+, Mg2+) can bridge with GO functional groups, resulting in GO
aggregates that settle from suspension (Chowdhury et al., 2015b).
From this, it can be inferred that GO will sediment and may
accumulate in biosolids and sludge during the wastewater
treatment process. With successive reduction of functional
groups, the colloidal stability of GO in water decreases
(Chowdhury et al., 2015b; Shams et al., 2019). Deposition of
photo-transformed GO on NOM-coated surfaces can reduce
remobilization of GO in the aquatic environment (Chowdhury
et al., 2015a).

4.4 Challenges in synthesis

Chemical vapor deposition, micromechanical exfoliation,
epitaxial growth, and chemical reduction techniques are most
widely used approach for synthesizing graphene
(Gao et al., 2010). However, the existing synthesis approaches
requires precise control over their compositions, thicknesses,
lateral sizes, crystal phases, doping, defects, strains, vacancies,
and surface properties to know the correlations between the
structural features and properties. In chemical reduction
technique, the use of reductant, usually hydrazine or
dimethylhydrazine is highly toxic, which if inhaled by
manufacturing workers, could cause serious health issues. The
use of toxic reductant and other chemical stabilizers, to prevent
aggregation, which are not biocompatible should be avoided. In a
study, a “green” reduction technique of graphite oxide to graphene
was showed using hydrothermal dehydration (Gao et al., 2010).
Graphene of higher quality produced by liquid phase exfoliation of
graphite, using solvents such as N,N-dimethylformamide (DMF),
N-methyl-2-pyrrolidone etc. Should also be avoided as they are
hazardous. Instead reducing sugars, such as glucose, fructose and
sucrose could be used to synthesize graphene (Paton et al., 2014; Yi
and Shen, 2014). Electrochemical methods to produce graphene also

suffers from difficulty, in terms of cost and final product (Chen et al.,
2014b; Parvez et al., 2014).

5 Environmental implications of 2D
materials beyond graphene

Other 2D nanomaterials beyond GFNs are fast rising
components in different industrial processes. Hence, these
products have increasing potential to be released in the
environment, thus necessitating studies of their environmental
implications.

5.1 Transition metal dichalcogenides:
Molybdenum disulfide

Among the range of 2D TMDs such as MoS2, WS2, MoSe2, and
WSe2, the most research concerning environmental fate and
dissolution processes has been conducted on MoS2 (Cheng et al.,
2022; Liu et al., 2022; Liu et al., 2023). Hence, this section will also
focus primarily on the environmental implications of MoS2.

5.1.1 Sunlight mediated transformation
Many of the metal chalcogenides are stable under ambient

conditions but can undergo environmental transformations
(Chhowalla et al., 2013). Recent work on few-layer MoS2 shows
dissolution over time upon exposure to environmental and
biological simulant fluids (Wang et al., 2016b). These soluble
products are formed due to photo-induced corrosion processes,
where edge sites and defect sites are the primary degradation
targets (Parzinger et al., 2015). However, the photodegradation
rate of MoS2 has been observed to be slow under reduced oxygen
concentration.

Metal phosphorus trichalcogenides can undergo photo-induced
degradation or transformation in the environment, which
sometimes provides interesting magnetic and ferroelectric
properties as well as suitable band gaps for water splitting (Liu
et al., 2014c). However, these can lead to the potential release of toxic
ions such as Cu, Cd, Ni, or Co (Joy and Vasudevan, 1992; Evans and
O’hare, 1994; Westreich et al., 2006; Dresselhaus, 2013; Ruiz-León
et al., 2002; Venkataraman et al., 2003).

Decreasing the size of MoS2 to only a few layers (−2–6 nm thick)
increases the photocatalytic properties of MoS2 and ROS generation.
These effects result from bandgap widening and the diffusion
distance shortening for electrons and holes to the material
surface. A previous study showed that four types of ROS (O2

•−,
1O2, H2O2 and OH•) were present in few-layered vertically aligned
MoS2 (FLVMoS2) (Liu et al., 2016). In the same paper, by decreasing
the domain size, the bandgap of MoS2 was increased from 1.3 eV
(bulk material) to 1.55 eV (few layer MoS2). This enabled the few
layer MoS2 to generate ROS successfully (Liu et al., 2016). Similarly,
hybrid materials made with MoS2 can have damaging effects due to
the oxidative stress caused by ROS (Figure 6). For example, highly
photocatalytically efficient MoS2/C3N4 (carbon nitride)
heterostructures have a large potential for industrial applications
due to their high quantum efficiencies and separation speed of
electron−hole pairs (Li et al., 2014d). However, these
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heterostructures can be degraded by ROS and the resulting
degradation products can have toxic effects in the environment.
Specifically, multiple reports have explored the photodegradation of
MoS2/C3N4 heterostructures (Pan et al., 2012; Hou et al., 2013a; Hou
et al., 2013b; Ye et al., 2013).

However, since these studies were done with MoS2, more studies
are required on other TMDs, and how other variables like structural
defects, material thickness, oxidation time, temperature etc.
Influence their degradation are required.

5.1.2 Toxicity
In terms of toxicity, a study (Wu et al., 2016) showed the survival

rate of E. coli in a dose dependent manner of molybdenum disulfide
nanosheets. The results showed that high concentration (100 μg/mL)
of molybdenum disulfide nanosheets, affects the metabolic profile of
E. coli and the survival rate of E. coli was decreased. The mechanism
was attributed to the fact that high concentrations of MoS2, caused
damage to cell membranes, induced ROS accumulation, and reduced
viability (Wu et al., 2016). On the contrary, another study shows that
at similar concentration (100 μg/mL), few layerMoS2 nanosheets with
small lateral dimension (<1 μm) did not induce any cytotoxic effect
and cells maintained their viability (Shah et al., 2015). This
observation is similar to other studies that have also showed that
MoS2 and WS2 nanomaterials are non-cytotoxic (Teo et al., 2014).
This implies that the fate of MoS2 in aquatic environments could be

dependent on the type, lateral size, concentration, exposure time,
number of layers, and chemical composition and surface
functionalization of MoS2 (KenryLim, 2016).

5.1.3 Challenges in synthesis
Currently there are some challenges in controlling the growth,

overcoming the tendency toward aggregation and forming discrete
nanosheets versus multi-pronged cores that lead to multi-site
nanosheet growth of 2D nanosheet in TMDs (Terrones, 2016).
Solution chemical synthesis can produce TMD materials in high
yield and in solution-dispersible form, which also offers an
increasingly interesting complement to traditional gas-phase,
exfoliation, and substrate-bound synthetic platforms for accessing
single- and few-layer TMD materials. Layered materials can also be
exfoliated to monolayer and few-layer 2D nanosheets in various
organic solvents via sonication but with low yield and not suitable
for large scale production. In addition, the solvents used are
expensive and toxic, and difficult to remove (Coleman et al., 2011).

5.2 Oxides

2D oxides have shown enormous potential in a broad range of
application which necessitates the studies of their environmental
implications. However, in terms of environmental implications,

FIGURE 6
(A) Schematic diagram of dissolution process of TMDCs and their fate. (B) Schematic diagram of ROS formation from TMDCs and their fate.
Structures produced by AutoCAD 2017.
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information on the 2D oxides is limited. For this reason, the review
offers relevant information on bulk lamellar materials, which are
often precursors for 2D materials, to give insight into fundamental
chemistry.

5.2.1 Toxicity
Similar to graphene nanoparticles, 2D-TiO2 nanoparticles could

also produce reactive oxygen species upon interaction with
organisms or ultraviolet radiation (Wang et al., 2007; Castiglione
et al., 2011; Elghniji et al., 2012; Feizi et al., 2013; Paret et al., 2013).
Oxygen free radicals formed during their photosynthesis process
could accelerate the breakdown of organic compounds, cause
quenching and increase the absorption of inorganic nutrients
(Zheng et al., 2005; Yang et al., 2006). Furthermore, TiO2

nanoparticles tend to form a covalent bond with natural organic
matter due to their small size, which results in larger surface area-to-
mass ratio along with greater interaction with cells and gets
transported to tissue and cells’ specific distribution (Castiglione
et al., 2011; Huh and Kwon, 2011; Qiu et al., 2013; Song et al., 2013).
However, it is considered that, the acute toxic effects of TiO2

nanoparticles do not follow a clear dose-effect relationship, due
to their agglomeration and subsequent sedimentation.

On the contrary, TiO2 nanoparticles were observed to increase
the plant growth by the improvement in nitrogen metabolism that
promotes the adsorption of nitrate and photosynthetic rate (Yang
et al., 2006; Gao et al., 2008; Wu et al., 2012b). Due to their
antimicrobial properties, TiO2 could also increase a plants ability
of absorbing and utilizing fertilizer and water, encouraging its
antioxidant system, and hasten its germination and growth
(Molina-Barahona et al., 2005).

TiO2 NPs shows potent toxicity to aquatic vertebrates (Bar-Ilan
et al., 2013; Kim et al., 2014a; Kim et al., 2014b; Rosenfeldt et al.,
2014). Even at ppb concentration, TiO2 NPs can generate (ROS)
under solar irradiation, in a dose-dependent manner, which can
accumulate in different organs and cause stunted growth, organ
pathology, delayed metamorphosis and DNA damage (Kim et al.,
2014a). In addition to dose, ROS generation is size dependent as
smaller particles due to their large surface area can generate a higher
level of ROS. From the study (Kim et al., 2014a), it can be concluded
that TiO2 NPs mechanism of toxicity is mainly dependent on the
surface area rather than its concentration. For organisms like E.coli,
toxicity of TiO2 NPs mainly depended on the generation of ROS like
OH radicals or oxidative stress in E. coli rather than the particle size
and surface area (Pathakoti et al., 2013). However, the studies do not
consider factors like flow, depth, temperature and presence of
natural organic matter which can induce dissolution or
aggregation of TiO2 NPs and make the condition of ecosystem
more complex. Without careful application of these nanomaterials,
they will eventually be present in the environment and may have
long-lasting effects on aquatic life. Moreover, if 2D oxides l undergo
biological dissolution, they may not persist in their original solid
state, which could introduce new challenges (Goodman and
Cheshire, 1982; Wang et al., 2016b).

5.2.2 Environmental sensors
2D-MoO3 nanosheets has been extensively studied in gas and

vapor sensing applications (Angiola et al., 2015; Ji et al., 2016). 2D-
MoO3 is one of the most widely investigated gas sensitive materials,

owing to its low cost, non-toxicity and stability at elevated
temperature in air. The sensor using the 2D-MoO3 nanosheets
has significantly a shorter response time as well as recovery time,
compared to bulk MoO3 (Ji et al., 2016). However, synthesis
technique of 2D-MoO3 nanosheets and fabrication technique of
the sensor could cause aggregation, leading to a lower sensor
response, which should be further investigated (Angiola et al.,
2015). Also MoO3 is sensitive to environmental factors (humidity
and oxygen), which has also not been considerd (Kamiya et al.,
2004).

6 Gaps and future prospects

Complete materials characterization and mechanistic toxicity
studies are essential for safe designing and manufacturing of 2D
nanomaterials to develop applications with minimal risks for
environmental health and safety. Moreover, future studies should
focus on the effect of expanding concentration range of GO on these
microorganisms and characterization of cell morphology for better
comparison among studies.

For the development of next-generation membrane filtration
systems for water purification, the primary challenge is to find the
best combination of two-dimensional nanomaterials from GFNs
and TMDs (e.g., MoS2 and WS2) that work together in membrane
surfaces as antifouling and antibacterial agents. Findings from such
studies will also apply to other areas including antifouling coatings
for marine ship hulls, where fouling control remains a major
challenge. Similar to graphene, 2D nanomaterials, such as
TMDC, TMOs, metal-based nanocompounds, C3N4, BP, MXenes,
hBN and other materials have also been researched for antibacterial
applications (Mei et al., 2020). However, how the size, shape, layer
numbers and surface functional modification, affects the
antibacterial activities needs further research. In addition,
majority of the research has been conducted on laboratories, with
pure strain of a single microorganism (Yang et al., 2014; Wu et al.,
2016; Kim et al., 2017). In the environment, there could be a mixed
culture of microorganism, which could affect the antibacterial
activity of these 2D nanomaterials and which should be looked
as well.

Several challenges also exist for the efficient application of
antimicrobial nanomaterials in drinking water treatment, such as
the dispersion and retention of nanomaterials and the sustainability
of antimicrobial activity. If nanomaterials are applied in the form of
a slurry for water disinfection and microbial control, membrane
filtration will be needed to retain and recycle the nanomaterials.
Nanoparticles may also escape from the treatment system and enter
the product water, which can have serious impacts on human health
and ecosystems. Effective and reliable methods are needed to anchor
the nanoparticles to reactor surfaces or to separate and retain
suspended nanoparticles to reduce costs associated with material
loss and to prevent human and environmental exposure. This
includes developing better surface coating techniques, minimizing
membrane fouling by nanomaterial suspension, and impregnating
nanoparticles into filter packing materials, such as granular activated
carbon or ion exchange resins.

Compared to graphene, which has been studied intensively,
silicon- and germanium based 2D materials are much less
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explored, especially on their nanoscale level. This could be due to
their synthesis, instability and a tendency toward oxidation.
Moreover, the current knowledge about these materials covers
only alkyl and aryl functional groups, and no other
functionalities, whereas introduction of more complex
functionalities may tune their physical properties similar to
graphene (Hartman and Sofer, 2019). Constructing hybrid
nanomaterials by using other 2D nanomaterials as building
blocks, and thus further optimizing their properties and
functionalities in future is a promising field.

There are many more 2D nanomaterials whose environmental
implications, behavior, and fate are not yet known. It is essential to
gather knowledge on their detailed material characteristics,
toxicity, and implications so that preventive measures can be
taken before the wholesale emergence of 2D nanomaterials in
the market. In particular, it is important to relate specific
physicochemical characteristics and functional assays so that
predictions can be made for other materials and remediation
can be designed accordingly. A challenge while utilizing these
2D nanomaterials is their high yield production to meet industry
requirements for which more detailed research on their synthesis
technique is required. Moreover, their preparation with desired
structural characteristics in a highly controllable manner is still a
challenge.

Although 2D nanomaterials have the potential to revolutionize
aspects of electronics, medicine, and agriculture, the inherent risk
of environmental and health hazards remain. In this regard, health
and safety-focused research will augment application-driven
research, ultimately enabling sustainable technological
development.
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