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Hydrogen sulfide (H2S), as an important endogenous signaling molecule, plays a vital
role in many physiological processes. The abnormal behaviors of hydrogen sulfide in
organisms may lead to various pathophysiological processes. Monitoring the
changes in hydrogen sulfide is helpful for pre-warning and treating these
pathophysiological processes. Fluorescence imaging techniques can be used to
observe changes in the concentration of analytes in organisms in real-time.
Therefore, employing fluorescent probes imaging to investigate the behaviors of
hydrogen sulfide in pathophysiological processes is vital. This paper reviews the
design strategy and sensing mechanisms of hydrogen sulfide-based fluorescent
probes, focusing on imaging applications in various pathophysiological processes,
including neurodegenerative diseases, inflammation, apoptosis, oxidative stress,
organ injury, and diabetes. This review not only demonstrates the specific value
of hydrogen sulfide fluorescent probes in preclinical studies but also illuminates the
potential application in clinical diagnostics.
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1 Introduction

Hydrogen sulfide (H2S) is the third gaseous signaling molecule found after carbon
monoxide (CO) and nitric oxide (NO) (Szabo et al., 2013). Unlike other signaling
molecules, H2S can freely penetrate the cell membrane without affecting the cell’s signaling
response (Predmore et al., 2012). H2S is present both inside and outside the cell and is widely
recognized in regulating nervous systems, cellular bioenergetics and metabolism, gene
transcription and translation, vascular tone, and immune function (Cirino et al., 2022).
Endogenous H2S is principally produced by three kinds of biological enzymes, including
cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS), and 3-mercaptopyruvate
sulfurtransferase (3-MST) (Szabo et al., 2013; Augsburger and Szabo, 2020; Zhang et al.,
2021). The physiological concentration of H2S ranges from 0.01 to 3 μM at the cellular level and
30–100 μM in serum (Wallace, 2007). H2S plays an indispensable role in physiological
processes, for example, angiogenesis, neurotransmission, apoptosis, and insulin secretion
(Austgen et al., 2011; Papapetropoulos, 2016; Bełtowski et al., 2018; Wang et al., 2020).
Furthermore, aberrant H2S levels are strongly related to various pathophysiological processes,
such as neurodegenerative diseases, liver cirrhosis, inflammation, and cancer (Kamoun et al.,
2003; Chan and Wong, 2017; Wei et al., 2017; Bełtowski et al., 2018; Disbrow et al., 2021;
Kushkevych et al., 2021; Ngowi et al., 2021). Hence, exploring validated assays for H2S is
essential to better understand and diagnose their pathophysiological processes.
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Compared with traditional imaging methods, including magnetic
resonance imaging (MRI), computed tomography (CT) and
ultrasound imaging (Poelma, 2016; Lim et al., 2019; Antequera
et al., 2021), fluorescence imaging technology allows non-invasive
detecting biomarkers with high sensitivity, quick response time and
wonderful spatiotemporal resolution, which makes animal models of
tracking pathology and clinical studies very attractive (Jun et al., 2020;
Hanaoka et al., 2022; Qi et al., 2022; Sun et al., 2022). Fluorescence-
based imaging typically uses small molecule fluorescent probes that
are designed to bind/react with disease-based target biomarkers and
offer measurable fluorescent signal changes for qualitative and
quantitative analysis of analytes and imaging traces (Jia et al., 2022;
Zhao L et al., 2022; Hou et al., 2022; Hou et al., 2020a; Gardner et al.,
2021; Du et al., 2023; Li et al., 2023). Typically, these probes should
exhibit wonderful sensitivity and specificity for biomarkers to
guarantee their accurate detection in bio-systems (Hou et al.,
2020b; He et al., 2021; Kawai et al., 2021; Ren M et al., 2021).

This work systematically reviews the research progress of
H2S-based fluorescent probes in pathophysiological processes
imaging and classifies fluorescent probes according to
pathophysiological models (neurodegenerative diseases,
inflammation, oxidative stress, cell apoptosis, organ injury, and
diabetes), and introduces in detail the methods, means and design
ideas for constructing various disease models (Figure 1). The design
tactics, optical properties, response mechanism, and potential
applications of these probes are discussed (Figure 2). Furthermore,
we mainly focus on the biological application and significance of H2S
in pathophysiological pathological processes. Finally, we discuss the
progress and insufficiencies of reported fluorescent probes for
H2S-related pathophysiological processes imaging and provide our
insights on how to overcome these limitations. Hence, this paper will
offer new thoughts and strategies for the development of novel
fluorescent probes fitting for early warning of H2S-related
pathophysiological processes.

FIGURE 1
H2S-based small organic fluorescent probes for imaging and diagnosis of pathophysiological processes.
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FIGURE 2
Chemical structures of H2S-responsive probes (1, Li et al., 2018; 2, Ma et al., 2019; 3, Ramya et al., 2022; 4, Bae et al., 2013; 5, Fang et al., 2020; 6, Shen
et al., 2021; 7, Kong et al., 2021; 8, Li H et al., 2022; 9, Liang et al., 2022; 10, Ou et al., 2021; 11, Ding et al., 2022; 12, Gong et al., 2021; 13, Wang K et al., 2022; 14,
Hu et al., 2021; 15, Wang WX et al., 2022; 16, Ren TB et al., 2021; 17, Singh et al., 2021; 18, Liu et al., 2022; 19, Zhang et al., 2019; 20, Zhu et al., 2020a; 21, Zhu
et al., 2020b; 22, Yang et al., 2020; 23, Wang Y et al., 2022; 24, Shu et al., 2020; 25, Tang et al., 2021; 26, Jiao et al., 2018; 27, Su et al., 2022; 28, Li P et al.,
2022).
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2 Design strategy for H2S fluorescent
probes

To meet the requirements of biological applications, H2S-based
fluorescent probes for assessing pathophysiological processes-relevant
should satisfy the following requirements: 1) Noteworthy signal
changes after identification of H2S, and prefer fluorescence
enhancement change or ratiometric fluorescence changes to reduce
background noise and maximize spatial resolution; 2) fluorophores
with excellent photostability, high fluorescence quantum yield, and
wonderful biocompatibility; 3) the ideal fluorescent probe should
respond quickly to H2S with wonderful selectivity and sensitivity;
4) organic solvents used as little as possible, because it will damage the
function of biomolecules; 5) the identification system of the probes
should be silent to biomarkers, for example, HEPES (4-(2-
hydroxyethyl)piperazine-1-ethanesulfonic acid) buffers react easily
with hypochlorous acid (HOCl) (Xing et al., 2016).

3 H2S-based imaging of fluorescent
probe pathophysiological processes
models

3.1 Neurodegenerative diseases imaging

3.1.1 Alzheimer’s disease imaging
Alzheimer’s disease (AD) is an age-related neurodegenerative

disorder that can lead to dementia, usually affecting people over the
age of 60 (Morales et al., 2014). The aggregation of amyloid-beta

(Aβ) aggregates in the central nervous system may cause and
exacerbate AD, and breaking down or stopping the formation of
Aβ aggregates is a vital challenge in overcoming AD (Wood, 2017;
Cao L et al., 2018; Starling, 2018; Lin et al., 2019). H2S donor, such
as sodium sulfide (Na2S), reduces the generation of Aβ, thereby
providing neuroprotection against Aβ aggregates and alleviating
AD (Kshirsagar et al., 2020; Tabassum et al., 2020).

Mitochondria have been used as therapeutic targets for AD (Reddy,
2009;Wang and Chen, 2016; Swerdlow, 2018). In 2018, Li et al. reported a
mitochondria-targeting bifunctional fluorescent probe 1 for studying the
behavior between viscosity and H2S in mitochondria (Li et al., 2018). A
significant green fluorescence enhancement was found at approximately
510 nm after the introduction of H2S. Figure 3A showed the cross-talk
influence of H2S and viscosity in cellular mitochondria: The enlargement
in viscosity may result in the reduction in H2S, while the increase in H2S
might lead to the decrease in viscosity. This will be helpful for
understanding the pathogenesis of AD.

Cu2+ accumulation or H2S deficiency is closely related to AD (Cui
W et al., 2016; Vandini et al., 2019). In 2019, Ma et al. reported an
“OFF-ON-OFF” fluorescent probe 2 for reversible testing Cu2+ and
H2S. Probe 2 could be used to track Cu2+ and H2S sequentially and
reversibly through changes in its fluorescence signal at 580 nm. Probe
2 exhibited extremely low cytotoxicity and excellent membrane
permeability. Figure 3B showed that with increasing Cu2+

concentration, the fluorescence in mice was significantly enhanced,
while it disappeared upon the addition of H2S. In addition, the probe
had the potential ability to disassemble Cu2+-induced Aβ aggregates.

Aggregation-induced emission (AIE)-based probes have
wonderful features owing to their tunable emission, favorable

FIGURE 3
(A) Confocal imaging of the cross-talk influence of H2S and viscosity in HeLa cells using probe 1 (reproduced from (Li et al., 2018) with permission from
American Chemical Society). (B) Time-based in vivo fluorescence imaging of Cu2+ or Cu2+ + H2S in Kunming Mice using probe 2 (reproduced from (Ma et al.,
2019) with permission from the Royal Society of Chemistry). (C) AFM images and cytotoxicity of β sheet rich agglomerated form of Aβ1–42 and de-
agglomerated smaller Aβ1–42 aggregates formed after incubation with probe 3 (reproduced from (Ramya et al., 2022) with permission from Elsevier (B. V).
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biocompatibility, and outstanding photophysical properties (Liu and
Tang, 2020; Wu and Liu, 2021; Dai et al., 2022; Li Z et al., 2022). In
2022, Ramya et al. reported a tetraphenylethylene (TPE) “double-
locked” fluorescent probe 3. The TPE fluorophore served as the core
structure of AIEgen, 7-nitro-1,2,3-benzoxadiazole (NBD) acted as the
recognition site for H2S, and the disulfide donor generated H2S in the
presence of Cys or GSH. Probe 3 had the advantages of water
solubility, low detection limit, and good selectivity for H2S.
Figure 3C displayed that the structure of probe 3 could act as an
H2S donor for subsequent depolymerization of Aβ1-42 protein,
limiting the development of AD. In the presence of probe 3, the
toxic aggregated Aβ1-42 peptide became non-toxic disaggregated
Aβ1–42. Fluorescent probes with a “double-lock” sequential
activation strategy have higher specificity and accuracy compared
to the previous “single-lock” probe strategies (Liu et al., 2019).

3.1.2 Parkinson’s disease imaging
Parkinson’s disease (PD) is characterized by progressive loss of

dopaminergic neurons in the substantia nigra (SN) (Hirsch et al.,
1988). The first sign of cognitive impairment is memory loss, and then

behavioral disturbances (Gagliardi and Vannini, 2022). It has been
reported that H2S, as an antioxidant, has protective effects on PD by
scavenging highly reactive oxygen species (ROS) as an antioxidant
(Kimura and Kimura, 2004; Kimura et al., 2005). As well,
overexpression of CBS or use of H2S donors offers neuroprotection
in a 6-hydroxytryptamine (6-OHDA)-induced PD model (Yin et al.,
2017; Cao X et al., 2018). Therefore, studying the pathogenesis of PD
will be helpful for early therapy and intervention to slow down the
progression of PD in the elderly.

Two-photon microscopy (TPM) exhibits many wonderful merits,
including larger penetration depth (>500 μm), localization of
excitation, and longer observation time (Xu et al., 2020; Juvekar
et al., 2021). In 2013, Kim’s group reported a ratiometric two-
photon (TP) fluorescent probe (4) for testing H2S in mitochondria,
in which 6-(benzo[d]thiazol-2′-yl)-2-(methylamino)naphthalene was
used as the probe fluorophore, 4-azidobenzyl carbamate was served as
the recognition site for H2S, and triphenylphosphonium salt could be
used as the mitochondrial targeting moiety (Bae et al., 2013). When
H2S was added, the emission peaks of probe 4 were red-shifted from
464 to 545 nm. As shown in Figure 4A, the decrease of H2S and

FIGURE 4
(A) Probe 4 displayed the correlation between CBS expression and H2S levels (reproduced from (Bae et al., 2013) with permission from American
Chemical Society). (B) Fluorescence images of H2S and viscosity in drosophila brains using probe 5 (reproduced from (Fang et al., 2020) with permission from
Elsevier (B. V). (C) Fluorescence images of viscosity andH2S in a zebrafishmodel of PD using probe 6 (reproduced from (Shen et al., 2021) with permission from
Elsevier (B. V). (D) Fluorescence images of PC12 cells incubated with probe 7 without or with glutamate pre-treatment (reproduced from (Kong et al.,
2021) with permission from the Royal Society of Chemistry). (E) Fluorescence images of PC 12 cells induced by Glu using probe 8 (reproduced from (Li S et al.,
2022) with permission from Elsevier (B. V).
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decrease of CBS expression were observed in studies involving the PD
gene DJ-1, in which the decrease of H2S in astrocytes may facilitate the
progress of PD.

Mitochondria, as an important organelle, provides energy for cells,
and mitochondrial dysfunction is closely related to PD (Greenamyre,
2018; Grunewald et al., 2019; Doric and Nakamura, 2021). In 2020,
Fang and coworkers obtained a TP fluorescent probe 5, using N,N-
disubstituted unit as electron donors and pyridine cation as an
electron-withdrawing group, which was used for testing
mitochondrial viscosity and H2S (Fang et al., 2020). After different
concentrations of H2S were introduced, the green fluorescence
increased significantly. DL-Propargylglycine (PAG, a specific
inhibitor of endogenous production of H2S)-induced PD
Drosophila brains model had higher viscosity and lower H2S in
mitochondria compared to the normal model (Figure 4B).

Although probe 5 has wonderful selectivity, fine sensitivity, and
low detection limit for H2S, azide, the recognition group of the probe,
can be decomposed by UV light, so false signals may be generated. In
2021, Shen and coworkers created a bifunctional near-infrared
fluorescence (NIR) probe (6), which used dicyanoisopherone as the
fluorescence core and 2,4-dinitrobenzenesulfonyl ether as the
recognition group of H2S. Probe 6 had high photostability and a
large stokes shift (110 nm). As the augment of H2S concentration, the
fluorescence signal around 650 nm increased 20-fold. Moreover, the
fluorescence signal of probe 6 around 580 nm changed with increasing
viscosity. The changes in H2S levels and viscosity were investigated
through the experiments of a zebrafish PDmodel induced by rotenone
(a drug to reduce dopamine levels of zebrafish) (Figure 4C). The
results showed that both viscosity and H2S increased in the zebrafish
PD model.

Fluorescent probes employing a “double-lock” sequential activation
strategy have higher specificity and accuracy compared to single-site
release fluorescence (Liu et al., 2019). In 2021, a “double-locked”
fluorescent probe 7 for monitoring H2S in high-viscosity systems was
obtained by Kong and coworkers (Kong et al., 2021). In high-viscosity
environments (the first “key”), 2,4-dinitrobenzenesulfonate group (the
second “key”) in probe 7 was recognized with H2S, and the fluorescence
signal around 630 nm was enhanced 50-fold. As shown in Figure 4D,
experiments of detecting H2S and viscosity in glutamate (a neurotoxin)-
induced PDPC 12 cellmodel were conducted. The results showed that the
level of H2S as an antioxidant was upregulated to reduce oxidative stress in
glutamate-induced PC12 cells.

Response time is one of the important indicators for the evaluation
of probes in biological applications. As shown in Table 1, the reported
H2S fluorescent probes for PD imaging were slow (15–120 min). In
2022, Li S et al. (2022) reported a bifunctional fluorescent probe (8) to
detect viscosity and H2S in mitochondria. As viscosity gradually
increased, the fluorescence signal of probe 8 around 730 nm was
increased. The probe reached a response plateau after the addition of
H2S for 8 min, with a 6-fold amplification of the fluorescence signal
around 516 nm. Probe 8 was successfully applied to test the viscosity
behavior of a PD model (PC-12 cells treated with glutamate), in which
both H2S and viscosity increased in PD. As shown in Figure 4E, after
injection of nystatin or glutamate in nude mouse tumor models, the
red fluorescence enhanced notably with time.

3.1.3 Stroke imaging
Ferroptosis (iron-dependent oxidative stress) is closely associated

with cancer, neurodegenerative diseases, ischemia-reperfusion injury,

etc., and detecting its pathological processes is vital for disease
prognosis and treatment (Qiu et al., 2020; Yu et al., 2021; Zhao
et al., 2021; Lei et al., 2022; Zhao Y et al., 2022). In 2022, Liang
and colleagues reported a NIR fluorescent probe (9) with H2S
triggering and H2S releasing properties. Azidobenzene served as the
H2S recognition site and was linked to the fluorophore via
thiocarbamate (H2S precursor). When probe 9 reacted with H2S,
carbonyl sulfide (COS) was released by 1,6-elimination reactions,
and then H2S was released catalyzed by carbonic anhydrase (CA).
In glycerol, probe 9 had a strong fluorescence signal at 646 nm. As the
H2S concentration increased, the fluorescence signal around 670 nm
increased approximately 25-fold. Moreover, the relationship between
oxygen-glucose deprivation/re-oxygenation (OGD/R) and ferroptosis
was studied with PC12 cells. Figure 5 showed that the process of cell
ischemia-reperfusion was accompanied by ferroptosis and H2S
depletion.

3.2 Inflammation imaging

Inflammation mainly includes two categories, infectious and non-
infectious, manifested as swelling, redness, pain, fever, dysfunction, etc
(Fontaine et al., 2016). Inflammation is usually beneficial to biological
systems, and it is an automatic defense response of biological systems.
However, sometimes inflammation can be harmful to tissues and
organisms. For example, out-of-control inflammation can be
responsible for cardiovascular and cerebrovascular diseases, fibrosis,
and cancer (Capuron et al., 2008; Mantovani et al., 2008; Lim, 2018;
Mack, 2018; Weiss, Ganz, and Goodnough, 2019). These diseases and
inflammation are always mutually reinforcing (Jiang et al., 2019; Majd,
Saunders, and Engeland, 2020; Liberale et al., 2022). Therefore,
accurate diagnosis at the initial stages of inflammation and
preventing the further development of inflammation into more
severe diseases is important. H2S can achieve anti-inflammatory
effects by inhibiting the production of inflammatory cytokines, and
its overexpression in vivo has been considered as a biomarker of all
kinds of inflammation. So, it is vital to investigate the behaviors or
relationships between H2S and inflammation in biological systems.

Lipopolysaccharide (LPS), as a dominating cell surface component
of Gram-negative bacteria, can be used for bioimaging to induce
cellular inflammation models (Lykhmus et al., 2016). In 2021 and
2022, Ou et al. (2021), Ding et al. (2022) fabricated TP fluorescence
probes (10, 11) for H2S imaging in inflammatory models, respectively.
Probe 10 consisted of naphthalimide derivative as a fluorophore and
4- dinitrophenyl ether (DNB) as a recognition group. When H2S
existed, probe 10 exhibited amazing fluorescence enhancement (258-
fold) at 540 nm. Figure 6A showed that compared with normal tissues,
the inflamed tissues had a significant fluorescence signal augmentation
in the green channel. Probe 11 consisted of azide and a fluorophore of
naphthylimide. When H2S was introduced, the fluorescence signal
around 561 nm was enhanced 38.1-fold. In addition, probe 11
exhibited excellent TP fluorescence properties in cells and liver
tissues, penetrating to depths of 126 μm in liver tissue. As shown
in Figure 6B, the experiment of the LPS-induced air pouch
inflammation model was conducted to observe the development of
inflammation and the behavior of H2S.

In 2021 and 2022, Gong’s group andWang’s group fabricated NIR
mitochondrial-targeting fluorescent probes (12, 13) for H2S imaging
in inflammatory models, respectively. In probe 12, the pyridium unit
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TABLE 1 Spectroscopic properties and pathophysiological models imaging of small molecular probes for detection of H2S.

Probe Pathophysiological
models

LOD λex/
λem
(nm)

Response
time

Recognition
system

Comment Real
sample

References

1 Alzheimer’s disease 0.17 μM 370/510 30 min PBS buffer solution
(pH = 7.4)

Dual-response (viscosity
and H2S); mitochondrial
targetable; increase in fl.
intensity (up to 7-fold)

Living cells Li et al. (2018)

2 Alzheimer’s disease 14.8 nM 540/580 — PBS buffer solution
(pH = 7.4, containing

50% EtOH)

Dual-response (Cu2+

and H2S)
Living cells and
living mice

Ma et al.
(2019)

3 Alzheimer’s disease 0.1 μM 364/480 — HEPES buffer solution
(pH = 7.4, containing

10% THF)

AIE-fluorescence; “double-
locked”; increase in fl.
intensity (up to 12-fold)

Living cells and
living mice

Ramya et al.
(2022)

4 Parkinson’s disease 0.4 μM 340/
500,
420

60 min HEPES buffer solution
(30 mM, pH = 7.4,

containing 100 mM KCl)

Two-photon;
mitochondrial targetable
probe; ratiometric I500/I420

Living cells and
tissue

Bae et al.
(2013)

5 Parkinson’s disease 11.66 nM 480/585 120 min PBS buffer solution
(pH = 7.4, containing

50% DMSO)

Dual-response (viscosity
and H2S); mitochondrial
targetable; increase in fl.

intensity

Living cells,
tissue, and
drosophila
brains

Fang et al.
(2020)

6 Parkinson’s disease 79 nM 540/650 <15 min PBS buffer solution
(pH = 7.4, containing 1%

DMSO)

Dual-response (viscosity
and H2S); large stokes shift
(110 nm); NIR imaging;

increase in fl. intensity (up
to 20-fold)

Living cells,
tissue, and
living zebra

fishes

Shen et al.
(2021)

7 Parkinson’s disease 0.1 μM 460/630 — PBS buffer solution
(pH = 7.4, containing

10% glycerol)

Dual-response (H2S and
viscosity); “double-locked”;
increase in fl. intensity (up

to 63-fold)

Living cells Kong et al.
(2021)

8 Parkinson’s disease — 385/516 8 min PBS buffer solution
(pH = 7.4, containing

30% DMSO)

Dual-response (viscosity
and H2S)

Living cells and
living mice

Li S et al.
(2022)

9 Stroke 1.3 nM 450/670 40 min PBS buffer solution
(pH = 7.4, containing
80% glycerol and 2%

DMSO)

NIR imaging; increase in fl.
intensity (up to 25-fold)

Living cells and
living mice

Liang et al.
(2022)

10 Inflammation 18.8 nM 400/540 10 min PBS buffer solution
(10 mM, pH = 7.4,

containing 1% DMSO)

Two-photon; increase in fl.
intensity (up to 258-fold)

Living cells and
tissue

Ou et al.
(2021)

11 Inflammation 0.74 μM 440/561 60 min PBS buffer solution
(10 mM, pH = 7.4,

containing 1% DMSO)

Two-photon; increase in fl.
intensity (up to 38.1-fold)

Living cells,
tissue, and
living mice

Ding et al.
(2022)

12 Inflammation 19 nM 530/663 3 min PBS buffer solution
(10 mM, pH = 7.4)

NIR imaging; large Stokes
shift (141 nm);

mitochondrial targetable;
increase in fl. intensity (up

to 27-fold)

Living cells,
living zebra
fishes, and
living mice

Gong et al.
(2021)

13 Inflammation 13 nM 540/699 4 min PBS buffer solution NIR imaging; large Stokes
shift (155 nm); increase in
fl. intensity (up to 75-fold)

Living cells,
living zebra
fishes, and
living mice

Wang K et al.
(2022)

14 Inflammation 1.8 μM 425/596 10 min PBS buffer solution
(20 mM, pH = 7.4,

containing 30% DMF)

Colorimetric; increase in fl.
intensity (up to 34-fold)

Living cells and
living mice

Hu et al.
(2021)

15 Inflammation 310 nM 565/620 120 s PBS buffer solution Mitochondrial targetable,
increase in fl. intensity (up

to 234-fold)

Living cells,
living zebra
fishes, and
living mice

Wang WX
et al. (2022)

16 Apoptosis 31 μM 450/540 15 min Ren M et al.
(2021)

(Continued on following page)
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(positively charged) acted as a mitochondria-targeting group and
dinitrophenyl (DNP) ether as an H2S recognition group. When
H2S was added, a fluorescence-enhancing signal around 663 nm
appeared. Probe 12 had the advantages of wonderful water
solubility, fast response (<3 min), and large Stokes shift (141 nm).
As shown in Figure 6C, changes in H2S concentration were performed
during LPS-induced inflammation in mice. The results suggested that
more H2S could be produced during inflammation. Probe 13 consisted
of a NIR fluorophore and a recognition group (NBD). After H2S was

introduced, probe 13 showed a remarkable enhancement (75-fold) in
fluorescence signal at 699 nm. Probe 13 exhibited a large Stokes shift
(155 nm), quick response (4 min), and wonderful selectivity for H2S.
Probe 13 could detect exogenous and endogenous H2S in live cells and
zebrafish, respectively. Figure 6D showed that probe 13 was used to
monitor H2S fluctuations in LPS-induced inflammatory cells
and mice.

Colorimetric detection can be recognized by the naked eye. In
2021, Hu et al. (2021) developed a phenothiazine-based colorimetric

TABLE 1 (Continued) Spectroscopic properties and pathophysiological models imaging of small molecular probes for detection of H2S.

Probe Pathophysiological
models

LOD λex/
λem
(nm)

Response
time

Recognition
system

Comment Real
sample

References

PBS buffer solution
(pH = 7.4, containing

30% DMF)

Dual-response (copper II)
and H2S); increase in fl.
intensity (up to 40-fold)

Living cells,
and living
zebra fishes

17 Apoptosis — 450/550 45 min — Membrane permeability;
specific imaging of cancer
cells; increase in fl. intensity

Living cells Singh et al.
(2021)

18 Apoptosis 64 nM −/550 30 min PBS buffer solution
(20 mM, pH = 7.4,

containing 5% DMSO)

Increase in fl. intensity Living cells Liu et al.
(2022)

19 Oxidative Stress 9 μM −/535 120 min PBS buffer solution
(50 mM, pH = 7.4,

containing 0.007% BSA,
100 μM NADH)

Dual-response
(hNQO1 and H2S);

“double-locked”; increase
in fl. intensity (up to 400-

fold)

Living cells Zhang et al.
(2019)

20 Oxidative Stress 0.11 μM 390/515 30 min PBS buffer solution
(10 mM, pH = 7.4,

containing 20% DMSO)

Golgi targetable, increase in
fl. intensity

Living cells and
living zebra

fishes

Zhu et al.
(2020a)

21 Oxidative stress 0.10 μM 440/550 25 min PBS buffer solution
(10 mM, pH = 7.4)

Golgi targetable, increase in
fl. intensity

Living cells and
living zebra

fishes

Zhu et al.
(2020b)

22 Oxidative stress 0.058 μM 325/
627,
413

80 min HEPES buffer (20.0 mM,
pH = 7.4, containing

1.0 mM CTAB)

Dual-response (H2O2 and
H2S); two increased
fluorescence signals

Living cells and
living zebra

fishes

Yang et al.
(2020)

23 Oxidative stress 44.6 nM 460/550 10 min PBS buffer solution
(25 mM, pH = 7.4,

containing 30% CH3CN)

Dual-response (H2O2 and
H2S); mitochondrial
targetable; “double-

locked”; increase in fl.
intensity

Living cells and
living zebra

fishes

Wang Y et al.
(2022)

24 Oxidative stress 39.1 nM 480/
560,
650

12 min PBS buffer solution
(10 mM, pH = 7.4,

containing 10% DMSO)

NIR imaging; large Stokes
shift (150 nm);

endoplasmic reticulum
targetable; ratiometric I650/

I560

Living cells and
living zebra

fishes

Shu et al.
(2020)

25 Oxidative stress 17.16 nM 400/464 — PBS buffer solution
(10 mM, pH = 7.4,

containing 20% CH3CN)

Dual-response (ONOO−

and H2S); increase in fl.
intensity

Living cells Tang et al.
(2021)

26 Organ injury 192.1 nM 360/445 15 min PBS buffer solution
(50 mM, pH = 7.4,

containing 10% DMF)

Dual-response (HClO and
H2S); two-photon; increase

in fl. intensity

Living cells and
tissue

Jiao et al.
(2018)

27 Organ injury 0.09 μM 720/787 120 min PBS buffer solution
(20 mM, pH = 7.4,

containing 5% DMSO)

NIR imaging; increase in fl.
intensity (up to 52-fold)

Living cells,
living mice ,
and lung
organs

Su et al. (2022)

28 Diabetes 33 nM 600/633 — PBS buffer solution
(20 mM, pH = 7.4)

NIR imaging; “double-
locked”; increase in fl.

intensity

Living cells and
living mice

Li Z et al.
(2022)
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fluorescence probe (14) to selectively detect H2S in an LPS-induced
inflammation mouse model. Probe 14 was based on a
donor–π–acceptor (D–π–A) structure that coupled phenothiazine
to rhodanine derivative via a carbon-carbon double bond. During
the probe’s identification of H2S, the fluorescence signal around
596 nm showed a significant increase (34-fold). Probe 14 was able
to visualize exogenous and endogenous H2S in vitro and in vivo
(zebrafish and nude mice). Figure 6E showed that visualization of
the production of H2S in inflammatory models has been realized by
probe 14.

Rhodamine dyes are attracting attention for their wonderful
photostability, long emission wavelength, convenient synthesis, and
high quantum yield (Rajasekar, 2021). In 2022, Wang and coworkers
created a mitochondrial-targeting fluorescent probe 15 to test the
changes in H2S concentration. The fluorescence intensity around
620 nm progressively augmented about 234-fold with increasing
H2S concentration. Probe 15 had some wonderful features of fast
response (120 s), low detection limit (310 nM), and excellent
sensitivity. Probe 15 could monitor exogenous and endogenous
H2S in HeLa cells and zebrafish, respectively. Probe 15 could be
used to visually detect H2S in LPS-induced mouse inflammation
experiments (Figure 6F). And probe 15 was appropriate for testing
the behavior of H2S in human plasma samples.

3.3 Apoptosis imaging

Apoptosis is caused by pathological and physiological
conditions triggered by extracellular death receptor ligation or
DNA damage and/or cytoskeletal disruption (Akçapınar et al.,
2021). The intrinsic way of apoptosis is triggered by the cell’s
response to injury, while the external way is triggered by cell-
stimulated death receptors of the immune system (Sica et al.,
1990; Oppenheim et al., 2001). When caspase 3 is activated, both
pathways converge, leading to cell death (D’arcy, 2019). Timely
monitoring of apoptosis is helpful for early warning and therapy of
related pathophysiological processes and the continuous assessment
of drug effectiveness. H2S has been found to protect cells: H2S can
prevent Abeta-induced neuronal apoptosis by diminishing
mitochondrial translocation of phosphatase and tensin homolog
deleted on chromosome ten (PTEN) (Cui Z et al., 2016); H2S can
restrain cell apoptosis and protect bronchial epithelium in a mouse

model of allergic inflammation (Mendes et al., 2019); H2S improves
LPS-induced memory disorder in mice by decreasing apoptosis,
oxidation, and inflammatory effects (Kshirsagar et al., 2021).
However, H2S can also promote apoptosis: H2S contributes to
LPS-induced osteoblast apoptosis by restraining the AKT/NF-κB
signaling pathway (Wang et al., 2020); H2S, which releases whey
protein derivatives, induces apoptosis through extrinsic and
intrinsic pathways (Li et al., 2020). Therefore, the exact
relationship between H2S and apoptosis needs to be further studied.

Cu/NaHS significantly reduced the Menkes copper transport
(ATP7A) protein levels, promoted intracellular Cu accumulation,
and resulted in increased Cu cytotoxicity (Goto et al., 2020).
Therefore, continuous detection of H2S and Cu2+ is helpful to
understand their interaction. In 2021, a bifunctional fluorescent
probe (16) for testing H2S and Cu2+ in different channels in live
cells and zebrafish was reported by Ren and colleagues. Naphthalimide
and rhodamine were used as probe fluorophores, and azide and
hydralazine were selected as recognition sites for H2S and Cu2+.
The fluorescence intensity augmented 40-fold and 31-fold in
response to H2S and Cu2+, respectively. Probe 16 allowed
simultaneous fluorescence imaging of H2S and Cu2+ in cells,
enabling visualization of H2S-enhanced Cu

2+ cytotoxicity (Figure 7A).
In 2021, Singh et al. fabricated a naphthalimide-based bifunctional

fluorescent probe 17 for detecting H2S, which was made up of a
peptide-naphthalimide fluorophore and an H2S sensing moiety.When
H2S was introduced, the morphology of probe 17 showed the
combination of fibrous “bushes” with bright yellow fluorescence.
Probe 17 had the ability of cancer cell imaging and induction of
apoptosis in the meantime, which could be a good candidate for the
theranostic agent (Figure 7B).

Because of its fascinating optical properties, including large Stokes
shift, “turn-on” fluorescence, relatively high quantum yield, and good
photostability, 3-hydroxyflavone has been widely concerned by
researchers (Sedgwick et al., 2018; Wang, Lai, Qiu and Liu, 2019;
Doric and Nakamura, 2021). In 2022, Liu et al. (2022) created a
fluorescent probe 18 based on excited state intramolecular proton
transfer (ESIPT) for testing H2S. The probe consisted of 3-
hydroxyflavone and 4-Chloro-7-nitro-1,2,3-benzoxadiazole (NBD-
Cl, H2S-specific recognition unit). When H2S existed, 3-
hydroxyflavone formed a ketone tautomer and released
fluorescence at 550 nm. Figure 7C showed the behavior of different
concentrations of H2S on the apoptosis of MCF-7 cells.

FIGURE 5
Probe 9 for H2S: High-fidelity ferroptosis evaluation in cells during the stroke (reproduced from (Liang et al., 2022) with permission from the Royal Society
of Chemistry).
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3.4 Oxidative stress imaging

The imbalance between oxidants and antioxidants is beneficial to
oxidants and can cause damage, known as oxidative stress (Sies, 1997).

Oxidants are normal products of aerobic metabolism, but they can be
produced at a higher rate under pathophysiological conditions. If left
unchecked, oxidative stress can lead to damage to DNA, proteins, and
lipids, and ultimately cell death (Greenwood and Witney, 2021). H2S

FIGURE 6
(A) Images of a frozen inflamed and normal tissue slice from Kunming mouse using probe 10 (reproduced from (Ou et al., 2021) with permission from
Elsevier (B. V). (B) Time-dependent fluorescence images of air pouch inflammation in a female nudemouse before and after subcutaneous injection of probe
11 (reproduced from (Ding et al., 2022) with permission from the Royal Society of Chemistry). (C) Imaging of H2S during the LPS-induced inflammation inmice
using probe 12 (reproduced from (Gong et al., 2021) with permission from American Chemical Society). (D) Fluorescence images of H2S in the
inflammation mice model using probe 13 (reproduced from (Wang Y et al., 2022) with permission from the Royal Society of Chemistry). (E) Fluorescence
images of H2S generation in an inflammationmodel in live nudemice using probe 14 (reproduced from (Hu et al., 2021) with permission from the Royal Society
of Chemistry). (F) Fluorescence imaging of probe 15 in LPS-induced inflammatory processes in living mice (reproduced from (Wang WX et al., 2022) with
permission from Elsevier (B. V).

Frontiers in Chemistry frontiersin.org10

Jia et al. 10.3389/fchem.2023.1126309

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1126309


has been proven to influence cellular redox through multiple
mechanisms, such as ROS scavenging, protein modification,
mitochondria, and respiratory oxidation (Pal, Bandyopadhyay, and
Singh, 2018; Scammahorn et al., 2021). Furthermore, some
suborganelles are related to oxidative stress, for example, the Golgi
apparatus actively participates in the stress response, and when larger
than the stress threshold, the Golgi apparatus can simultaneously
activate cell repair and apoptosis mechanisms (Hicks and Machamer,
2005; Wlodkowic, Skommer, Mcguinness, Hillier, and Darzynkiewicz,
2009); H2S can effectively decrease endothelial-mesenchymal
conversion by restraining ER stress (Ying et al., 2016). Therefore,
tracking H2S behaviors in different organelles is crucial for the
research and treatment of related diseases or pathophysiological
processes.

H2S and humanNAD(P)H:quinine oxidoreductase 1 (hNQO1), as
latent cancer biomarkers, were able to participate in cell redox
homeostasis (Park, et al., 2021). In 2019, Zhang et al. (2019)
developed a dual biomarker (H2S and hNQO1)-triggered
fluorescent probe to reveal the synergistic antioxidant effect under
oxidative stress. Quinone propionic acid (Q3PA) and NBD served as
hNQO1 and H2S recognition units, and coumarin and naphthalimide
acted as fluorophores of probe 19, respectively. The strategy of dual
reaction and dual quenching was formed, which improved the
sensitivity and selectivity of the probe. When H2S existed, the
fluorescence signal of probe 19 was remarkably enhanced (400-
fold) at 535 nm. In addition, the probe could simultaneously test
the endogenous H2S and hNQO1 activities in organic systems.
Figure 8A showed that HeLa cells could induce the production of
endogenous H2S under the existence of exogenous hydrogen peroxide
(H2O2), that is, H2S played a synergistic antioxidant role under
oxidative stress.

The Golgi stress response is activated when Golgi function is
inadequate compared to cellular demands (Gao, et al., 2021). Golgi

apparatus provides cytoprotection by moderating the synthesis and
metabolism of bioactive molecules in response to conventional stress
(Paul, et al., 2014; Hirayama, et al., 2019). In 2020, Zhu et al. (2020),
Shu et al. (2020) reported Golgi-targeted fluorescent probes (20, 21)
detecting H2S, respectively. In probe 20, 4-CF3-substituted 7-
aminoquinoline was used as fluorophore, and azide was elected as
the specific identification group of H2S. The introduction of
trifluoromethyl into the quinoline structure facilitated the entry of
the probe into the Golgi apparatus through the membrane barrier.
With the H2S concentration increased, the fluorescence signal around
515 nmwas augmented. As shown in Figure 8B, probe 20 has achieved
in situ display of H2S generation under monensin-induced Golgi
pressure. In probe 21, 1,8-naphthalimide was used as the
fluorophore, azide was used as the identification group of H2S, and
phenylsulfonamide was used as the targeting group of the Golgi
apparatus. When H2S was introduced, the fluorescence signal was
remarkably enhanced at 550 nm. Furthermore, Figure 8C showed
probe 21 could be seen as a chemical method to detect the behavior of
H2S in situ during Golgi stress, thus confirming that H2S could be used
as a biomarker to investigate Golgi stress.

Intracellular H2S and H2O2 are closely associated with
maintaining cellular homeostasis, and their levels directly reflect
the degree of oxidative stress and disease (Kimura and Kimura,
2004; Kimura, et al., 2009). In 2020, Yang et al. (2020) fabricated a
fluorescent probe 22 for testing dynamic H2O2/H2S redox processes in
organisms. Phenylboronate and azide moieties served as recognition
units for H2O2 and H2S, respectively. Under the existence of H2O2, the
fluorescence intensity around 413 nm declined, while the fluorescence
around 486 nm enhanced remarkably. When H2S was added, two
fluorophores (HCB and TQC) were released, and the fluorescence at
413 and 627 nm were emitted, respectively. Figure 8D showed phorbol
12-myristate 13-acetate (PMA)-induced stress experiments, in which
cells produced H2O2 and reduced H2S. In 2022, Wang and colleagues

FIGURE 7
(A) Simultaneous fluorescent images of copper (II) ions and H2S in HeLa cells stained with probe 16 and treated with CuSO4 and NaHS at different times
(reproduced from (Ren M et al., 2021) with permission from Elsevier (B. V). (B) Determination of apoptosis by TUNEL assay using probe 17 (reproduced from
(Singh et al., 2021) with permission from the Royal Society of Chemistry). (C) Apoptosis induced by H2S leads to decrease in cell viability using probe 18
(reproduced from (Liu et al., 2022) with permission from Newlands Press).
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FIGURE 8
(A)Confocal microscopy images for concentration-dependent H2O2-induced fluorescence in living HeLa cells using probe 19 (reproduced from (Zhang
et al., 2019) with permission from the Royal Society of Chemistry). (B) Golgi stress response experiments in cells using probe 20 (reproduced from (Zhu et al.,
2020a) with permission from American Chemical Society). (C) Fluorescence imaging of probe 21 after stimulating cells with only probe 22, Mone,
aminooxyacetic acid (AOAA)/photoplethysmographic (PPG) Mone, nigericin, AOAA/PPG/igericin, brefeldin A, and AOAA/PPG/brefeldin A, respectively
(reproduced from (Zhu et al., 2020b) with permission from the Royal Society of Chemistry). (D) Confocal fluorescence images of endogenous H2O2/H2S in
living HeLa cells using probe 22 (reproduced from (Yang et al., 2020) with permission from American Chemical Society). (E) Fluorescence imaging H2S in
inflammation response zebrafish using probe 23 (reproduced from (Wang K et al., 2022) with permission from Elsevier (B. V). (F) Confocal imaging of H2S
during ER stress with probe 24 (reproduced from (Shu et al., 2020) with permission from American Chemical Society). (G) HUEVC cells imaging endogenous
ONOO− and H2S using probe 25 (reproduced from (Tang et al., 2021) with permission from Elsevier (B. V).
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obtained a NIR fluorescence probe activated by H2O2 to monitor the
changes in H2S during oxidative stress. When H2O2 was present, the
fluorescence signal of probe 23 blue-shifted from 700 to 550 nm after
recognizing H2S. Probe 23 could monitor the changes in H2S during
the oxidation-triggered oxidative stress process in cells and zebrafish.
Figure 8E showed that the probe evaluated the up-regulation of H2S
levels based on oxidative stress by H2O2/PMA.

The endoplasmic reticulum (ER) plays a critical role in protein
synthesis, folding, distribution, and storage of calcium ions (BÁnhegyi,
et al., 2007; Pagliassotti, et al., 2016). ER stress can result in autophagy
and even cell death, which is bound up with serious diseases or
pathophysiological processes (Holczer, et al., 2018). In 2020, Shu
et al. (2020) reported an ER-targeted ratiometric fluorescent probe
for detecting H2S in organism systems. Probe 24 was composed of
dicyanoisophorone analogue with a large Stokes shift and
o-carboxybenzaldehyde as the specific recognition group of H2S.
H2S reacted with the aldehyde group in the probe through
nucleophilic addition, emitting fluorescence at 650 nm. The probe
had good selectivity, large Stokes shift (150 nm). Figure 8F showed
that the probe observed the endogenous changes in H2S under
tunicamycin-induced endoplasmic reticulum stress.

Abnormal metabolism of organisms produces high concentrations
of active carbonyl substances, leading to carbonyl stress, which leads to
cell injury or cell apoptosis (Bordoni, et al., 2006). Therefore, the
development of tools to image carbonyl stress is essential to decrease
its damage and explore new drug treatments or reduce carbonyl stress.
In 2021, a visualized fluorescent probe (25) for monitoring the
protective effect of endogenous H2S during carbonyl stress in
endothelial cells was developed by Tang and colleagues. The probe
had dual fluorophores (rhodamine and coumarin fluorophores) and
dual recognition sites (phenylhydrazine and 2,4-
dinitrobenzenesulfonyl ether) to achieve the purpose of dual
recognition of H2S and ONOO−, and the fluorescence signals of
rhodamine and coumarin would not interfere with each other
(>100 nm). When H2S and ONOO− were introduced, the probe
showed remarkable increases in fluorescence signal around 464 and
570 nm, respectively. Probe 25 enabled endogenous H2S and ONOO−

imaging in different channels. Figure 8G showed that probe 25 was
suitable for visualizing the protective effect of endogenous H2S during
carbonyl stress.

3.5 Organ injury imaging

H2S is synthesized in almost all organ systems (Kasinath et al.,
2018). H2S has been proven to protect against organ damage,
including liver damage, heart damage, kidney damage, etc (Tan
et al., 2011; Wang et al., 2012; Kasinath, 2014). For example, in
acute or chronic kidney disorders, H2S generation from the renal
cells is decreased (Koning et al., 2015; Lobb et al., 2015; Cao and
Bian, 2016; Cao et al., 2019); Endogenous and exogenous H2S
reduces myocardial damage and improves cardiac function
(Johansen et al., 2006; Wu et al., 2021); Decreased levels of
endogenous H2S in the brain were associated with increased
lesion volume and mortality after traumatic brain injury (TBI)
(Zhang et al., 2013); H2S prevents LPS-induced acute lung injury
(ALI) by restraining synergistic pro-inflammatory and oxidative
reactions of stress proteins, mitogen-activated protein kinases
(MAP kinases), and ROS signaling pathways (Zimmermann

et al., 2018). Therefore, the development of sensitive probes for
in vivo imaging of H2S is critical for exploring H2S biology and the
diagnosis of organ injury.

In 2018, Jiao’s group developed a TP fluorescent probe 26,
which was used to explore the potency of HClO as an indicator of
drug-induced liver injury (DILI) and the detoxification of
N-acetylcysteine (NAC) mediated by H2S. The probe was linked
by 7-amino coumarin and rhodamine B via piperazine. When
HClO or H2S existed, the fluorescence signal was remarkably
enhanced at 580 or 445 nm. In this process, the recovery of the
D-π-A structure induced by azide reduction of H2S and the ring
opening induced by HClO were carried out separately, so that H2S
and HClO did not generate signals that interfered with each other.
As shown in Figure 9A, DILI induced by antidepressants such as
duloxetine and fluoxetine and their remission were assessed at the
cellular and tissue levels, respectively. The data showed that only
after combined administration of the drugs, a significant increase
of HClO and significant liver injury were found. At the same time,
NAC pretreatment led to an increase in endogenous H2S levels,
which was helpful in the remission of DILI.

Hemicyanine dyes have great potential in the research of small
animal imaging and disease modeling owing to their emission in the
NIR regions, convenient synthesis, and wavelength tunability (Li H
et al., 2022). In 2022, a NIR fluorescent probe 27 based on sulfur-
substitution hemicyanine dye for H2S recognition was obtained by Su
and colleagues. In contrast to traditional hemicyanine dyes, the oxygen
in oxygen-substitution hemicyanine dyes was substituted by sulfur to
become sulfur-substitution hemicyanine dyes. 2,4-dinitrophenyl
served as the identifying site for H2S and the quenching group for
probe fluorescence. As H2S concentration increases, the fluorescence
signal around 787 nm was markedly increased (52-fold), red-shifted
by 60 nm compared to oxygen-substituted hemicyanine dyes. As
shown in Figure 9B, in the mouse model experiment of LPS-
induced acute lung injury, the data showed a significant increase in
H2S concentration.

3.6 Diabetic imaging

Diabetes, as a disease characterized by hyperglycemia, is related
to diverse complications, including cardiovascular disease, stroke,
kidney failure, neuropathy, retinopathy, and amputation (Al-
Sofiani et al., 2019; Lau et al., 2019; Buades et al., 2021;
Sempere-Bigorra et al., 2021; Milluzzo et al., 2021; O’neill et al.,
2017). It is reported that diabetes can be divided into three types:
Gestational diabetes, type 1 diabetes (T1D), and type 2 diabetes
(T2D) (Xiang et al., 2018). H2S, as a promising candidate, helps to
prevent and therapy of diabetes (Sun et al., 2021). Compared to
lean participants, overweight and T2D patients had significantly
lower blood levels of H2S (Whiteman et al., 2010). The protein
expression and activity of CSE were significantly higher in
peripheral blood mononuclear cells of normal humans than
T1D patients (Manna et al., 2014). Therefore, studying the
relationship between H2S and diabetes in-depth may be helpful
to develop potential treatments for diabetes.

In 2022, a “double-locked” fluorescent probe 28 with NIR
emission for examining the H2S levels in organisms was obtained
by Wei and colleagues. Probe 28 consisted of a fluorophore with NIR
emission (rhodamine B), and re-active units of H2S (aromatic azide
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and NBD-piperazine). The fluorescence around 663 nm was locked
and quenched through the intramolecular charge transfer (ICT) and
photoinduced electron transfer (PET) processes. Probe 28 exhibited
good selectivity and excellent sensitivity for imaging the behaviors of
H2S. In addition, probe 28 was applied to image the levels of
endogenous H2S in IR-Hepg2 cells and diabetic mice (Figure 10).

4 Summary and outlook

Fluorescence imagingmay become a universally accepted diagnostic
modality in the future due to its high efficiency and low cost. Accurate
detection of H2S associated with pathophysiological processes and
examining their behaviors are essential for understanding the
diseases or pathophysiological processes involved, especially in the
early stages. This paper reviews the bioimaging of H2S in
pathophysiological processes (neurodegenerative diseases,

inflammation, apoptosis, oxidative stress, organ injury, and diabetes)
with fluorescent diagnostic probes. The design strategies, recognition
mechanisms, optical properties, and applications of H2S fluorescent
probes in bioimaging are further discussed. Up to now, remarkable
progress has been achieved in exploring organic fluorescent probes for
examining and studying H2S-associated pathophysiological processes in
real-time.

Although delightful progress has been obtained, there are still
some issues that need to be improved and solved: 1) Most fluorescent
probes are inherently monochromatic, which can easily lead to false-
positive signals in complex physiological settings, resulting in
incorrect disease diagnosis; 2) Most H2S fluorescent probes
reported to date have fluorescence emission wavelengths in the
UV-visible region, which limits their application in studying
diseases. There is still a large lack of H2S-based organic fluorescent
probes that can be applied for routine diagnosis and monitoring of
clinical diseases or pathophysiological processes. So it is crucial and

FIGURE 9
(A) TPM imaging of endogenous H2S and HClO in RAW264.7 cells upon drug treatment using probe 26 (reproduced from (Jiao et al., 2018) with
permission from American Chemical Society). (B) Schematic illustration of probe 27 reporting the H2S upregulation process in ALI mice’s lungs (reproduced
from (Su et al., 2022) with permission from Elsevier (B. V).

FIGURE 10
(A) Endogenous H2S biosynthesis in IR-HepG2 cells. (B) Fluorescence imaging of control (up) and diabetic (down)mice using probe 28 (reproduced from
(Li Z et al., 2022) with permission from Elsevier (B. V).
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urgent to construct novel fluorescent probes with fascinating
advantages for imaging H2S associated with pathophysiological
processes. To achieve this goal, we can start from the following
aspects: 1) Designing fluorescent probes with excellent properties,
including high quantum yields, large Stokes shifts, large photostability,
and fast response; 2) Exploring the fluorescent probes of H2S with fine
tissue penetration and high spatial resolution, which may have the
greatest application due to the depth of biological tissues; 3)
Developing organic fluorescent probes in the NIR-II region, which
is expected to facilitate the development of systems suitable for
monitoring deep organ-related diseases.

Overall, organic fluorescent probes with wonderful features might
have the ability to image H2S associated with pathophysiological
processes. It is believed that organic fluorescent probes for imaging
H2S in pathophysiological processes will become increasingly vital
testing tools in the future.
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