AUTHOR=Miller Stephen A. TITLE=The location of the chemical bond. Application of long covalent bond theory to the structure of silica JOURNAL=Frontiers in Chemistry VOLUME=11 YEAR=2023 URL=https://www.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2023.1123322 DOI=10.3389/fchem.2023.1123322 ISSN=2296-2646 ABSTRACT=
Oxygen is the most abundant terrestrial element and is found in a variety of materials, but still wanting is a universal theory for the stability and structural organization it confers. Herein, a computational molecular orbital analysis elucidates the structure, stability, and cooperative bonding of α-quartz silica (SiO2). Despite geminal oxygen-oxygen distances of 2.61–2.64 Å, silica model complexes exhibit anomalously large O-O bond orders (Mulliken, Wiberg, Mayer) that increase with increasing cluster size—as the silicon-oxygen bond orders decrease. The average O-O bond order in bulk silica computes to 0.47 while that for Si-O computes to 0.64. Thereby, for each silicate tetrahedron, the six O-O bonds employ 52% (5.61 electrons) of the valence electrons, while the four Si-O bonds employ 48% (5.12 electrons), rendering the O-O bond the most abundant bond in the Earth’s crust. The isodesmic deconstruction of silica clusters reveals cooperative O-O bonding with an O-O bond dissociation energy of 4.4 kcal/mol. These unorthodox, long covalent bonds are rationalized by an excess of O 2