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Introduction: Psidium cattleianum Sabine is a Brazilian native shrub cultivated for its
edible fruit araçá (strawberry guava). P. cattleianum is recognized for health and food
applications, although the essential oils (EOs) from the Egyptian inhabitant are not
fully explored. The current study investigated the anti-inflammatory and cytotoxic
activities of EOs from P. cattleianum leaves and flowers.

Materials and methods: The EOs were obtained by three different methods viz; the
conventional hydro-distillation, microwave assisted hydro-distillation, and
supercritical fluid extraction, while their analysis was accomplished using GC/MS.
The derived EOs were screened for their anti-inflammatory activity in the 5-
lipoxygenase, COX-1, and COX-2 enzyme based assays, while the anticancer
potential was deduced from MTT cytotoxic assay, cell cycle, and western blotting
analysis.

Results and discussion: Among other methods, supercritical fluid extraction offered
the highest EO yield, 0.62% (leaves) and 1.4% (flowers). GC/MS identified β-
caryophyllene and α-humulene in both organs with high but variable
percentages. The leaves demonstrated strong activity in inhibiting the 5-
lipoxygenase enzyme (IC50 2.38), while the flowers, in inhibiting COX-2 (IC50
2.575). Moreover, the leaves showed potent, selective cytotoxicity to MCF-7 cells
(IC50 5.32) via apoptosis bymodulating the p53/Bax/Bcl2 axis. The deduced activities
are possible due to the synergism between the volatile components that endorses P.
cattleianum leaves’ EOs in the management of breast cancer and inflammatory
disorders.
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1 Introduction

Essential oils (EOs) are presently attracting interest in the scientific community, owing to
their imperative pharmacological activities (Amorim et al., 2009). They have been traditionally
used by ancient cultures as a complementary holistic health approach, which was later termed
aromatherapy, as they possess an array of unique health-fostering benefits. Currently, hundreds
of EOs have been identified as commercially important crude drugs in the therapeutic,
horticultural, cosmetic, and food industries (Shakeri et al., 2016). In addition, their unique
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chemical framework is accredited to a variety of effective biological
activities, such as antioxidant, antimicrobial, antinociceptive, anti-
inflammatory, and anticancer activities (Amorim et al., 2009; Singh
et al., 2013). To date, species of the family Myrtaceae are among the
recognized plants that provide many valuable products including EOs
(Arain et al., 2019). Notably, Psidium is one of the economically
important genera because of its distinguished edible, essential oil-rich
species such as P. guajava L. and P. cattleianum Sabine (Beltrame et al.,
2021). P. cattleianum Sabine is a Brazilian native shrub, where it is
commonly known as “araçá” (Faleiro et al., 2016); however, it is
cultivated through the tropics and subtropics for its juicy, purple-red
fruits known as strawberry guava or Cattley guava (Patel, 2012). The
fruit has a strawberry-like flavor with a spicy touch and is rich in
vitamin C, which is 3–4 times more than citrus fruits (Chalannavar
et al., 2013). The characteristic flavor is due to the presence of essential
oils (EOs), which were previously extracted by the hydro-distillation
method from P. cattleianum grown in different countries and
extensively studied by several researchers (Chalannavar et al., 2013;
Soliman et al., 2016; dos Santos et al., 2018; Chrystal et al., 2020;
Silvestre et al., 2022). On the other hand, only one report was
conducted on the EOs from Egyptian species (Soliman et al., 2016).
The relevant literature stated that the EOs derived from P. cattleianum
leaves possessed significant in vitro antioxidant, antimicrobial, anti-
inflammatory, and anticancer activities (Castro et al., 2015; Chrystal
et al., 2020; de Souza et al., 2021). To the best of our knowledge, no
prior study has investigated the volatile metabolites from the flowers;
hence, it is interesting to investigate the chemical nature of its derived
EOs in comparison with those obtained from the leaves, in an attempt,
to discover a new active essential oil-based remedy for the
management of cancer and inflammatory disorders.

Cancer is considered one of themost severe diseases worldwide and is
expected to increase due to the lifestyle adopted nowadays (Bray and
Moller., 2006). The World Health Organization (WHO) revealed that
cancer was responsible for nearly 30% of deaths from non-chronic
diseases among adults in 2020. Drug resistance to cancer and the
toxicity of available chemotherapeutic agents are currently the main
limitations in its treatment. So, the discovery of innovative and safe
treatments is considered a big challenge (Abdullaev, 2001). However, this
mission is not impossible with natural products. Natural products have
played a pivotal role in cancer chemotherapy and chemoprevention for
over half a century and established anticancer drugs, e.g., camptothecin,
doxorubicin, paclitaxel, vinblastine, and vincristine (Sarker et al., 2020).
Hence, the discovery of new anticancer hits derived from natural sources
is a feasible strategy and is in dire need.

The functional correlation between inflammation and cancer is not
new. It is now becoming clear that the cancer micro-environment, which is
largely composed of inflammatory cells, is an indispensable participant in
neoplastic development, encouraging proliferation, survival, and migration.
COX-1 and COX-2 are two important isoforms of the cyclooxygenase
family in whichCOX-2, the inducible isoformof COX, has developed as the
key enzyme in the regulation of inflammation and cancer (Agrawal and
Mishra, 2010). Other reports mentioned the disposition of COX-2 and
lipoxygenases (LOX) in the regulation of different normal physiological
processes and inflammation, in addition to cancer (Wang and Du Bois,
2010). These insights are raising new anti-inflammatory therapeutic
approaches for the development of cancer. Natural products play a
significant role in human health in relation to the prevention and
treatment of inflammatory conditions witnessed by curcumin,
cucurbitacins, and 1,8-cineole, in which the latter is an essential oil-

derived terpene oxide (Juergens et al., 2020). Hence, searching for new
anti-inflammatory active agents derived from natural products or even
essential oils is a propitious approach.

In continuation to our research into the discovery of anti-
inflammatory and anticancer bioactive hits from natural sources, we
aimed to identify the chemical composition of the EOs obtained from P.
cattleianum leaves and flowers cultivated in Egypt for the first time using
three different techniques. Moreover, it was deemed of interest to validate
their cytotoxicity potential in different cancer cell lines and unravel their
detailed underlying mechanisms in terms of cell cycle analysis and
apoptosis-related proteins. Furthermore, the inhibitory activities of the
derived EOs to 5-LOX, COX-1, and 2 were investigated to expand the
conception that inflammation may be a serious factor in cancer
progression.

2 Material and methods

2.1 Plant material

Both leaves and flowers of Psidium cattleianum Sabine were
collected at the fruiting stage from March to April 2021 from
Mazhar Botanic Garden, Cairo, Egypt. The plant was identified by
Dr. Trease Labib, Senior Botanist at Mazhar Botanic Garden, Cairo,
Egypt. Plant voucher samples (01Pca/2021) were represented at the
herbarium of Pharmacognosy Department, Faculty of Pharmacy,
Helwan University, Cairo, Egypt.

2.2 Extraction of essential oils of flowers and
leaves

2.2.1 Conventional hydro-distillation method
Small pieces of fresh leaves (200 g) and flowers (50 g) were mixed

with double distilled water before hydro-distillation (HD) using
Clevenger apparatus for 4 h.

2.2.2 Microwave-assisted hydro-distillation method
The microwave-assisted hydro-distillation (MAHD) was achieved

using a microwave oven (CEM Corporation, Matthews, NC,
United States) and a model (MARS 240/50, No. 907511, 1,200 W)
operated at a frequency of 2,450 MHz. In brief, small pieces of fresh
leaves (200 g) and flowers (50 g) were placed in 1L- and 500-mL flask
and mixed with 500 and 250 mL deionized water, respectively. After
that, the Clevenger apparatus was set up within the microwave oven
cavity, while the cooling system connected to the outside of the oven to
condense the distillate volatiles continuously. The microwave oven
was operated at an 800-W power level for 60 min (Ghazanfar et al.,
2020).

2.2.3 Supercritical fluid extraction
The supercritical fluid extraction (SFE) using supercritical carbon

dioxide was accomplished as per the procedure described by Suetsugu
et al. (2013) using Speed TM SFE-2/4, applied separations, and
constructed in conjunction with the USDA1-USA. About 200 g and
50 g of dried and milled leaves and flowers were extracted at 40°C and
15.0 MPa. First, the apparatus was operated in a static mode for
60 min and then in dynamic mode for 60 min with a final total
processing time of 180 min. The main drawback of SCE is its low
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polarity; this problem is overcome by employing polar modifiers by
the addition of absolute ethanol with a flow rate of 0.2 mL/min as a co-
solvent to alter the polarity and increase its solvating power. The oil
obtained from the three methods was dried in anhydrous Na2SO4 and
stored in amber, sealed bottles at 4°C until GC/MS analysis.

Moreover, the oil percentage was calculated as an essential oil
volume (mL)/100 g of fresh plant material.

2.3 Gas chromatography coupled with mass
spectrometry analysis

Gas chromatography-mass spectrometry (GC/MS) investigation
was conducted using Shimadzu GCMS-QP2010 (Kyoto, Japan)
coupled with quadrupole mass spectrometer (Shimadzu
Corporation, Kyoto, Japan). Separation of oil compounds was
achieved using an Rtx-5MS column (30 m × 0.25 mm i.d. × 0.25-
µm film thickness, Restek, United States) with a flame ionization
injector. The temperature of the column was kept at 50°C for 3 min
in the beginning (isothermal), then planned to increase it to 300°C at
a rate of 5°C/min, and then continuously kept for 10 min at 300°C
(isothermal). The temperature of the injector was adjusted to 280°C.
The flow rate of the helium carrier gas is 1.37 mL/min for HD and
MAHD samples, while that of SCE sample is 1.41 mL/min. The mass
spectra were recorded as follows: the temperatures of the interface
and ion source are 280°C and 200°C, respectively; the mode of
electron ionization is 70 eV with a scanning range of
35–500 amu. The split mode (1: 15) was used for injecting the oil
samples (1 μL).

2.4 Identification of volatile oil components

The obtained volatile constituents were identified by comparing
their Kovats retention indices (RI) with that of standard n-alkane
series (C8–C28) and their mass spectra with those reported in the NIST
(National Institute of Standards and Technology) and Wiley mass
spectral databases (similarity index >90%) (Adams, 2005).

2.5 In vitro biological evaluation

All in vitro assays were accomplished on the EOs isolated from P.
cattleianum leaves and flowers using the SFEmethod as this extraction
method offered the highest oil yield.

2.5.1 Enzyme-based anti-inflammatory assays
2.5.1.1 5-Lipoxygenase inhibitory screening assay

It was performed using a BioVision 5-lipoxygenase inhibitor
screening assay kit (catalog no. K980-100; Milpitas, CA,
United States). Four concentrations of the EOs (0.1, 1, 10, and
100 μL/m) were prepared in DMSO (Sigma-Aldrich, Steinheim,
Germany). Then, 2 μL of each EO stock solution, 5-LOX enzyme
(enzyme control), DMSO (negative control), or zileuton (positive
control) were added separately to a 96-well plate; then, 38 μL of
LOX buffer was added. Subsequently, 40 μL of the reaction mixture
(34 μL LOX buffer, 2 μL LOX probe, and 4 μL 5-LOX enzyme) was
added to each well except for the enzyme control well, which will
receive a reaction mixture composed of 38 μL LOX buffer and 2 μL

LOX probe only. The plate was incubated for 10 min at room
temperature before the addition of 20 μL of 5% LOX substrate
(prepared in LOX buffer) to each well. The experiment was
performed recurrently in triplicate, and the percentage inhibitions
of EOs were measured fluorometrically using the following equation:

% Inhibition = [(slope of enzyme control−slope of tested EO)/
slope of enzyme control] x 100.

IC50 represents the EO concentration that causes 50% enzyme
inhibition from the dose-response curve using non-linear regression
analysis.

2.5.1.2 COX-1 and COX-2 inhibitory screening assays
It was accomplished using BioVision COX-1 and 2 inhibitor

screening assay kits (catalog no K548-100 and K547-100,
respectively; Milpitas, CA, United States), according to the
manufacturer’s instructions. Briefly, four different concentrations of
EOs (0.1, 1, 10, and 100 μL/mL) were prepared in DMSO. Thereafter,
in a 96-well plate, 10 μL of each EO stock solution or assay buffer was
added separately to the wells that were assigned as sample screen [SC]
and enzyme control [EC], respectively. Thereafter, 80 μL of the
reaction mixture (76 μL COX assay buffer, 1 μL COX probe, 2 μL
COX cofactor, and 1 μL COX-1) was added to each well, and then,
10 μL of arachidonic acid/NaOH was added. SC560 (COX-
1 inhibitor), celecoxib (COX-2 inhibitor), and indomethacin (non-
steroidal anti-inflammatory drug) were considered as standard control
drugs. The inhibition percentage of tested EOs was measured
fluorometrically and calculated as follows:

% Inhibition = [(slope of EC–slope of SC)/slope of EC] x 100.
IC50 represents the concentration of EOs that causes 50% enzyme

inhibition deduced from the dose-response curve using non-linear
regression analysis.

2.5.2 Anticancer assays
2.5.2.1 Cell lines and culture conditions

The human hepatocellular (HepG2), breast (MCF-7), and
immortalized myelogenous leukemia (K562) cancer cell lines and
the normal fibroblast lung cells (WI-38) were supplied from the
company for biological products and vaccines (VACSERA, Egypt).
The HepG2 and MCF-7 cells were sustained in Dulbecco’s modified
Eagle’s medium (DMEM), K562 in Roswell Park Memorial Institute
medium (RPMI-1640), and WI-38 were preserved in Eagle’s
Minimum Essential Medium (EMEM). All media were
supplemented with 10% fetal calf serum (FCS), 2 mM glutamine,
100 U/mL penicillin, and 100 μg/mL streptomycin at 37°C at 5% CO2

(v/v) atmosphere.

2.5.2.2 Cytotoxicity assay
Cell viability was evaluated using theMTT reagent (3-(4, 5-dimethyl

thiazolyl-2)-2,5-diphenyltetrazolium bromide, Sigma–Aldrich,
Steinheim, Germany) colorimetric assay (Papadimitriou et al., 2019).
Briefly, MCF-7, HepG2 and K562, and WI 38 cell lines were added to a
96-well culture plate (1.2–1.8 x 103 cells/well). The cells were incubated
for 24 h and then treated with an increasing concentration of tested EOs
(3.125, 6.25, 12.5, 25, and 100 μL/mL) for 48 h. Then, the supernatant of
the culture was removed followed by the addition of 40 µL of an MTT
solution. The formazan crystals of MTT were dissolved by the addition
of DMSO (180 µL). Finally, color absorbance was measured using a
microplate reader at λ570 nm (Sunrise, TECAN, Inc, United States), and
doxorubicin® (Sigma Company, Suffolk County, NY, United States) was
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used as a standard cytotoxic agent. Triplicate repeats were performed,
and the cell viability percentage was measured as follows:

Cell viability percentage = (treated cell absorbance/control cell
absorbance) x 100.

IC50 was calculated by non-linear regression analysis.

2.5.2.3 Cell cycle analysis
Since the EO of P. cattleianum leaves displayed potent cytotoxic

activity toward the MCF-7 cell line, the following assays were carried
out to extensively evaluate its mode of cytotoxicity and identify the
downstream signaling pathway. So, to assess the leaves’ EO effects on
MCF-7 cell distribution via different stages of the cell cycle, the DNA
content of the propidium iodide (PI)-stained nuclei was evaluated by
flow cytometry, according to Ormerod (1994). The cells were treated
with a dose equivalent to the IC50 of the EOs of the leaves (IC50

5.32 μL/mL) for 48 h, followed by washing with ice-cold phosphate-
buffered saline (PBS) twice and then collected by centrifugation. Then,
the cell pellets were mixed with ethanol (75%, −20°C) and stained with
the kit of PI flow cytometry (ab139418, Abcam, United States),
according to the manufacturer’s instructions. Cell cycle distribution
was recognized using a FACSCalibur flow cytometer (BD Biosciences,
San Jose, CA) and measured using CellQuest software (Becton
Dickinson Immunocytometry Systems, San Jose, CA).

2.5.2.4 Apoptosis assay
Necrosis cell populations and early and late apoptosis were

measured using the annexin V-FITC/PI apoptosis/necrosis kit (Cat
No: K101; BioVision, Inc., United States) to evaluate the effects of
leaves’ EOs on programmed cell death. Briefly, MCF-7 cells were
treated for 48 h with the IC50 concentration of EOs of leaves (5.32 μL/
mL) and then collected by trypsinization, washed twice with ice-cold
PBS, re-suspended in annexin V-binding buffer (500 μL), and finally,
5 μL of annexin V-FITC was added and incubated in the dark at 25°C
for 10 min. The investigation was achieved by using a FACSCalibur
flow cytometer and CellQuest software.

2.5.2.5 Western blot analysis
MCF-7 cells were seeded, cultured, and treated with IC50 of the

EOs of leaves (5.32 μL/mL) for 48 h. Cell protein lysates were
prepared by radio immunoprecipitation assay buffer (RIPA
buffer, Cell Signaling, Danvers, MA), and the concentration of
the total protein in the supernatant was measured calorimetrically
using the Bradford method (Sambrook et al., 1989) before Western
blot, which was assessed by mixing and boiling equal amounts of
protein samples (20 µg) with sodium dodecyl sulfate (SDS) buffer for
10 min, cooled on ice, loaded into SDS polyacrylamide gel, and then
separated by electrophoresis (Cleaver, United Kingdom). Then, the
bands were transported by semi-dry electroblotting (Bio-Rad,
United States) at 2.5 A and 25 V for 30 min to the polyvinylidene
fluoride (PVDF) membranes (Bio-Rad, United States) which were
blocked with non-fat dry milk in TBS-T (5%) for 2 h and incubated
with anti-Bax, anti-Bcl-2, anti-p53 (Cell Signaling Technology, Inc.
United States), and anti-β-actin (Sigma–Aldrich, United States)
antibodies (1:1000) overnight, and washed with TBS-T (three
times), followed by incubation with horseradish peroxidase
(HRP)-linked secondary antibody (1:5000) for 1 h. Progress was
carried out using a chemiluminescent ECL substrate (Perkin Elmer,
United States), following the manufacturer’s recommendation, and
chemiluminescent signals were taken using a CCD camera-based

imager, and the intensities of bands were measured using Image Lab
(Bio-Rad, United States).

2.5.3 Statistical analyses
All experimental data were obtained from three separate experiments

performed in three replicates. Data were expressed as the mean ± SD in
both in vitro cytotoxic and in vitro anti-inflammatory assays. GraphPad
Prism version 5.0 (GraphPad Software, SanDiego, CA, United States) was
used to calculate mean inhibitory concentrations and IC50 values using
non-linear regression analysis.

3 Results and discussion

Essential oils are odorous products of complex compositions,
obtained from natural sources by various methods. They possess the
characteristic taste and odor of the source fromwhich it was derived. Such
organoleptic properties are principally dependent on chemical
composition, which is greatly affected by intrinsic and extrinsic factors
(Dhifi et al., 2016). The intrinsic factors include, but are not limited to, the
plant organ, genetics, and maturity stage, while the extrinsic factors
include the extraction methods and environmental conditions (Dhifi
et al., 2016). In the present study, the variations in P. cattleianum EOs
cultivated in Egypt were comparatively investigated in terms of different
plant organs and extraction methods. Herein, the leaves and flowers were
extracted for the first time using three different methods, namely, HD,
MAHD, and SFE. The HD method is the most common and low-priced
method, although the obtained oil may undergo saponification,
polymerization, and/or isomerization, especially for its labile
components (Koedam et al., 1979). Meanwhile, MAHD and SFE
represent one of the most applied green technology and
environmentally friendly methods that produce good EOs in a little
timewith slight environmental degradation (Abbas et al., 2022). However,
the SFEmethod is privileged by its diffusion coefficient, high oil yield, and
lowoil viscosity. Hence, it is obvious that each extractionmethod differs in
its basic principle and adjusted conditions, which subsequently affect the
yield and physical and chemical composition of the obtained volatile. By
the aforementioned information, the EOs derived from the leaves and
flowers by HD were almost pale-yellow liquids with a fruity, acidic flavor,
while those obtained from SEF exhibited brown color and fruity, aromatic
flavor. Moreover, it was found that the oil’s yield was affected not only by
the extraction method but also according to the plants’ organs. The
measured yield was 0.14, 0.31, and 0.62 v/w (P. cattleianum leaves) and
0.20, 0.31, and 1.40 v/w (P. cattleianum flowers) for HD, MAHD, and
SFE, respectively. From the obtained results, it was found that SFE
corresponded to the highest oil yield, an observation that may be
correlated with the unique characteristics of the SFE. SF is considered
a liquid–gas intermediate phase: it is non-viscous with low or no surface
tension and possesses the characteristics of both liquid and gas, which
results in a great diffusion rate and solvation power, allowing faster
extraction and worthy yield (Sargenti and Lancas, 1997).

3.1 GC/MS analysis for the extracted essential
oils

The effects of the techniques used in the oil extraction from
various plants’ organs were reflected in the qualitative and
quantitative compositions of P. cattleianum EOs. Regarding,
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TABLE 1 Identified compounds of P. cattleianum leaves’ essential oil extracted by different methods.

Peak Rt Compound M.F. RIexp RIlit %Content Identifications

HD MAHD SFE

1 7.13 α-Thujene C10H16 908 908 0.10 0.07 - MS, RI

2 7.31 α-Pinene C10H16 915 915 6.29 4.51 0.43 MS, RI

3 8.58 β-Pinene C10H16 961 961 0.49 0.29 - MS, RI

4 9.05 β-Myrcene C10H16 978 978 0.19 0.06 - MS, RI

5 10.20 D-Limonene C10H16 1017 1017 1.22 0.61 0.23 MS, RI

6 10.51 trans-β-Ocimene C10H16 1027 1027 0.19 0.08 - MS, RI

7 10.83 cis-β-Ocimene C10H16 1038 1038 1.15 0.43 0.18 MS, RI

8 11.15 γ-Terpinene C10H16 1048 1048 0.09 - - MS, RI

10 14.84 Terpinen-4-ol C10H18O 1167 1167 0.16 0.07 - MS, RI

11 19.85 α-Cubebene C15H24 1339 1339 - 0.07 - MS, RI

12 20.05 α-Longipinene C15H24 1346 1347 - 0.06 - MS, RI

13 20.33 (+)-Cyclosativene C15H24 1356 1358 - - 0.04 MS, RI

14 20.49 Ylangene C15H24 1362 1362 0.10 0.14 0.09 MS, RI

15 20.59 Copaene C15H24 1365 1365 2.16 2.57 2.39 MS, RI

16 20.79 Nerol acetate C12H20O2 1372 1372 1.04 0.59 0.56 MS, RI

17 21.05 β-Elemene C15H24 1380 1380 0.62 0.67 0.45 MS, RI

18 21.42 7-epi-Sesquithujene C15H24 1392 1391 0.15 0.20 - MS, RI

19 21.54 α-Gurjunene C15H24 1398 1398 0.20 0.28 0.17 MS, RI

20 21.64 cis-α-Bergamotene C15H24 1402 1403 0.30 0.38 - MS, RI

21 21.69 trans-α-Bergamotene C15H24 1404 1405 - - 0.31 MS, RI

22 21.90 β -Caryophyllene C15H24 1414 1414 11.77 12.56 13.20 MS, RI

23 22.17 γ-Elemene C15H24 1423 1423 2.38 - 2.36 MS, RI

24 22.35 Aromandendrene C15H24 1429 1429 0.54 0.77 0.74 MS, RI

25 22.73 α-Humulene C15H24 1445 1445 14.65 15.00 10.90 MS, RI

26 22.85 β-Santalene C15H24 1449 1449 0.58 0.65 0.07 MS, RI

27 22.95 Alloaromadendrene C15H24 1452 1452 0.44 0.58 0.55 MS, RI

28 23.08 Muurola-4,11-diene C15H24 1458 1458 - - 0.37 MS, RI

29 23.32 γ-Muurolene C15H24 1467 1467 2.00 2.89 1.01 MS, RI

30 23.45 Germacrene D C15H24 1473 1473 0.44 1.00 0.51 MS, RI

31 23.61 γ –Selinene C15H24 1479 1479 1.06 1.29 3.75 MS, RI

32 23.81 γ-Maaliene C15H24 1487 1435 1.59 1.82 - MS, RI

33 24.09 β-Bisabolene C15H24 1498 1498 1.42 2.30 2.48 MS, RI

34 24.16 β-Curcumene C15H24 1501 1504 0.52 - - MS, RI

26 22.85 β-Santalene C15H24 1449 1449 0.58 0.65 0.07 MS, RI

27 22.95 Alloaromadendrene C15H24 1452 1452 0.44 0.58 0.55 MS, RI

28 23.08 Muurola-4,11-diene C15H24 1458 1458 - - 0.37 MS, RI

29 23.32 γ-Muurolene C15H24 1467 1467 2.00 2.89 1.01 MS, RI

30 23.45 GermacreneD C15H24 1473 1473 0.44 1.00 0.51 MS, RI

(Continued on following page)
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the leaves’ essential oil, a total of 51 (95.57%), 50 (93.85%), and 41
(86.73%) volatile compounds were identified in HD, MAHD, and
SEF oil samples, respectively (Table 1, Supplementary Figures
S1–S3). Interestingly, careful interpretation of the data showed
that there is no major difference among the three extraction
methods in the percentage of the major identified components.
For instance, it was found that humulene represented 10.9%–

15.00%, β caryophyllene 11.77%–13.2%, germacrene B 6.02%–

8.19%, and α-bisabolol 6.39%–7.46% in HD, MAHD, and SEF
methods, respectively. On the other hand, there is a significant
difference in the main EO classes as the percentage of the
oxygenated compounds was 29.38, 26.65, and 31.36% for HD,
MAHD, and SFE, respectively, while the percentage of non-
oxygenated compounds was double the percentage of the
oxygenated compounds being 66.19% (HD), 67.20% (MAHD),
and 55.37% (SFE). Moreover, there is an additional exciting
difference in the chemical subclass of the identified volatiles.

Herein, the monoterpene (MH) and sesquiterpene (SH)
hydrocarbon percentages were different among the
implemented extraction methods. For instance, all oil samples
displayed a low percentage of MH being 9.72, 6.05, and 0.84% in
HD, MAHD, and SFE, respectively, while SH represented the
highest percentage, which was calculated as 56.47% (HD), 61.15%
(MAHD), and 54.53% (SFE). Concerning the oxygenated
sesquiterpenes (OS), it was found that the leaves’ EOs
encompass considerable contents of OS being 28.09, 25.99, and
30.8% in HD, MAHD, and SFE, respectively, in comparison with
oxygenated monoterpenes (OM), which represented a very low
percentage in the three extraction methods.

The EOs obtained from P. cattleianum flowers, which were
investigated here for the first time, displayed a total of 30 (87.55%),
49 (81.96%), and 27 (68.46%) volatile compounds in the HD, MAHD,
and SFE derived samples, respectively (Table 2, Supplementary
Figures S4–S6). Keen analysis of the obtained data has shown that

TABLE 1 (Continued) Identified compounds of P. cattleianum leaves’ essential oil extracted by different methods.

Peak Rt Compound M.F. RIexp RIlit %Content Identifications

HD MAHD SFE

31 23.61 γ –Selinene C15H24 1479 1479 1.06 1.29 3.75 MS, RI

32 23.81 γ-Maaliene C15H24 1487 1435 1.59 1.82 - MS, RI

33 24.09 β-Bisabolene C15H24 1498 1498 1.42 2.30 2.48 MS, RI

34 24.16 β-Curcumene C15H24 1501 1504 0.52 - - MS, RI

26 22.85 β-Santalene C15H24 1449 1449 0.58 0.65 0.07 MS, RI

27 22.95 Alloaromadendrene C15H24 1452 1452 0.44 0.58 0.55 MS, RI

46 26.46 Humulene epoxide I C15H24O 1591 1592 0.19 0.19 0.27 MS, RI

47 26.56 Ledol C15H26O 1595 1595 1.23 1.06 1.12 MS, RI

48 26.71 (-)-Humulene epoxide II C15H24O 1601 1602 1.47 1.41 1.94 MS, RI

49 27.14 Di-epi-1,10-cubenol C15H26O 1619 1619 1.81 1.72 2.07 MS, RI

50 27.27 Humulenol-II C15H24O 1624 1620 1.50 1.53 - MS, RI

51 27.37 Caryophylla-4(12),8(13)-dien-5-α-ol C15H24O 1629 1632 0.67 0.69 - MS, RI

52 27.47 T-Muurolol C15H26O 1633 1634 4.09 3.39 3.73 MS, RI

53 27.52 α-Cadinol C15H26O 1635 1635 1.34 1.36 3.19 MS, RI

54 28.40 α-Bisabolol C15H26O 1673 1673 6.39 7.46 7.48 MS, RI

55 28.82 Eudesm-7(11)-en-4-ol C15H26O 1692 1692 1.19 0.47 1.10 MS, RI

56 29.22 Farnesol C15H26O 1710 1711 0.59 0.87 1.24 MS, RI

57 31.81 trans-Farnesyl acetate C17H28O2 1824 1824 1.19 0.47 1.10 MS, RI

Total identified compounds 95.48 93.85 86.73

Non-oxygenated

Monoterpene hydrocarbons (MH) 9.72 6.05 0.84

Sesquiterpene hydrocarbons (SH) 56.47 61.15 54.53

Oxygenated

Oxygenated monoterpenes (OM) 1.20 0.66 0.56

Oxygenated sesquiterpenes (OS) 28.09 25.99 30.8

Rt, retention time; RIexp, experimental refractive index; RIlit, reference refractive index; MF: molecular formula.
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TABLE 2 Identified compounds of P. cattleianum flowers’ essential oil extracted by different methods.

Peak Rt Compound M.F. RIexp RIlit %Content Identifications

HD MAHD SFE

1 7.31 α-Pinene C10H16 915 915 3.45 2.90 - MS, RI

2 8.59 β-Pinene C10H16 961 961 - 0.26 - MS, RI

3 9.05 β-Myrcene C10H16 978 978 - 0.21 - MS, RI

4 9.44 Pseudolimonen C10H16 992 996 - 0.05 - MS, RI

5 10.20 D-Limonene C10H16 1017 1027 0.59 0.06 - MS, RI

6 10.51 trans-β-Ocimene C10H16 1027 1027 - 0.14 - MS, RI

7 10.83 cis-β-Ocimene C10H16 1038 1038 - 0.51 - MS, RI

8 12.44 β-Linalool C10H18 1090 1090 1.25 1.66 - MS, RI

9 12.68 trans-Dihydrocarvone C10H16O 1097 1193 - 0.07 - MS, RI

10 13.65 Isopinocarveol C10H16O 1129 1136 - 0.04 - MS, RI

11 14.84 Terpinen-4-ol C10H18O 1167 1167 - 0.07 - MS, RI

12 15.26 α-Terpineol C10H18O 1180 1180 - 0.25 - MS, RI

13 18.06 trans-Linalool oxide acetate C12H20O3 1277 1282 - 0.04 - MS, RI

14 19.85 α-Cubebene C15H24 1339 1339 - 0.06 - MS, RI

15 20.05 α-Longipinene C15H24 1346 1347 - 0.05 - MS, RI

16 20.37 (+)-Cyclosativene C15H24 1358 1358 - 0.06 - MS, RI

17 20.49 Ylangene C15H24 1362 1362 - 0.13 - MS, RI

18 20.59 Copaene C15H24 1365 1365 1.85 1.95 0.64 MS, RI

19 20.97 Geranyl acetate C12H20O2 1372 1372 - 0.74 - MS, RI

20 21.42 7-epi-Sesquithujene C15H24 1394 1391 - 0.18 - MS, RI

21 21.54 α-Gurgujene C15H24 1398 1398 0.19 - - MS, RI

22 21.56 β-Maaliene C15H24 1399 1381 - 0.32 - MS, RI

23 21.64 cis-α-Bergamotene C15H24 1402 1403 0.25 - - MS, RI

24 21.82 β-Caryophyllene C15H24 1409 1409 18.85 8.18 14.99 MS, RI

25 22.33 Aromandendrene C15H24 1429 1429 0.61 0.76 0.57 MS, RI

26 22.73 α-Humulene C15H24 1445 1445 14.46 11.02 7.21 MS, RI

27 22.95 Alloaromadendrene C15H24 1452 1452 0.38 0.49 0.75 MS, RI

28 23.31 γ-Muurolene C15H24 1467 1467 0.59 1.09 0.59 MS, RI

29 23.45 Germacrene D C15H24 1473 1473 - 0.97 0.24 MS, RI

30 23.59 Eudesma-4(14),11-diene C15H24 1478 1478 0.91 3.74 0.55 MS, RI

31 23.84 β-Cyclogermacrane C15H24 1488 1488 - - 1.84 MS, RI

32 24.09 β-Bisabolene C15H24 1498 1498 1.31 2.07 1.14 MS, RI

33 24.16 β-Curcumene C15H24 1501 1504 0.57 - - MS, RI

34 24.28 cis-γ-Bisabolene C15H24 1505 1507 1.06 1.09 0.75 MS,RI

35 24.50 Cadina-1(10),4-diene C15H24 1514 1514 3.11 3.07 2.15 MS, RI

36 24.57 Cadina-3,9-diene C15H24 1517 1518 - 3.07 - MS, RI

37 24.83 Eudesma-4(14),7(11)-diene C15H24 1527 1544 1.47 1.92 0.92 MS, RI

38 25.00 Selina-3,7(11)-diene C15H24 1533 1532 1.64 1.92 1.44 MS, RI

(Continued on following page)
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β-caryophyllene (18.85%), humulene (14.46), germacrene B (9.22%),
and α-bisabolol (9.05%) represented the major volatile components in
the flower’s HD EO, while in the case of MAHD, humulene (11.02%),
β-caryophyllene (8.18%), and α-bisabolol (8.03%) were the most
abundant volatiles. However, β-caryophyllene (14.99%),
humulene(7.02%), and α-bisabolol (7.65%) represented the major
volatile components in SFE. These values were reflected in the total
percentage of non-oxygenated volatile compounds, which in all
methods, showed high percentages (61.76%, 50.42%, and 51.76% in

HD, MAHD, and SEF, respectively) than the oxygenated compounds
(25.79% (HD), 31.54% (MAHD), and 16.7% (SEF)). Moreover, the
percentage of monoterpene hydrocarbons (MH) is nearly the same in
HD and MAHD (5.29%–5.79%), while completely absent in SFE
samples. Interestingly, the sesquiterpene hydrocarbons (SH)
represented the major percentage in HD (56.47%), followed by
MAHD (44.63%) and SEF (38.08%). Also, it was noticed that β-
sitosterol was detected only in SFE oil with 13.68%, while oxygenated
monoterpenes were detected only in MAHD (1.21%). Lastly, OS

TABLE 2 (Continued) Identified compounds of P. cattleianum flowers’ essential oil extracted by different methods.

Peak Rt Compound M.F. RIexp RIlit %Content Identifications

HD MAHD SFE

39 25.41 Germacrene B C15H24 1549 1549 9.22 2.49 4.30 MS, RI

40 25.91 Spatulenol C15H26O 1569 1569 - - 0.32 MS, RI

41 26.07 Caryophyllene oxide C15H26O 1575 1575 3.42 - - MS, RI

42 26.29 Viridiflorol C15H26O 1584 1584 0.59 - 0.2 MS, RI

43 26.56 Ledol C15H26O 1594 1595 - 0.16 0.69 MS, RI

44 26.57 (-)-Globulol C15H26O 1594 1580 1.23 - 1.75 MS, RI

45 26.71 Humulene 6,7-epoxide C15H26O 1600 1600 1.07 2.14 0.24 MS, RI

46 27.13 Di-epi-1,10-cubenol C15H26O 1619 1619 1.99 2.97 0.98 MS, RI

47 27.26 Cis-2,3,4,4a,5,6,7,8-octahydro-1,1,4a,7-tetramethyl-, 1H-
benzocyclohepten-7-ol

C15H26O 1624 1616 1.09 - - MS, RI

48 27.34 Acorenone B C15H24O 1624 1620 - 0.85 - MS, RI

49 27.47 tau-Muurolol C15H26O 1633 1634 1.21 2.27 - MS, RI

50 27.52 α-Cadinol C15H26O 1635 1635 2.36 4.07 1.50 MS, RI

51 27.78 Neointermedeol C15H24O 1646 1656 - 4.07 1.5 MS, RI

52 28.09 cis-Sesquisabinene hydrate C15H26O 1660 1590 1.84 2.56 0.89 MS, RI

53 28.40 α-Bisabolol C15H26O 1673 1673 9.05 8.03 7.65 MS, RI

54 28.77 Eudesm-7(11)-en-4-ol C15H26O 1690 1690 1.94 0.86 0.98

55 29.26 Farnesol C15H26O 1711 1711 - 1.66 -

56 30.04 α-Cyperone C15H22O 1745 1755 - 0.07 - MS, RI

57 30.40 6-Isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydro-
naphthalen-2-ol

C15H26O 1760 1714 - 0.29 - MS, RI

58 31.81 trans-Farnesyl acetate C17H28O2 1824 1824 - 0.33 - MS, RI

59 31.98 β-Sitosterol C29H50O 3277 3203 - - 13.68 MS, RI

Total identified compounds 87.55 81.96 68.46

Non-oxygenated

Monoterpene hydrocarbons (MH) 5.29 5.79 -

Sesquiterpene hydrocarbons (SH) 56.47 44.63 38.08

Sterols - - 13.68

Oxygenated

Oxygenated monoterpenes (OM) - 1.21 -

Oxygenated sesquiterpenes (OS) 25.79 30.33 16.7

Rt, retention time; RIexp, experimental refractive index; RIlit, reference refractive index; M.F, molecular formula.
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represents the major percentage in HD (25.79%) andMAHD (30.33%)
than that present in SEF oil (16.33%).

From the analysis of our results, it was found that β caryophyllene,
humulene, germacrene B, and α-bisabolol (Supplementary Figure S7)
represented the major components in both leaves and flowers’ EOs but
with variable percentages based either on the investigated organ or
the preparation method. Moreover, the SEF oil of the flower showed
a high percentage of β-sitosterol. Yet, in comparison to the
previously published data about P. cattleianum, it was found
that β-caryophyllene represents the major compound in most
HD-based reports about leaves’ EOs (Soliman et al., 2016), while
caryophyllene oxide (Chalannavar et al., 2013) was detected as a
major compound in few reports. Conclusively, the qualitative and
quantitative variations in the essential oils derived from the leaves
and flowers of P. cattleianum compared to other prior studies may
be attributed to various factors, such as genetic variations,
environmental conditions, harvesting time, drying period, or
extraction temperature (Patel et al., 2016).

3.2 Biological activity

As it was revealed from the EO yield extracted by the three
methods, it was found that SFE offered the highest yield being
0.62% and 1.4% from the leaves and flowers, respectively, so it was
selected for further biological assessment.

3.2.1 In vitro anti-inflammatory activity
The lipoxygenase (LOX) pathway is the main source of potent

proinflammatory leukotrienes (LTs) supplied from arachidonic acid
metabolism (AA). Therefore, its inhibition can help with anti-
inflammatory effects (Hu and Ma, 2017). In the current study, the
EOs from the leaves and flowers of P. cattleianum cultivated in Egypt
were screened against the 5-LOX enzyme, and the results (Table 3)
showed that leaves’ EOs exerted a strong 5-LOX inhibitory effect with
IC50 2.380 μL/mL, while the flowers’ EOs displayed weak activity (IC50,
7.697 μL/mL) in comparison with the positive control, zileuton (IC50,
0.423 μM/mL). Other recognized enzymes that significantly mediate the
inflammatory response are the cyclooxygenase isozymes COX-1 and
COX-2; the first isozyme is constitutively stated in all organs and
particularly responsible for the gastrointestinal protection, while the
other isozyme is prevailing at inflammation sites (COX-2) (Hawkey,
2001). In the current investigation, both organs’ SFE oils were screened

for their COX inhibitory activities, and the results showed that the
leaves’ EOs exerted low COX-1 inhibitory activity (IC50 45.96 μL/mL) in
comparison with SC560 (standard, selective COX-1 inhibitor, IC50

0.12 nM), moderate COX-2 inhibitory activity (IC50 9.116 μL/mL) in
comparison with indomethacin (IC50, 6.653 μg/mL), and finally almost
no significant effect in comparison with celecoxib (IC50, 0.547 μM/mL).
It is noteworthy that the flower’s EOs showed moderate COX-1 activity
(IC50, 19.08 μL/mL) in comparison with celecoxib (IC50, 11.34 μg/mL)
and SC560 (IC50, 6.34 nM), while high IC50 in comparison with
indomethacin (IC50, 1.067 μg/mL). Moreover, in the case of COX-2,
it exhibited strong inhibitory activity (IC50, 2.575 μL/mL) as compared
to indomethacin (IC50, 6.653 μg/mL) and celecoxib (IC50,
0.547 μM/mL).

3.2.2 In vitro cytotoxic activity
The Eos of the leaves and flowers of P. cattleianum were initially

screened for their cytotoxic potential against the available in-house cancer
cell lines, namely, MCF-7, HepG2, and K562, and the normal cell line
WI38. The results (Table 4) revealed that both organs’ EOs exhibited
strong anticancer activity against the three cell lines to a different extent.
Yet, the leaves’ oil displayed selective potent growth inhibitory activity to
MCF-7 cells (IC50, 5.32 μL/mL), followed by K562 (IC50, 12.30 μL/mL)
and lastly HepG2 (IC50, 25.7 μL/mL). However, it showed far low IC50 on
the normal WI38 cells (IC50, 59.7 μL/mL), demonstrating its selectivity to
the cancer cell lines, exclusively MCF-7 (SI,11.2), which is better than the
SI of doxorubicin (SI, 13.8). On the other hand, the screening of the
flowers’ EOs in the same assay demonstrated that K562 (IC50, 31.70 μL/
mL) is the most sensitive cell line, followed by MCF-7 (IC50, 36.20 μL/
mL), while HepG2 is the least sensitive cell line to the applied treatment
(IC50, 58.10 μL/mL). Even though this is the first time in reporting the
screening of the flowers’ EOs on various cancer cell lines, the promising,
selective anticancer potential of leaves’ EOs was our compelling rationale.
Hence, a completemechanistic studywas accomplished to understand the
mode of cell death and the proposed molecular targets involved in the
observed anticancer potential.

3.2.3 Cell cycle analysis and detection of apoptosis in
MCF-7 cells

Propidium iodide (PI) is commonly used in combination with
annexin V to measure if the cells are viable, apoptotic, or necrotic via
observing the changes in the integrity and permeability of the plasma
membrane (Rieger et al., 2011). The intact cell and nuclear membranes
inhibit PI entrance; hence, they do not stain either live or early

TABLE 3 IC50 of P. cattleianum leaves (L) and flowers’ (F) essential oils against 5-
LOX, COX-1, and COX-2 enzymatic activities.

Tested EO IC50 ± SD (µL/mL)

5-LOX COX-1 COX-2

L 2.38 ± 0.10 45.96 ± 2.32 9.116 ± 0.25

F 7.69 ± 0.22 19.08 ± 0.96 2.575 ± 0.07

Indomethacin (µg/mL) — 1.067 ± 0.05 6.653 ± 0.18

SC560 (nM) — 6.45 ± 0.05 —

Celecoxib (µM) — 11.34 ± 0.57 0.547 ± 0.01

Zileuton (µM) 0.42 ± 0.02 - —-

TABLE 4 IC50 of P. cattleianum leaves (L) and flowers’ (F) essential oils against
cancer cell lines (MCF-7, HepG2, K562) and normal cell line (WI38).

Tested EO IC50 ± SD (µL/mL)

Cancer cell lines Normal cells

MCF-7 HepG2 K562 WI38

L 5.32 ± 0.29 25.70 ± 1.38 12.30
± 0.66

59.70 ± 3.22

F 36.20
± 1.95

58.10 ± 3.13 31.70
± 1.71

43.40 ± 2.34

Doxorubicin
(µg/mL)

4.46 ± 0.24 7.5 ± 0.4 0.72 ± 0.04 13.8 ± 0.74
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apoptotic cells; on the other hand, in late apoptotic and necrotic cells,
the integrity of the plasma and nuclear membranes is reduced,
allowing PI to permit and intercalate into nucleic acids, and
revealed red fluorescence (Rieger et al., 2011). In this study, the
MCF-7 cells, treated with the leaves’ EOs, were subjected to cell
cycle analysis to gain understanding of the cytotoxicity mechanism
andmode of cell death. The results (Figure 1, Supplementary Table S1)
demonstrated that the cell percentage in the G0–G1 and G2/M phases
decreased upon treatment, being 53.23% and 3.82%, respectively, in
comparison with the untreated control group. Moreover, it exhibited
an increase in the cellular population of the S and pre-G1 phases to
42.95% and 26.35% compared to the control (36.19% and 1.48%,
respectively). Subsequently, the apoptosis percentage increased from
1.48% in the control cells to 26.35%, whereas the percentage of
necrotic cells increased to 7.51% compared to 0.93% in untreated
cells (Figure 1, Supplementary Table S1).

3.2.4 Expression of apoptosis-related proteins using
the Western blot technique

The Western blotting technique was adopted to quantify the total
levels of the apoptosis-mediated proteins, namely, Bax, Bcl2, and p53
(Mahmood and Yang, 2012). The results showed that the leaves’ EOs
significantly overexpressed the Bax and p53 protein levels by 3.9 and
4.8 folds, respectively, in comparison with the control and untreated
group, while the level of the Bcl-2 protein level was decreased to about
0.4 in the control (Figure 2, Supplementary Figure S8). Therefore, we
expect that leaves’ EOs modulated the apoptotic pathway by regulating

the p53-Bax/Bcl2 axis in MCF-7. Several reports were conducted on the
biological activities of cattleianum leaves’ EOs, which revealed its
significant antioxidant, antifungal, antibacterial (Castro et al., 2014),
and anticancer activities against HeLa (human cervical adenocarcinoma
cells), HepG2, AGS (human gastric cancer cells), SNU-1 (colorectal
cancer cells), and SNU-16 (human stomach cancer cells) (Fidyt et al.,
2016). Meanwhile, there are no studies about the anti-inflammatory and
anticancer activities of flower-derived EOs and the anti-inflammatory
and anticancer activities of leaves’ EOs, especially against MCF-7 and
K562. The chemical components of leaves and flowers’ EOs prepared by
the SFE method are responsible for their biological activities. It was
found that both oils pioneered principally with β-caryophyllene (BCP),
representing 13.2% and 14.99% for leaves and flowers, respectively,
together with α-humulene (α-caryophyllene), which represented 10.9%
(leaves) and 7.21% (flower). Moreover, the leaves’ EOs are also traced
with caryophyllene oxide (BCPO, the oxidation derivative of β-
caryophyllene) being 4.81%, which is almost absent from the flowers’
EOs. BCPO is one of the major active components in various EOs
derived from numerous food and spices. It possessed different biological
effects such as anti-inflammatory (Medeiros et al., 2007) and
anticarcinogenic (Langhasova et al., 2014) effects. BCP belongs to
cannabinoid compounds (CBS), especially phytocannabinoids.
However, cannabinoids could stimulate the cannabinoid receptors
(CB1 and CB2), while BCP activates only CB2 and has no affinity to
CB1, which explains that BPC action is lacking psychoactive side effects
allied with cannabinoids and recommends its potential use in medicine
(Fidyt et al., 2016). Moreover, α-humulene and BCPOhave no affinity to

FIGURE 1
Cell cycle distributions of MCF-7 cells (A) treated with EOs obtained from P. cattleianum Sabine leaves compared to (B) untreated, control cells.
Percentage of early, late apoptotic, and necrotic cells in MCF-7 cells (C) treated with EOs obtained from P. cattleianum leaves compared to (D) untreated,
control.
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CB1 and CB2, which explain that both compounds exhibited their
biological activities through partially different mechanisms such as
apoptosis induction, repression of the cell cycle, and inhibition of
angiogenesis and metastasis (Carracedo et al., 2006). Many
investigations have been performed to unravel the anticancer
mechanism of BCPO, while that of BCP has hardly been studied
(Fidyt et al., 2016). Many reports have mentioned the strong anti-
proliferative activity of BCP against many cell lines due to its
antiangiogenic properties, which are attributed to its interaction with
the hypoxia-inducible transcription factor-1alpha (HIF-1α) that
controls the biological pathways associated with hypoxia, tumor
metastasis, tumor-mediated angiogenesis, and vascular endothelial
growth factor transcription (VEGF) (Ghosh et al., 2022). Moreover,
it was reported that BCPO possessed methylene and epoxide exocyclic
functional groups, which bind covalently to the DNA nitrogenous bases
and proteins by sulfhydryl and amino groups. Thus, BCPO exhibited
great potential as a signalingmodulator in tumor cancer cells (Park et al.,
2011). Other reports revealed that BCPO has anticancer effects onMCF-
7 and prostate cancer cell lines through the indication of ROS
generation, MAPK activation, and inhibition of the PI3K/AKT/
mTOR/S6K1 signaling pathway, which is vital to cell survival,
proliferation, and angiogenesis of the tumor (Lo Piccolo et al., 2008).
Additionally, it significantly decreases key protein levels involved in
proliferation (cyclinD1), metastasis, angiogenesis (VEGF), and
apoptosis inhibitors Bcl-2 (B-cell lymphoma 2) and IAP-1/2
(inhibitor of apoptosis 1 and 2) (Ryu et al., 2012). Moreover, it was
reported that BCOP can exert pro-apoptotic activity in cancer cells
through a reduction in NF-κB as a key transcription factor in the
development of tumors through monitoring cancer cell proliferation,
tumorigenesis, angiogenesis, and metastasis (Sain et al., 2014), and it
regulated several genes implicated in cellular proliferation, apoptosis,
and inflammation. Furthermore, it was reported that α-humulene and
BCPO exhibited significant anti-proliferative activities against different
cell lines witnessed by their combination with BCP in decreasingMCF-7
proliferation compared to when used separately (Legault et al., 2007).
An observation that is in good agreement with our results is that leaves’
EOs exerted more potent cytotoxic effects than flowers’ EOs which may
be due to the absence of BCPO from the flower. Moreover, it was stated

that there is a possibility of a synergistic effect between the volatile
components in EOs instead of only one major component or isolated
compounds in modulating the cancer pathway. Additionally, it was
reported that the strength of the cellular response induced after
treatment with BCP(O) compounds differs significantly among
cancer cells, which was also figured out from our results.

4 Conclusion

Essential oils (EOs) from P. cattleianum leaves and flowers,
cultivated in Egypt, have been extracted by three different methods
and evaluated in terms of their chemical composition and biological
significance. The implemented extraction methods greatly affected the
yield, in addition to the qualitative and quantitative chemical
properties of the EOs. Supercritical fluid extraction (SFE),
represented an environment-friendly method and offered the
highest EO yield from both organs with minimal degradation
drawbacks, while the least yield was indicated by the conventional
hydro-distillation method. P. cattleianum EOs were superlative by
terpenoid hydrocarbons such as α-humulene, β-caryophyllene, and
germacrene B, while α-bisabolol and caryophyllene oxide represented
the major, identified oxygenated terpenes. The leaves’ EOs showed
potent, anti-inflammatory capacity via inhibiting the 5-LOX enzyme,
while the flowers inhibited the COX-2 enzyme. In addition, the leaves’
EOs induced apoptosis in the MCF-7 breast cancer cell line by
modulating the P53-Bax/Bcl2 axis. The observed promising
activities is, at least in part, due to the synergism between the
volatile components; hence, P. cattleianum-derived EOs may be
promoted as dietary supplements for the management of breast
malignancies and inflammatory disorders.
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