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Although mass spectrometry (MS) has its unique advantages in speed, specificity
and sensitivity, its application in quantitative chiral analysis aimed to determine the
proportions of multiple chiral isomers is still a challenge. Herein, we present an
artificial neural network (ANN) based approach for quantitatively analyzing
multiple chiral isomers from their ultraviolet photodissociation mass spectra.
Tripeptide of GYG and iodo-L-tyrosine have been applied as chiral references
to fulfill the relative quantitative analysis of four chiral isomers of two dipeptides of
L/DHisL/DAla and L/DAspL/DPhe, respectively. The results show that the network can
bewell-trainedwith limited sets, and have a good performance in testing sets. This
study shows the potential of the new method in rapid quantitative chiral analysis
aimed at practical applications, with much room for improvement in the near
future, including selecting better chiral references and improving machine
learning methods.

KEYWORDS

chiral analysis, multiple isomers, mass spectrometry, ultraviolet photodissociation,
dipeptide

1 Introduction

Chirality exists in various types of organic and biological molecules, including amino
acids, carbohydrates, DNAs and proteins. The chiral isomers may have quite different
interactions with their surroundings in living systems, resulting in different pharmacological
activities (Nguyen et al., 2006). At the early ages, it was still believed that D-amino acids only
occurred in microorganisms and some peptides. Due to the development of analytical
methods in the past decades, the presence of D-amino acids in higher organisms, including
human beings, is proven (Genchi, 2017). Thus, chiral analysis is very important for both
fundamental and applied research. Various methods have been developed and applied for
effective chiral analysis, including circular dichroism (CD) spectroscopy, nuclear magnetic
resonance (NMR), and chromatographic methods, such as liquid chromatography (LC) or
gas chromatography (GC) (Nguyen et al., 2006; Ward and Baker, 2008; Lanucara et al., 2014;
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Wenzel, 2018; Hu et al., 2020). It should be mentioned that the
selection of suitable reagent or ligand to fulfill chiral analysis or to
assign the absolute configuration of particular compounds is very
important in such experiments (Müller et al., 2008; Scaramuzzo
et al., 2013).

Since the ions of enantiomers (or chiral isomers) have the same
m/z, mass spectrometry (MS) was considered as a blind method for
chiral analysis in the early years. However, the rapid development of
mass spectrometry methods, especially in the field of soft ionization,
has undergone great changes (Tao and Cooks, 2003; Wu et al., 2012;
Awad and El-Aneed, 2013; Yu and Yao, 2017; Han and Yao, 2020;
Shi et al., 2020). In recent years, MS based chiral analysis methods
have attracted widespread attention due to its unique advantages in
speed, specificity and sensitivity. Differentiation of chiral isomers
can be achieved by comparing the formation, dissociation or
reaction behavior of the diastereomers in the gas phase, or their
mobilities when combined with the technique of ion mobility (Tao
and Cooks, 2003; Wu et al., 2012; Awad and El-Aneed, 2013;
Lanucara et al., 2014; Yu and Yao, 2017; Han and Yao, 2020; Hu
et al., 2020; Shi et al., 2020). The method of infrared multiple photon
dissociation (IRMPD) and ultraviolet photodissociation (UVPD)
spectroscopic methods, have also applied to the field and have
shown their advantages in providing spectral and structural
information of corresponding chiral complexes (Filippi et al.,
2012; Liao et al., 2013; Fujihara et al., 2016; Lee et al., 2017; Ren
et al., 2017; Fujihara and Okawa, 2018; Lee et al., 2018; Ma et al.,
2018; Shi et al., 2019; Shi et al., 2020; Sun et al., 2020). Among these
MS-based methods, UVPD has been demonstrated to be able to
yield abundant radicals in fragmentation processes, thus provides a
unique means for generating novel dissociation pathways in tandem
mass spectrometry (Ly and Julian, 2009).

Although progresses have been achieved in qualitative chiral
analysis, quantitative analysis aimed to determine the value of
enantiomeric excess (ee) is more difficult and complicated than
qualitative analysis aimed to recognition (Fujihara et al., 2017). On
the other hand, most of the MS-based chiral analysis studies still
focused on enantiomers with one chiral center. For the complicated
compounds with multiple chiral centers, the recognition of the

multiple isomers including both enantiomers and diastereomers
in a single experiment will be more difficult, not to mention the
quantitative analysis of these compounds. Among the D-amino
acids, D-Ala is an unusual endogenous amino acid present in
invertebrates and vertebrates, and its function in the mammalian
nervous and endocrine systems is significant (Lee et al., 2020). And
D-Asp is one of the major regulators of adult neurogenesis and plays
an important role in the development of endocrine function
(Genchi, 2017). In this paper, two dipeptides including L/D-Ala
and L/D-Asp were selected here as the sample molecules to establish
a new analytical method. Herein, we show that the quantitative
analysis of four chiral isomers of dipeptides can be achieved by
combining the methods of UVPDMS performed with a tunable UV
laser and artificial neural network (ANN).

2 Experimental

The experimental setup has been described in our previous
paper (Shi et al., 2019; Zhang et al., 2020). Briefly, a 7.0 T Fourier
transform ion cyclotron resonance (FT ICR) mass spectrometer
(IonSpec, Varian, Inc., Lake Forest, CA) was applied here, combined
with one commercial UV-Vis tunable laser (NT-342C, EKSPLA,
Lithuania). The laser was operated in normal mode in the range of
210–300 nm, with a typical output energy of 1–2 mJ/pulse in this

FIGURE 1
Illustration of the applied artificial neural network (ANN) model in
this paper.

FIGURE 2
225 nm UV photodissociation mass spectra of (A) [LHisLAla + Mr]
H+, (B) [LHisDAla + Mr]H

+, (C) [DHisLAla + Mr]H
+, and (D) [DHisDAla + Mr]

H+, in which the Mr indicates the reference molecule of tripeptide
GYG. Details of the mass spectra near the precursor ions are
further shown in the insets.
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FIGURE 3
Three-dimensional UV photodissociationmass spectra of (A) [LHisLAla +Mr]H

+, (B) [LHisDAla +Mr]H
+, (C) [DHisLAla +Mr]H

+, and (D) [DHisDAla +Mr]H
+.

FIGURE 4
Trained results of the artificial neural network for the quantitative analysis of the four peptides: (A) LHisLAla, (B) LHisDAla, (C) DHisLAla and (D) DHis/DAla
in mixture samples.

Frontiers in Chemistry frontiersin.org03

Shi et al. 10.3389/fchem.2023.1129671

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1129671


experiment. The laser was introduced coaxially to the ICR cell
through a CaF2 window and the irradiation time was set as 4s
that was controlled though a mechanical shutter controller (SSH,
Sigma-Koki, Tokyo, Japan).

Chiral dipeptides of L/DHisL/DAla and L/DAspL/DPhe were
ordered from Ontores and Shanghai Apeptide companies,
respectively. And the chiral reference molecules of tripeptide
GYG and 3-Iodo-L-tyrosine were brought from GL Bopchem
(Shanghai) and DAMAS-BETA, respectively. Each sample was
prepared in deionized water with a concentration of 10 mmol/L
and then diluted to 1 mmol/L aqueous solutions with 49%
methanol and 2% acetic acid before mixing. The solution of
chiral reference was then mixed with the solution of dipeptide in
a volume ratio of 1:1, and the later was prepared by premixing the
4 kinds of chiral isomers as designed. In the MS experiments, a
Zspray electrospray ionization (ESI) source was applied with a
probe biased at 3.6 kV. The complex ions were selected by the
method of stored waveform inverse Fourier transform (SWFIT),
followed by the UV irradiation (Cody et al., 1987; Shi et al., 2019).
After the UVPD process, the product ions were detected and the
mass spectrum was recorded. The wavelengths of the UV laser
can be readily selected and changed with the commercial
program provided by the laser manufactory.

For the applied artificial neural network, a three-layered
backpropagation (BP) network was designed with MATLAB
mathematical software, in which sigmoid transfer function at

hidden layer was used (Figure 1). The input variables were peak
intensities of ions with specified m/z’s under different wavenumbers.
And the corresponding molar ratios of the four chiral isomers were
chosen as the target. The data sets were divided into training and test
subsets, respectively.

3 Results and discussion

Considering the success of peptide as the ligand applied in the
chiral analysis of short peptides (Tao, et al., 2001), the tripeptide of
GYG (Mr) is selected as a reference molecule for the four analytes of
L/DHisL/DAla. The complex ions of [HisAla + Mr]H

+ were generated
by ESI from corresponding mixed solutions. The target ions were
then selected and trapped in the FT ICR cell, followed by irradiation
of UV laser at suitable wavelengths. As an example, the 225 nm
UVPD mass spectra of the four complex ions are shown in Figure 2.
The UVPD mass spectra are readily to be read. For all cases, three
fragment ions can be found: the radical cations of [HisAla + Mr]

+•

formed by the loss of hydrogen atom, the protonated dipeptide ions
of [HisAla]+ and their dehydrated forms. The relative intensities of
the three fragment ions are kinds of different from each other, but
can be hardly direct applied for chiral analysis for the four chiral
compounds. The difference among them can be made clearer if
three-dimensional dissociation mass spectra obtained under
different UV wavelengths were applied (Figure 3).

FIGURE 5
Comparisons between the true concentration ratios (blue striped columns) and predicted results (red columns) for the quantitative analysis of the
four peptides: (A) LHisLAla, (B) LHisDAla, (C) DHisLAla and (D) DHis/DAla. The predictions were performed for four date sets, using the artificial neural network
built based on the training set shown in Figure 4. The standard deviations of the predicted results based on three independent experimental data are less
than 8%.
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Although the difference, it is still too difficult to apply the
method to quantitative analysis of these chiral isomers directly
since the quantitative evaluation of the difference is difficult. In
order to overcome the obstacle, the method of machine learning
based on artificial neural network (ANN) was introduced here. To
fulfill it, four wavelengths of 210, 213, 225 and 230 nm were selected
here. A total of 19 mixed solutions with different proportions of the
four chiral isomers were prepared and mixed with the reference
molecule. The generated complex ions were further isolated and
irradiated under the four different UV wavelengths. All the UVPD
mass spectra were recorded. The data from the first 15 samples were
applied as the training sets for the network, followed by training
under supervision. Figure 4 shows the training results of the artificial
neural network applied here (Figure 1). The error between the
training output value and the real value is small, which indicates
that the artificial neural network has been trained. To prevent
possible over-fitting in the training process, two methods were
applied here: 1) to design the training sets carefully and to
ensure its proper population, 2) to adopt the early stopping
method (Deng et al., 2015). After the training, the last four data
sets are tested. And the results are shown in Figure 5. The predicted
values are in good agreement with the real ones, and the standard
deviations are less than 8%.

The most valuable variables in such an experiment are the
distributions of fragment ions and how the distributions depend
on the applied wavelengths. Thus, the selection of chiral ligands is
important. For the second case, a small chiral reference of iodo-L-
tyrosine is selected. The molecule has been previously studied in the
gas phase. Ranka et al. have studied the radical rearrangement
chemistry of the molecule using 193 nm UVPD mass
spectrometry, IR ion spectroscopy and calculations, discovered
that the high-energy radicals generated by UVPD engaged in
following hydrogen/proton rearrangement (Ranka et al., 2018).
The molecule has been also successfully applied as a good chiral
reference for differentiation of enantiomeric pairs of amino acids
and some pharmaceutically important drugs (Kumari et al., 2007;
Karthikraj1 et al., 2012). Similarly, the 280 nm UVPD mass spectra
of the four complex ions are shown in Supplementary Figure S1. The
main fragment ions observed in the spectra include: the radical
cations of [AspPhe + Mr-I]H

+• formed by the loss of iodine atom,
and its product of [AspPhe + Mr-I]

+, the protonated ions of
[AspPhe]H+, its radical cations of [AspPhe]+• and its dehydrated
ions of [AspPhe-H2O]H

+. By tuning the applied UV wavelength, the
intensities of those fragment ions vary differently for the four chiral
isomers. A similar artificial neural network described in the upper
case has been built, and relative quantitative analysis of the multiple
chiral isomers has been fulfilled using very limited training sets
(10 samples), and the results are shown in the Supplementary
Figures S2, S3.

4 Conclusion

In summary, we herein present an ANN approach for
analyzing four chiral isomers from their UVPD mass spectra
obtained under different wavelengths. Chiral reference molecules

of tripeptides and iodo-L-tyrosine, have been successfully applied
here to fulfill the relative quantitative analysis of four chiral
isomers of dipeptides. The results show that the ANN can be well-
trained with limited training sets, and have a quite good
performance in testing sets. Meanwhile, the combination of
the multiple UVPD mass spectra and ANN still has a lot of
room for improvement in quantitative chiral analysis aimed at
practical applications, such as searching better chiral references
(Yu and Yao, 2017), finding possible derivatization methods
(Will et al., 2021), and choosing more advanced machine
learning methods.Fujihara and Maeda, 2017
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