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This study proposed a technique to enhance the photocatalytic properties of TiO2

using graphene oxide (GO) and modified Montmorillonite (M-MMT). TiO2/GO/
M-MMT nano-heterostructured composites were prepared via hydrothermal and
co-precipitation. The photocatalytic performance was evaluated by investigating
the photodegradation rate and absorption behavior of methyl orange (MO) under
visible light irradiation. The results showed that TiO2/GO/M-MMT heterojunction
exhibited excellent photocatalytic degradation performance, as the degradation
rate of MOwas observed to be 99.3% within 150 min. The density of adsorbed MO
decreased by 62.1% after 210 min of dark adsorption using the TiO2/GO/M-MMT
composite, which was significantly higher than that achieved using M-MMT, GO/
M-MMT, and TiO2/M-MMT. The nano-heterostructure increased the effective
interface between TiO2, GO, and MMT, which increased the charge transfer ability
and prolonged the electron-hole separation time. Therefore, the results of this
study can be used to design novel photocatalysts to eradicate environmental
pollutants.
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1 Introduction

Environmental pollution engendered from rapid advancements in the modern chemical
industry has attracted the attention of researchers worldwide. Secondary chemical
contamination can be caused during the degradation of pollutants using chemical
methods (Laysandra et al., 2017). Photocatalytic degradation has been used to eradicate
organic pollutants from wastewater owing to its several advantages such as operation
simplicity, low cost and pollution-free nature (Lee et al., 2018; El-Kousy et al., 2020; Dao
et al., 2021; Liu et al., 2022).

Titanium dioxide (TiO2) is one of the most efficient photocatalysts used to produce
hydrogen owing to its low cost, high stability, corrosion resistance, and environmental
friendliness (Tao et al., 2020; Wang et al., 2021). TiO2 photocatalysts have been used for
industrial wastewater treatment using solar energy by converting the wastewater into non-
toxic chemical products without producing any other pollutants. However, because of the
wide band gap, TiO2 must be irradiated with ultraviolet light, which constitutes
approximately only 4% of visible light and provides low quantum yield (Wang et al.,
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2019). TiO2 activity can be enhanced by coupling it with other
semiconductors or doping with higher work-function metals (Yadav
and Ahmad, 2015; Umer et al., 2019; Yang et al., 2020; Xiang et al.,
2021; Li et al., 2022a; Dong et al., 2022; Jing et al., 2022; Xu and Li,
2022). Montmorillonite (MMT) is the most widely used material in
clay semiconductor nanocomposites owing to its layered structure,
high cation exchange capacity, excellent charge trapping ability, and
considerable adsorption potential for semiconductor particles
(Wang et al., 2011; Paiva et al., 2014; Sharma et al., 2018). Clay-
TiO2/MMT heterostructured composites can provide additional
number of sites for trapping photo-generated electrons, which
ultimately enhances the photocatalytic activity (Liao et al., 2022;
Wang et al., 2022). Additionally, graphene oxide (GO) can enhance
the catalytic effect of semiconductors (Joshi et al., 2020) and can be
used to provide electric carriers with more active attachment-sites
for photocatalysis. This enables a faster transfer of photoelectrons,
avoids accumulation because of its high electrical conductivity and
large specific surface area, thereby reducing the possibility of
electron-hole recombination. Liu et al. (2021) prepared N-TiO2/
GO photocatalyst via sol-gel and hydrothermal methods and
analyzed its adsorption performance for RhB.

Photocatalysis is a new, efficient and potential discovery. It uses
renewable energy to decompose organic pollutants by sunlight. At
present, the known photocatalytic materials are semiconductor
materials and polymer materials. In the past decade, polymer
photocatalysts have been developed rapidly, and many polymer
photocatalysts with catalytic activity have been found (Kumar et al.,
2021; Nadali et al., 2021; Yin et al., 2022). However, polymer
photocatalysts have limited photochemical stability, lack of
understanding of the reaction mechanism, balance between
charge carrier lifetime and catalytic time, and the use of
unsustainable sacrificial reagents (Tahir, 2017; Dao et al., 2021).
However, the photocatalytic performance of TiO2/GO/MMT
nanoheterostructured composite has not been reported thus far.
In this study, a TiO2/GO/MMT nanocomposite was synthesized via
hydrothermal and co-precipitation methods and the
photodegradation of methyl orange (MO) using the
nanocomposite was studied.

2 Experimental process

Modified MMT (M-MMT; 1 g) and cetyltrimethylammonium
bromide (CTAB; 1 g) (~1% of MMT mass) were added to distilled
water (200 mL) under ultrasonic conditions for 60 min. A certain
amount of GO [prepared via the modified Hummer method (Pu
et al., 2019)] was added to the M-MMT solution and stirred for 12 h
using a magnetic stirrer. The solution was kept idle at room
temperature for 24 h. Subsequently, the precipitates were washed,
dried, and grinded to obtain the GO/M-MMT composite.

CTAB and butyl titanate were weighed at a ratio of 1:2 (n(CTAB)/
n(Ti) = 0.5). The CTABwas then dispersed in 30 mL of distilled water
and butyl titanate was placed in a beaker. A certain amount of the
GO/M-MMT composite was added to the CTAB solution. After
stirring for 30 min, butyl titanate was dropped into the solution at a
rate of 0.5 drop/s using a dropper. After titration, the as-prepared
solution was poured into a reactor and hydrothermally treated at
180°C for 10 h. A white powder was obtained after filtration and

drying. The composite, TiO2/GO/M-MMT, was obtained by
calcining the powder at 300°C for 50 min in a muffle furnace.

The microstructure of the TiO2/GO/M-MMT composite was
analyzed via scanning electron microscopy (SEM) (JSM-7500F) and
X-ray diffraction (XRD) (Shimadzu 6100). The atom bonding
situation, specific surface area, and pore distribution of the TiO2/
M-MMT, TiO2/GO, and TiO2/GO/M-MMT composites were
measured using X-ray photoelectron spectroscopy (XPS)
(Shimadzu/Kratos Axis Ultra DLD) and the BET (ASAP 2460)
method.

The irradiation light power is 1380 W/m2. The wavelength range
of visible light is 400–760 nm. Visible light is used to study the
photocatalytic performance in the experiment. The rate of
photodegradation was tested using a 722S visible
spectrophotometer. The photocatalytic performance of the
composite was evaluated directly by measuring the change in the
rate of degradation MO. The initial absorbance of MO (denoted by
A0) without the catalyst before illumination was determined by
adjusting the wavelength. First, the suspension was stirred in dark
for 60 min to achieve an adsorption–desorption equilibrium, and
the solution was sampled every 20 min during the experiment. Next,
the samples were centrifuged for 5 min at a speed of 4000 rpm using
a high-speed centrifuge, following which the supernatant was
collected to measure the absorbance (denoted by A). The
following equation (Eq. 1) was used to calculate the degradation
rate (η).

η � A0 − A

A0
× 100% (1)

The composite (0.05 g) was placed in a MO solution (100 mL,
10 mg/L). The solution was irradiated with ultraviolet light and
stirred in a dark box for 40 min. After centrifugation, the absorbance
of the MO solution was measured at a wavelength of 460 nm. The
amount of MO adsorbed by the composite was calculated using the
following equation (Eq. 2).

qt � C0 − Ct( )V
W

(2)

where qt, V, andW represent the amount of MO adsorbed (mg/g),
initial volume of the MO solution (L), and the quantity of the
composite (g), respectively. C0 and Ct denote the initial density (mg/
L3) and the concentration of the MO solution (mg/L) at time t,
respectively.

The activity of TiO2/GO/M-MMT photocatalyst will be
evaluated by the change of methyl orange concentration and its
adsorption capacity. At the same time, the pseudo-first-order kinetic
equation will be given to further study the kinetics of photocatalytic
degradation, and the mechanism of photocatalytic degradation will
be discussed.

3 Results and discussion

Figure 1A shows the image of M-MMT, which displays a layered
structure. Figure 1B shows the morphology of the GO/M-MMT
composite. Several layers of the GO sheets are rough and wrinkled,
which might provide more active sites for other components (TiO2).
As can be observed from Figure 1C, several small and uniform TiO2
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particles are formed on the surface of M-MMT, which is expected to
improve the catalytic performance of the composite. The SEM
images of the TiO2/GO/M-MMT nanocomposite (Figure 1D)
reveals that several uniform-sized TiO2 nano-particles and
layered GO sheets are formed on the M-MMT surface.

The energy dispersive X-ray spectroscopy results for the TiO2/
GO/M-MMT nanocomposite (Supplementary Figure S1) reveal that
Al, Si, C, O, and Ti are distributed on the TiO2/GO/M-MMT
nanocomposite, indicating that TiO2, GO, and M-MMT form a
uniform compound structure. The composition of the composite is

illustrated further in the inset of Supplementary Figure S1B. The
amounts of O, C, Si, Al, and Ti are reported as 21.51%, 73.00%,
0.06%, 0.05%, and 5.38%, respectively.

The TEM images of TiO2/GO/M-MMT nanocomposites in
Figure 2A, GO is circled by the orange ring, M-MMT is circled
by the white line. The growth on M-MMT is TiO2, Which marked
with a red circle. In the figure, it can be seen that the large layer
M-MMT and TiO2 particles was tightly wraped with the film GO,
and the TiO2 particles with a diameter of 15–20 nm grow uniformly
on theM-MMT, which is consistent with the SEM in Figure 1D. The

FIGURE 1
Scanning electron microscope images of different specimen. (A) M-MMT; (B) GO/M-MMT; (C) TiO2/M-MMT; (D) TiO2/GO/M-MMT.

FIGURE 2
(A) The TEM images of TiO2/GO/M-MMT nanocomposites; (B) The HRTEM image of TiO2/GO/M-MMT composites.
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HRTEM image of TiO2/GO/M-MMT composites is shown in
Figure 2B, in which the lattice fringes of TiO2 and GO can be
clearly detected. The d spacing of GO is 0.38 nm, which is wider than
that of Graphene. The reason for this phenomenon is that oxygen
enters the interlayer of graphene, increasing the distance between
the surfaces of graphene. The d spacing of TiO2 is 0.35 nm,
corresponding to the (101).

The XRD patterns obtained for M-MMT, GO/M-MMT, TiO2/
M-MMT, and TiO2/GO/M-MMT are shown in Figure 3A. The XRD
patterns obtained for M-MMT display a weak diffraction peak near 7°,
which corresponds to the (100) characteristic diffraction peak of
M-MMT. In addition to the characteristic M-MMT peaks, the GO/
M-MMT spectrum displays an additional strong diffraction peak at 10°,
which corresponds to the (002) characteristic peak of GO. A weak
diffraction peak is observed in the TiO2/M-MMT spectrum at 25.5°,
corresponding to the (101) peak of TiO2. Diffraction peaks
corresponding to GO and TiO2 are observed in the spectrum of
TiO2/GO/M-MMT. The diffraction-peak intensity corresponding to

TiO2 is higher than that corresponding to TiO2/M-MMT, In TiO2/
M-MMT, the ratio of M-MMT is much higher than that of TiO2, the
grains are closely arranged in the same direction and the crystallinity is
better in the diagram, which makes the intensity of the M-MMT
diffraction peak is higher than that of others. The higher diffraction
peak shows that the TiO2 diffraction peak is very small. In TiO2/GO/
M-MMT composites, the addition of GOmakes it enter into the layered
M-MMT layers, which changes the distance between layers, so that the
diffraction peak of M-MMT becomes shorter and wider, and the
intensity of TiO2 diffraction peak increases after data normalization;
however, the peak at 25.5° shifts to a lower angle. Because the M-MMT
load is a lamellar structure, the layer spacing becomes wider because the
addition of TiO2 and GO enter the interlayer. According to the Bragg
equation 2dsinθ = nλ, the value of d increases and the value of θ
decreases. The diffraction peak ofM-MMT is relatively weak, indicating
that TiO2 is attached to the surface of M-MMT. In addition, the
diffraction peak of the composite is broadened. This could be because
TiO2 and GO entered the M-MMT interlayer via intercalation.

FIGURE 3
(A) X-ray diffraction patterns of different specimen with M-MMT, GO/M-MMT, TiO2/M-MMT and TiO2/GO/M-MMT; (B) Nitrogen adsorption and
desorption curve of different nanocomposite; (C) XPS full spectrum of TiO2/GO/M-MMT and high resolution XPS spectrum of (D) Ti 2p; (E)O 1s; (F) Al 2p.
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Figure 3B shows the specific surface area of the GO/M-MMT,
TiO2/M-MMT, and TiO2/GO/M-MMT nanocomposites. The
specific surface area of TiO2/M-MMT, GO/M-MMT, and TiO2/
GO/M-MMT nanocomposites were measured as 12 m2/g, 42 m2/g,
and 117 m2/g, respectively. The specific surface area of the TiO2/GO/
M-MMT composite is approximately ten and three times higher
than that of TiO2/M-MMT and GO/M-MMT, respectively. The
large specific area opened more number of ion-transportation
channels, resulting in a faster electron transport rate and more
number of adsorption active sites, thereby improving the
photocatalytic performance. Supplementary Figure S2 shows the
pore-size distributions of the GO/M-MMT, TiO2/M-MMT, and
TiO2/GO/M-MMT nanocomposites, which have average pore
sizes of 6.7, 9.2, and 13.4 nm, respectively. The average pore size
of the TiO2/GO/M-MMT nanocomposite is the highest, indicating
that the ion transport channels become wider, resulting in higher
electron transport rates and photocatalytic degradation rates (Kočí
et al., 2014; Mottola et al., 2022).

The characteristic peaks of Al, Si, C, Ti, and O are observed in
the XPS full spectrum of the TiO2/GO/M-MMT nanocomposite
(Figure 3C). The peaks of 458.6 and 464.4 eV observed in the Ti 2p
high-resolution spectrum (Figure 3D) can be attributed to Ti 2p3/2
and Ti 2p1/2, respectively, indicating that Ti bonded to oxygen and
exhibited a +4 valence in the composites. The O 1s peak is separated
and fitted as shown in Figure 3E. The peaks at 531.5, 532.0, and
532.5 eV correspond to the O–O, Ti–O, and Si/Al–O bonds,
respectively. The characteristic peak at 74.6 eV in the Al 2p XPS
profile (Figure 3F) represents the Al–O bond in M-MMT.

Figure 4A shows EIS Nynquist plots of different composites. Because
M-MMT is a natural mineral material, the conductivity is weak and the
slope is low. With the addition of GO and TiO2, the conductivity is
improved, and the slope is increased. In TiO2/GO/M-MMT
nanocomposites, due to the synergistic effect of GO and TiO2, the
separation of electron-hole pairs is accelerated and the lifetime of
photoinduced carriers is prolonged, thus enhancing the photocatalytic
activity. The conductivity is enhanced, and the slope value is gradually
close to 1, showing strong conductivity. Figure 4B shows the current-
potential curves of different composites. The area enclosed by the CV
curve is the activity of thematerial, and themore active the photocatalytic

performance is. The CV curve of M-MMT in the diagram is almost a
straight line, and the macroscopic performance is poor catalytic
performance. In GO/M-MMT and TiO2/M-MMT, with the addition
of GO and TiO2 to M-MMT, the activity gradually increased and the
reduction peak appeared. In TiO2/GO/M-MMT, the area is the largest,
the position of the reduction peak is the lowest, and the activity is the best,
indicating that its photocatalytic performance is the best.

Figure 5A shows the rate of degradation of MO using the
photocatalysts prepared in the study. The degradation test
conducted for 240 min reveals that the rate of degradation of
MO using M-MMT is only 15%. As the amounts of GO and
TiO2 increase, the rate of degradation of MO increases to 41%
and 79%, respectively. With the TiO2/GO/M-MMT nanocomposite,
the rate of degradation of MO is 99%, which is twice as high as that
achieved with GO/M-MMT. These results indicate that the TiO2

component plays an important role in the MO degradation process.
Figure 5B shows the adsorption performances of the M-MMT, GO/

M-MMT, TiO2/M-MMT, and TiO2/GO/M-MMT nanocomposites for
MO. After the visible-light illumination, the adsorption performance of
the composites TiO2/M-MMT and GO/M-MMT are superior to that of
M-MMT. The TiO2/GO/M-MMT nanocomposite exhibits the highest
adsorption capacity. The higher photocatalytic activity of the TiO2/GO/
M-MMT nanocomposite is attributed to the presence of the M-MMT
component, which improves the dispersion ability of the photocatalyst
and enhances the absorption capacity for photons andMOmolecules in
the composites. Further, the addition of TiO2 and GO extends the
response range for visible light, thereby effectively reducing the
recombination rate of electric carriers (Lin et al., 2020; Xiang et al., 2021).

The kinetics of the photocatalytic degradation was studied
further to investigate the mechanism of the photocatalytic
degradation. A pseudo-first-order kinetic equation is given in the
following equation (Eq. 3) (Sharma et al., 2018).

ln C0/Ct( ) � kt (3)
where k is the quasi-first-order reaction rate constant (min-1) and t
is the irradiation time (min).

Figure 5C shows the change in the concentration of MO after
adsorption using the different composites. For all composites, the
concentration of MO decreases after adsorption. The change in the

FIGURE 4
(A) EIS Nynquist plots of M-MMT, GO/M-MMT, TiO2/M-MMT and TiO2/GO/M-MMT nanocomposite; (B) Current−potential plots of different
nanocomposite.
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concentration of MO observed after adsorption achieved with the
M-MMT photocatalyst is small; however, the concentration
considerably decreases after adsorption achieved with TiO2/GO/
M-MMT. The TiO2/GO/M-MMT system can produce higher yield
of •O2-, which generate more other active species and sites.
Accordingly, the TiO2/GO/M-MMT composite had a high
photocatalytic performance with excellent stability and can be
recommended for removing the antibiotic compounds. The
concentration of MO with different adsorption times is fitted for
different photocatalysts, as shown in Figure 5D. The k value
estimated for M-MMT is observed to range from minimum to
zero, indicating a weak response to visible light. The k value for the
TiO2/M-MMT nanocomposite is higher than that of the GO/
M-MMT nanocomposite, indicating that the response time of
TiO2/M-MMT to visible light is longer than that of GO/
M-MMT. The degradation rate can be significantly increased
using a combination of the three components (the k value
increases). GO can reduce the space charge region of TiO2 and
induce its electric field to separate photogenerated carriers
effectively, which increases the photocatalytic activity. However,
when the space charge region becomes too narrow, the dopant
concentration increases and the recombination of photogenerated
carriers becomes faster (Lincho et al., 2021; Olea et al., 2021; Li et al.,
2022b).

According to experimental results explained above, the mechanism
of the photocatalytic degradation of MO using TiO2/GO/M-MMT is
proposed, as shown in Figure 6. When the MO dyes are irradiated with
visible light, the MO dyes become photosensitized and initiate the
photocatalytic process. Visible light is absorbed by the photosensitized

MO dye molecules, which excites the MO-dye electrons to a higher
energy level. Furthermore, the light-triggered electrons are transported
from the high-energy state to the conduction band of TiO2, and MO is
degraded by the active TiO2. Moreover, some electrons are transferred
from TiO2 to GO. Because the two-dimensional π-conjugated structure
in GO is the electron acceptor, this special structure can effectively
suppress the recombination between charges and carriers. The
recombination between the light-triggered electrons and oxygen
produces superoxide radicals (•O2-) (Tahir, 2017). MO dye
molecules are oxidized by these superoxide radicals to produce CO2,

FIGURE 5
Photocatalytic performance curve of different photocatalyst. (A) The photocatalytic degradation rate curve; (B) The adsorption capacity curve; (C)
Photodegradation concentration curve of MO; (D) Pseudo-first-order kinetic equation fitting diagram of different nanocomposite.

FIGURE 6
Photocatalytic degradation mechanism of MO by TiO2/GO/
M-MMT.
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H2O, and intermediates. In addition, the layered structures of M-MMT
enhance the adsorption capacity of the composites, which improve the
photocatalytic performance (Chen et al., 2018; Yang et al., 2019;
Foroutan et al., 2020; Mallik et al., 2021).

4 Conclusion

To promote the uniform dispersion of nano-TiO2 and improve the
adsorption capacity of the photocatalyst, TiO2/GO/M-MMT
nanocomposites were prepared. The main conclusions are as follows:

1) The interlayer space in the nanocomposites increased with the
addition of GO, providing more space for TiO2 to enter the
interlayer. The uniform nano-sized TiO2 particles were
distributed in the interlayer and on the surface of the TiO2/GO/
M-MMT nanocomposite, which formed ideal nanostructures.

2) The photocatalytic degradation rate of MO by the TiO2/GO/
M-MMT nanocomposite was up to 99.3%. The nanocomposite
exhibited a better adsorption performance, which conformed to
the pseudo-first-order kinetic equations.
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