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Chemical fertilizers are important for effectively improving soil fertility, promoting
crop growth, and increasing grain yield. Therefore, methods that can quickly and
accurately measure the amount of fertilizer in the soil should be developed. In this
study, 20 groups of soil samples were analyzed using laser-induced breakdown
spectroscopy, and partial least squares (PLS) and random forest (RF) models were
established. The prediction performances of the models for the chemical fertilizer
content and pH were analyzed as well. The experimental results showed that the R2

and root mean square error (RMSE) of the chemical fertilizer content in the soil
obtained using the full-spectrum PLSmodel were .7852 and 2.2700 respectively. The
predicted R2 for soil pH was .7290, and RMSE was .2364. At the same time, the full-
spectrum RF model showed R2 of .9471 (an increase of 21%) and RMSE of .3021 (a
decrease of 87%) for fertilizer content. R2 for the soil pH under the RF model was
.9517 (an increase of 31%), whereas RMSE was .0298 (a decrease of 87%). Therefore,
the RFmodel showed better prediction performance than the PLSmodel. The results
of this study show that the combination of laser-induced breakdown spectroscopy
with RF algorithm is a feasible method for rapid determination of soil fertilizer
content.
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1 Introduction

Soil is an indispensable part of the living environment of plants (Palansooriya et al., 2020)
and a natural resource necessary for human survival (Zhang et al., 2018). Soil environment is
directly related to the survival of plants and human beings (Gondek et al., 2018) and affects
agricultural production (Hou et al., 2019). Crops cannot be planted without soil, and the fertility
of the soil determines the growth and development of crops, which directly affects the yield and
quality of the crops. Therefore, effective soil fertilization can promote sustainable development
of agriculture and improve planting efficiency.

In modern agriculture, the use of chemical fertilizers is very prevalent. For example, ferrous
sulfate fertilizer can not only supplement iron in plants, but also promote the absorption of
nitrogen and phosphorus. Because ferrous sulfate has strong reducibility, it can also greatly
regulate the oxidation-reduction process in plants. However, during fertilization, some areas
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receive excessive fertilizer, resulting in imbalances in the soil nutrient
structure, worsening of the physical properties of soil, and
concentrations of harmful metals and bacteria exceeding the
standard values, which affects crop production (Guo et al., 2022).
For example, long-term excessive use of nitrogen fertilizers (Zhao
et al., 2022) leads to the loss of calcium, magnesium, and other
elements, resulting in a continuous soil acidification and eventual
loss of productivity. Excessive use of potassium fertilizers hinders the
growth of crops, leading to lodging and other crop symptoms,
reduction in crop production, and weakening of the production
capacity of crops. At the same time, insufficient application of
chemical fertilizers leads to insufficient soil fertility and reduced
crop yield. Therefore, it is necessary to determine the contents of
chemical fertilizers in soil.

At present, the contents of chemical fertilizers in soil are
determined mainly through the potential method. Although this
method has the advantages of accuracy and high precision (Topcu
and Isildak, 2021), large-scale soil analysis is difficult because of the
complicated pretreatment process and long analysis time. Therefore,
it is necessary to develop a rapid and effective method for the
determination of fertilizer content in soil. Laser-induced
breakdown spectroscopy (LIBS) (Ding et al., 2021) is a new atomic
emission spectroscopy technology with laser as the excitation source.
Compared with the traditional analysis method, LIBS has the
advantages of rapidness, real-time assessment (Ding et al., 2020),
on-site micro-loss analysis (Qi et al., 2018), remote detection (Agresti
et al., 2022), no need for complex sample preparation (Gupta et al.,
2020), and simultaneous analysis of multiple elements (Shukla et al.,
2022). In recent years, LIBS has been successfully used in geological
exploration (Rethfeldt et al., 2021), metallurgical analysis (Myakalwar
et al., 2021), medical diagnosis (Alsharnoubi et al., 2020), archaeology
(Wallace et al., 2020), environmental monitoring (Ding et al., 2019),
and other fields, including fertilizer detection. Danie et al. converted
liquid fertilizer into a solid and used LIBS to analyze Cu, K, Mg, Mn,
Zn, As, Cd, Cr, and Pb contents in the fertilizer, with a detection error
of .02%–.06% (Andrade et al., 2017); Sha. et al. combined LIBS with
multiple linear regression to determine the concentration of
phosphorus in compound fertilizer (SHA et al., 2018); Senesi et al.
analyzed phosphate rock and organic mineral phosphate fertilizer by
single-pulse and double-pulse LIBS with principal content analysis
and partial least squares (PLS) algorithm, and the identification
results reached a confidence level of 95% (Senesi et al., 2017). At
present, LIBS primarily focuses on the detection of elements in the
fertilizer and is rarely applied to measuring the content of fertilizer
in soil.

The soil matrix is complex; thus, its LIBS spectral information is
also complicated (Chatterjee et al., 2019), which limits the application
of LIBS technology to the accurate analysis of chemical fertilizer
content in soil. Chemometric methods, such as PLS (Ewusi-Annan
et al., 2020), support vector machine (Yuan et al., 2020), artificial
neural networks (Babu et al., 2021), and random forest algorithm
(Ding et al., 2020; Ding et al., 2019), are effective tools (Musyoka et al.,
2022) for accurate qualitative and quantitative analysis using LIBS
(Feng et al., 2022).

In this study, LIBS combined with PLS and RF algorithms was
used to analyze soil samples with added ferrous sulfate fertilizer.
Particularly, LIBS was used to readily and accurately determine the
amount of fertilizer, thus providing effective reference for the follow-
up management of fertilized soil.

2 Materials and methods

2.1 Soil sample preparation

The soil samples were obtained from a farmland in Yangzhong,
Jiangsu Province. Twenty samples with different concentration
gradients were prepared by adding different amounts of fertilizer to
the soil. The concentration gradient and pH of the samples are listed in
Table 1. In this experiment, ferrous sulfate fertilizer was used, and
according to the amount of fertilizer, different quantities of the ferrous
sulfate fertilizer were weighed, then added to 30 ml of distilled water,
and stirred evenly. The prepared solutions were uniformly mixed with
100 g of the soil, put in an oven, and baked at 150°C for 10 h. The
baked samples were then ground into powder; 2 g samples of soil
powder were weighed, put into a tablet press, and pressed for 3 min at
20 MPa, yielding samples with a final diameter of 13 mm and a
thickness of 5 mm.

2.2 LIBS setup

A lamp-pumped electro-optic Q-switched compact nanosecond laser
(Beamtech China, Dawa-200) was used as the excitation source (Figure 1).
A wavelength of 1,064 nm, working frequency of the laser of 1 Hz, pulse
energy of 55 mJ, spectral integration time of 1.05 m, and delay time of 3 μs

TABLE 1 Concentration of FeSO4 (Wt%).

Sample number Concentration (mg/g) pH

1 0 6.2

2 6 6.15

3a 9 6.12

4 12 6.09

5 15 6.07

6 18 6.04

7 21 6.02

8a 24 6.00

9 27 5.98

10 30 5.94

11a 33 5.90

12 36 5.86

13 39 5.82

14 42 5.79

15a 45 5.75

16 48 5.72

17 51 5.69

18 54 5.65

19 57 5.61

20 60 5.58

arepresents the test set.
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were used in this study. During the experiment, the soil sample was placed
directly on the moving stage, and the high-energy laser pulse was focused
on the surface of the sample through a focusingmirror (with a focal length
of 100 mm), which ablated the sample and generated plasma.
Subsequently, the optical fiber probe collected the radiated spectral
signal and coupled it to the spectrometer (Avantes AvaSpec-ULS2048-
2-USB2, .07 nm). The wavelength range was 198–425 nm, with a total of
4,096 wavelength points.

To reduce the fluctuation of the LIBS spectrum caused by the non-
uniformity of the samples, 20 measurement points were randomly
selected for each sample. Each measurement point was analyzed
3 times, and an average spectrum was recorded. Finally, 20 analysis
spectra were obtained and averaged into one spectrum for each sample.

2.3 Methods

2.3.1 PLS
PLS is a regression-based mathematical optimization algorithm for

multiple dependent and independent variables. In this method, the linear
regression equation between independent and dependent variables is
established, principal components are extracted step by step from the
two matrices, variance and covariance are calculated, and iteration is
performed one step at a time. Finally, according to the cross-validation
results, the quantitative regression prediction and PLS analysis model are
established (Alvarez et al., 2022). Conceptually, PLS primarily consists of
extracting the first principal component from the independent variable and
dependent variable matrix, and obtaining the covariance; then the second

principal component is extracted and covariance is obtained, and this
process is iterated. Finally, according to the cross-validation results, the final
PLS quantitative regression prediction analysis model is established (Garcia
et al., 2021). This algorithm can overcome the problem of collinearity
between multiple independent variables.

2.3.2 RF
RF is a classifier that contains multiple decision trees, and the output

is determined by the mode of each tree’s output category. RF is a machine
learning method (AGMD et al., 2021) which generates a large number of
decision trees through randomly selected training samples and variable
subsets, and uses these decision trees to predict the results to avoid over-
fitting (Zagajewski et al., 2021). Compared with other traditional
algorithms, RF has a higher calculation speed and stronger
generalization ability and thus a lower risk of over-fitting (Gk et al., 2021).

3 Results and discussion

3.1 Analysis of LIBS spectra

Wavelength and intensity are important factors in the qualitative
analysis of soil elemental content. Figure 2 shows the average LIBS spectra
of all soil samples, and the elements with strong characteristic lines are
marked according to the NIST database. As shown in Figure 2, Fe, Al, Ca,
Mg, and Si are the main elements in soil, with the characteristic spectral
lines of Fe Ⅱ (238.20 nm), Al Ⅰ (396.15 nm), Ca Ⅱ (393.36 nm), Mg Ⅱ
(279.55 nm), and Si Ⅰ (251.61) nm.

FIGURE 1
Experimental setup.
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3.2 PLS model prediction performance

Before the prediction, the PLS method was optimized. The
principal factor number is an important parameter of the PLS
model. To avoid insufficient fitting or over-fitting of the model, the
principal factor number must be optimized. Thus, based on spectral
data, PLS quantitative analysis models for soil fertilization content
with 1–15 principal factors were established, and the curve fitting
coefficient R2 and root mean square error (RMSE) predicted by the
models were analyzed. The results are shown in Figure 3. R2 gradually
increases with the increase in the principal factor number from one to
4. With a further increase in the principal factor number, R2

fluctuates
and reaches the maximum value of .7852 when the principal factor
number is 6. RMSE is at its maximum when the principal factor
number is 2. At 6 principal factors, RMSE shows the minimum value
of 2.2700. R2 and RMSE exhibit best values at six principal factors;
thus, six was selected as the optimum principal factor number in this
study. Therefore, the full-spectrum data for six factors was used to
predict and analyze the content of fertilizer in soil. With the
increase in soil fertilization, the pH of the soil changes to a
certain extent; as this change impacts crop growth, LIBS was
also used to explore soil pH in this study.

In this work, the full spectrum was used to predict the amount of
fertilizer. Using the full-spectrum information with 4,096 spectral
points as input variables, a PLS model was established to predict the

amount of fertilizer. The prediction results are shown in Figure 4.
Under the PLS model, the R2 and RMSE of the fertilizer content
predicted using the full spectrum of soil are .7852 and 2.2700,
respectively. The PLS model based on full-spectrum data was then
used to predict the soil pH (Figure 5). The R2 and RMSE of pH in the
test set are .7290 and .2364, respectively.

The results show that the accuracy of the PLS model in
predicting the fertilizer content and soil pH are not
satisfactory. The correlations between the actual and predicted
values of the fertilizer content and pH are poor. The analysis error
may be caused by excessive interference information in the soil
spectrum, which had a negative impact on the prediction results of
the model, resulting in the poor fitting of the PLS model, limited
prediction performance, and failure to obtain good prediction
results.

3.3 RF model prediction performance

In the RF model, the main parameters affecting the model are
ntree and mtry; ntree is the number of decision trees, and mtry

specifies the number of variables used in binary trees in nodes
and the number of variables affecting the data sets. In this
experiment, we optimized the model by comparing the changes
in R2 and RMSE predicted by the models with different ntree and

FIGURE 2
LIBS spectrum of soil samples.
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mtry. Algorithm optimization was performed for ntree values in the
range of 100–700, with the increments of 100. The mtry values were
M,M/2,M/3,M/4,M/5,M/6, andM/7, whereM is the total number
of variables. The optimization process is shown in Figure 6. R2

gradually increases with ntree until it reaches the maxima at ntree =
300, then gradually decreases, and stabilizes, whereas mtry

gradually increases in the change from M to M/4 and
then gradually decreases in the variation from M/4 to M/7.
Therefore, at the ntree and mtry of 300 and M/4, respectively,
the model results are the best. The RF model was built based on
the input variables and optimized model parameters, and
the full spectrum was used to predict the fertilizer content and
soil pH.

All spectral points measured by LIBS were imported into the RF
data model, and the prediction results are shown in Figure 7 (R2 =
.9471 and RMSE = .3021). The RF model was also used to predict

the soil pH based on full spectrum. The prediction results are
shown in Figure 8 (R2 = .9517 and RMSE = .0298). Therefore, the
optimized RF model shows good prediction results for the fertilizer
content and soil pH.

3.4 Comparison of prediction performance of
the PLS an RF models

The comparison results of prediction performance is listed in
Table 2. The results of the optimized PLS model (6 principal factors)
for the full-spectrum prediction of fertilizer content are unsatisfactory.
At the same time, the prediction accuracy of the RF model is
considerably better: R2 is higher by 21% than that obtained using
PLS (.9471 and .7853, respectively), and RMSE is lower by 87%
(2.2700 and .3021, respectively). Thus, the RF model demonstrates

FIGURE 4
Prediction results using PLS model for fertilization.

FIGURE 5
Prediction results using PLS model for/pH.

FIGURE 3
The relationship between principal factor number and R2/RMSE.
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better accuracy and stability of the prediction results. For the full-
spectrum-based prediction of soil pH, R2 obtained by the RF model is
higher by 31% than that in the PLS model (.9517 and .7290,
respectively), whereas RMSE is lower by 87% (.0298 and .2364,
respectively). Therefore, the RF prediction model also showed
higher accuracy than the PLS model in predicting soil pH.

Thus, the optimized RF model is significantly better than the
optimized PLS model in predicting fertilizer content and soil pH based
on the full-spectrum data. The combination of LIBS with the RF
method is effective and feasible for analyzing the amount of fertilizer
in the soil and soil pH.

4 Conclusion

The main purpose of this study was to use LIBS in combination with
PLS and RF methods to analyze soil samples with added ferrous sulfate
fertilizer. Herein, the RF and PLS methods were used to predict the
amount of fertilizer and pH of soil samples. The experimental results
demonstrated that theR2 and RMSE for the prediction of fertilizer content
in soil using the PLSmodel based on full spectrumwere .7852 and 2.2700,
respectively. The predicted R2 of soil pH was .7290 and RMSE was .2364.
At the same time, the full-spectrum RFmodel showed the predicted R2 of
.9471 (higher by 21%) and RMSE of .3021 (lower by 87%) for the fertilizer
content; furthermore, for the soil pH, the predicted R2 was .9517 (higher
by 31%), and RMSE was .0298 (lower by 87%). Thus, the RF model
showed better prediction performance than the PLSmodel. Therefore, the
combination of LIBS with the RF algorithm is a feasible method for
determining the amount of fertilizer in the soil and the soil pH. The
methods studied herein provide effective reference for the follow-up
management of fertilized soil.

Data availability statement

The raw data supporting the conclusion of this article will be made
available by the authors, without undue reservation.

FIGURE 6
Prediction of R2 with different values of ntree and mtry.

FIGURE 7
Prediction results using RF model for Fertilization.

FIGURE 8
Prediction results using RF model for pH.

TABLE 2 Prediction results of two algorithm models

Algorithm Model established R2 RMSE

PLS Fertilizer 0.7852 2.2700

pH 0.7290 0.2364

RF Fertilizer 0.9471 0.3021

pH 0.9517 0.0298

Frontiers in Chemistry frontiersin.org06

Wei et al. 10.3389/fchem.2023.1123003

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1123003


Author contributions

YD and LW contributed to the conceptualization and the
design of the overall experiment. JC, LY, JW, YS, ZM, and ZW
performed the experiment. ZW, WC, XZ completed a statistical
analysis of the data. LW wrote the first draft of the manuscript. All
authors contributed to manuscript revision, read, and approved the
submitted version.

Funding

The research is funded by National Natural Science Foundation of
China (Nos. 62105160).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Agmd, Freitas., Minho, L., Elizabeth Alves de Magalhaes, B., Nei Lopes dos Santos, W.,
Soares Santos, L., and Augusto de Albuquerque Fernandes, S. (2021). Infrared
spectroscopy combined with random forest to determine tylosin residues in powdered
milk. Food Chem. 365, 130477. doi:10.1016/j.foodchem.2021.130477

Agresti, J., Indelicato, C., Perotti, M., Moreschi, R., Osticioli, I., Cacciari, I., et al. (2022).
Quantitative compositional analyses of calcareous rocks for lime industry using LIBS.
Molecules 27 (6), 1813. doi:10.3390/molecules27061813

Alsharnoubi, J., Nassef, Y., Fahmy, R. F., and Gamal, M. (2020). Using LIBS as a
diagnostic tool in pediatrics beta-thalassemia. Lasers Med. Sci. 36, 957–963. doi:10.1007/
s10103-020-03117-9

Alvarez, L. C., Purohit, P., Moros, J., and Laserna, J. (2022). Differentiation of closely
related mineral phases in Mars atmosphere using frequency domain laser-induced plasma
acoustics. Anal. Chim. Acta. 1226, 340261. doi:10.1016/j.aca.2022.340261

Andrade, D. F., Sperana, M. A., and Pereira-Filho, E. R. (2017). Different sample
preparation methods for the analysis of suspension fertilizers combining LIBS and liquid-
to-solid matrix conversion: Determination of essential and toxic elements. Anal. Methods.
9, 5156–5164. doi:10.1039/c7ay01049d

Babu, M. S., Imai, T., and Sarathi, R. (2021). Classification of aged epoxy
micro–nanocomposites through PCA- and ANN-adopted LIBS analysis. IEEE Trans.
Plasma Sci. IEEE Nucl. Plasma Sci. Soc. 49 (3), 1088–1096. doi:10.1109/tps.2021.3061410

Chatterjee, S., Singh, M., Biswal, B. P., Sinha, U. K., Patbhaje, S., and Sarkar, A. (2019).
Application of laser-induced breakdown spectroscopy (LIBS) coupled with PCA for rapid
classification of soil samples in geothermal areas. Anal. Bioanal. Chem. 411 (13),
2855–2866. doi:10.1007/s00216-019-01731-3

Deng, F., Ding, Y., Chen, Y., Zhu, S., and Chen, F. (2020). Quantitative analysis of the
content of nitrogen and sulfur in coal based on laserinduced breakdown spectroscopy:
Effects of variable selection. Plasma Sci. Technol. 22 (7), 074005. doi:10.1088/2058-6272/
ab77d5

Ding, Y., Xia, G., Ji, H., and Xiong, X. (2019). Accurate quantitative determination of
heavy metals in oily soil by laser induced breakdown spectroscopy (LIBS) combined with
interval partial least squares (IPLS). Anal. Methods. 11 (29), 3657–3664. doi:10.1039/
c9ay01030k

Ding, Y., Zhang, W., Zhao, X., Zhang, L., and Yan, F. (2020). A hybrid random forest
method fusing wavelet transform and variable importance for the quantitative analysis of
K in potassic salt ore using laser-induced breakdown spectroscopy. J. Anal. A. T. Spectrom.
35 (6), 1131–1138. doi:10.1039/d0ja00010h

Ewusi-Annan, E., Delapp, D. M., Wiens, R. C., and Melikechi, N. (2020). Automatic
preprocessing of laser-induced breakdown spectra using partial least square regression and
feedforward artificial neural network: Applications to Earth and Mars data. Spectrochim.
Acta Part B A. T. Spectrosc. 171, 105930. doi:10.1016/j.sab.2020.105930

Feng, T., Chen, T., Li, M., Chi, J., Tang, H., Zhang, T., et al. (2022). Discrimination of the
pollution grade of metal elements in atmospherically deposited particulate matter via
laser-induced breakdown spectroscopy combined with machine learning method.
Chemom. Intell. Lab. Syst. 231, 104691. doi:10.1016/j.chemolab.2022.104691

Garcia, J. A., Silva, J., and Pereira-Filho, E. R. (2021). LIBS as an alternative method to control
an industrial hydrometallurgical process for the recovery of Cu in waste from electro-electronic
equipment (WEEE). Microchem. J. 164 (17), 106007. doi:10.1016/j.microc.2021.106007

Gk, E. C., and Olgun, M. O. (2021). SMOTE-NC and gradient boosting imputation
based random forest classifier for predicting severity level of Covid-19 patients with
blood samples. Neural. comput. Appl. 33 (22), 15693–15707. doi:10.1007/s00521-
021-06189-y

Gondek, K., Mierzwa-Hersztek, M., and Kopec, M. (2018). Mobility of heavy metals in
sandy soil after application of composts produced from maize straw, sewage sludge and
biochar. J. Environ. Manage. 210, 87–95. doi:10.1016/j.jenvman.2018.01.023

Guo, J. B., Li, C., Xu, X., Sun, M., and Zhang, L. (2022). Farmland scale and chemical
fertilizer use in rural China: New evidence from the perspective of nutrient elements.
J. Clean. Prod. 376, 134278. doi:10.1016/j.jclepro.2022.134278

Gupta, A. K., Aula, M., Negre, E., Viljanen, J., Pauna, H., Makela, P., et al. (2020).
Analysis of ilmenite slag using laser-induced breakdown spectroscopy. Minerals 10, 855.
doi:10.3390/min10100855

Hou, S., Zheng, N., Tang, L., Ji, X., Li, Y., and Hua, X. (2019). Pollution characteristics,
sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in
urban street dust across China between 2009 and 2018. Environ. Int. 128, 430–437. doi:10.
1016/j.envint.2019.04.046

Ji, H. W., Ding, Y., Zhang, L., Hu, Y., and Zhong, X. (2021). Review of aerosol analysis by
laser-induced breakdown spectroscopy. Appl. Spectrosc. Rev. 56 (3), 193–220. doi:10.1080/
05704928.2020.1780604

Musyoka, W. D., Kalambuka, A. H., Dehayem-Kamadjeu, A., and Amiga Kaduki,
K. (2022). Direct analysis of blood for diagnostic metals for malaria by peak-free
laser-induced breakdown spectroscopy (LIBS) with artificial neural networks (ANN)
and partial least squares (PLS). Anal. Lett. 55 (17), 2669–2682. doi:10.1080/00032719.
2022.2067862

Myakalwar, A. K., Sandoval, C., YaezVelasquez, M., Sbarbaro, D., Sepulveda, B., and
Yanez, J. (2021). LIBS as a spectral sensor for monitoring metallic molten phase in
metallurgical applications—a review. Minerals 11 (10), 1073. doi:10.3390/min11101073

Palansooriya, K. N., Shaheen, S. M., Chen, S., Tsang, D. C., Hashimoto, Y., Hou, D.,
et al. (2020). Soil amendments for immobilization of potentially toxic elements in
contaminated soils: A critical review. Environ. Int. 134, 105046. doi:10.1016/j.envint.
2019.105046

Qi, J., Zhang, T., Tang, H., and Li, H. (2018). Rapid classification of archaeological
ceramics via laser-induced breakdown spectroscopy coupled with random forest.
Spectrochim. Acta Part B A. T. Spectrosc. 149, 288–293. doi:10.1016/j.sab.2018.
09.006

Rethfeldt, N., Brinkmann, P., Riebe, D., Beitz, T., Kollner, N., Altenberger, U., et al.
(2021). Detection of rare earth elements in minerals and soils by laser-induced
breakdown spectroscopy (LIBS) using interval PLS. Minerals 11 (12), 1379. doi:10.
3390/min11121379

Senesi, G. S., Romano, R. A., Marangoni, B. S., Nicolodelli, G., Villas-Boas, P. R., Benites,
V. M., et al. (2017). Laser-induced breakdown spectroscopy associated with multivariate
analysis applied to discriminate fertilizers of different nature. J. Appl. Spectrosc. 84 (5),
923–928. doi:10.1007/s10812-017-0566-4

Sha, W., Li, J. T., Lu, C. P., and Zhen, C. H. (2018). Quantitative analysis of P in
compound fertilizer by laser-induced breakdown spectroscopy couplith linear multivariate
calibration. Spectrosc. Spect. Anal. 39 (6), 1958–1964. doi:10.3964/j.issn.1000-0593

Frontiers in Chemistry frontiersin.org07

Wei et al. 10.3389/fchem.2023.1123003

https://doi.org/10.1016/j.foodchem.2021.130477
https://doi.org/10.3390/molecules27061813
https://doi.org/10.1007/s10103-020-03117-9
https://doi.org/10.1007/s10103-020-03117-9
https://doi.org/10.1016/j.aca.2022.340261
https://doi.org/10.1039/c7ay01049d
https://doi.org/10.1109/tps.2021.3061410
https://doi.org/10.1007/s00216-019-01731-3
https://doi.org/10.1088/2058-6272/ab77d5
https://doi.org/10.1088/2058-6272/ab77d5
https://doi.org/10.1039/c9ay01030k
https://doi.org/10.1039/c9ay01030k
https://doi.org/10.1039/d0ja00010h
https://doi.org/10.1016/j.sab.2020.105930
https://doi.org/10.1016/j.chemolab.2022.104691
https://doi.org/10.1016/j.microc.2021.106007
https://doi.org/10.1007/s00521-021-06189-y
https://doi.org/10.1007/s00521-021-06189-y
https://doi.org/10.1016/j.jenvman.2018.01.023
https://doi.org/10.1016/j.jclepro.2022.134278
https://doi.org/10.3390/min10100855
https://doi.org/10.1016/j.envint.2019.04.046
https://doi.org/10.1016/j.envint.2019.04.046
https://doi.org/10.1080/05704928.2020.1780604
https://doi.org/10.1080/05704928.2020.1780604
https://doi.org/10.1080/00032719.2022.2067862
https://doi.org/10.1080/00032719.2022.2067862
https://doi.org/10.3390/min11101073
https://doi.org/10.1016/j.envint.2019.105046
https://doi.org/10.1016/j.envint.2019.105046
https://doi.org/10.1016/j.sab.2018.09.006
https://doi.org/10.1016/j.sab.2018.09.006
https://doi.org/10.3390/min11121379
https://doi.org/10.3390/min11121379
https://doi.org/10.1007/s10812-017-0566-4
https://doi.org/10.3964/j.issn.1000-0593
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1123003


Shukla, V. K., Rai, A. K., Dwivedi, A., and Kumar, R. (2022). A quick analysis of various
elements (heavy) in sand collected from the topical river (ganga and yamuna) using LIBS
coupled with multivariate technique. Natl. Acad. Sci. Lett. 45 (5), 437–440. doi:10.1007/
s40009-022-01163-1

Topcu, C., and Isildak, I. (2021). Novel micro flow injection analysis system for the
potentiometric determination of tetraborate ions in environmental samples. Anal. Lett. 54
(5), 854–866. doi:10.1080/00032719.2020.1786105

Wallace, S., Smith, N., and Nerantzis, N. (2020). Handheld methods in archaeological
research on large copper alloy assemblages: HH-XRF against HH-LIBS. Archaeometry 63
(2), 343–371. doi:10.1111/arcm.12595

Yuan, Z., Wei, L., Zhang, Y., Yu, M., and Yan, X. R. (2020). Hyperspectral inversion and
analysis of heavy metal arsenic content in farml and soil based on optimizing CARS

combined with PSOSVM algorithm. Spectrosc. Spect. Anal. 40 (2), 567–573. doi:10.3390/
s20102777

Zagajewski, B., Kycko, M., Raczko, E., Njegovec, A., and Dabija, A. (2021). Comparison
of random forest, support vector machines, and neural networks for post-disaster forest
species mapping of the krkonoe/karkonosze transboundary biosphere reserve. Remote
Sens. 13 (13), 2581. doi:10.3390/rs13132581

Zhang, J., Li, H., Zhou, Y., Dou, L., Cai, L., Mo, L., et al. (2018). Bioavailability and soil-
to-crop transfer of heavy metals in farmland soils: A case study in the pearl river delta,
south China. Environ. Pollut. 235, 710–719. doi:10.1016/j.envpol.2017.12.106

Zhao, J. R., Liu, Z. J., Zhai, B., Jin, H., Xu, X., and Zhu, Y. (2022). Long-term changes in soil
chemical properties with cropland-to-orchard conversion on the Loess Plateau, China: Regulatory
factors and relations with apple yield. Agric. Syst. 204, 103562. doi:10.1016/j.agsy.2022.103562

Frontiers in Chemistry frontiersin.org08

Wei et al. 10.3389/fchem.2023.1123003

https://doi.org/10.1007/s40009-022-01163-1
https://doi.org/10.1007/s40009-022-01163-1
https://doi.org/10.1080/00032719.2020.1786105
https://doi.org/10.1111/arcm.12595
https://doi.org/10.3390/s20102777
https://doi.org/10.3390/s20102777
https://doi.org/10.3390/rs13132581
https://doi.org/10.1016/j.envpol.2017.12.106
https://doi.org/10.1016/j.agsy.2022.103562
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1123003

	Quantitative analysis of fertilizer using laser-induced breakdown spectroscopy combined with random forest algorithm
	1 Introduction
	2 Materials and methods
	2.1 Soil sample preparation
	2.2 LIBS setup
	2.3 Methods
	2.3.1 PLS
	2.3.2 RF


	3 Results and discussion
	3.1 Analysis of LIBS spectra
	3.2 PLS model prediction performance
	3.3 RF model prediction performance
	3.4 Comparison of prediction performance of the PLS an RF models

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


