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129I is a nuclear fission decay product of concern because of its long half-life
(16 Ma) and propensity to bioaccumulate. Microorganisms impact iodine mobility
in soil systems by promoting iodination (covalent binding) of soil organic matter
through processes that are not fully understood. Here, we examined iodide uptake
by soils collected at two depths (0–10 and 10–20 cm) from 5 deciduous and
coniferous forests in Japan and the United States. Autoclaved soils, and soils
amended with an enzyme inhibitor (sodium azide) or an antibacterial agent
(bronopol), bound significantly less 125I tracer (93%, 81%, 61% decrease,
respectively) than the untreated control soils, confirming a microbial role in
soil iodide uptake. Correlation analyses identified the strongest significant
correlation between 125I uptake and three explanatory variables, actinobacteria
soil biomass (p = 6.04E-04, 1.35E-02 for Kendall-Tau and regression analysis,
respectively), soil nitrogen content (p = 4.86E-04, 4.24E-03), and soil oxidase
enzyme activity at pH 7.0 using the substrate L-DOPA (p = 2.83E-03, 4.33E-04)
and at pH 5.5 using the ABTS (p = 5.09E-03, 3.14E-03). Together, the results
suggest that extracellular oxidases, primarily of bacterial origin, are the primary
catalyst for soil iodination in aerobic, surface soils of deciduous and coniferous
forests, and that soil N content may be indicative of the availability of binding sites
for reactive iodine species.
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1 Introduction

Radioiodine, a byproduct of nuclear power generation and weapons testing, poses a
threat to human health due to its propensity to accumulate in the thyroid and its ability to
release harmful beta (and weak gamma) particles. The significant environmental mobility of
the reduced iodine species, iodide (I−), together with the 16-Myr half-life of 129I, makes
remediation efforts to prevent the radionuclide from migrating outside of intended waste
storage facilities critical to maintaining public health and safety.

Inorganic iodide can be immobilized in soils in the form of bound iodine. Charged iodine
species can sorb to clays, hydrous oxides, and SOM can absorb I−, where sorption generally
increases with decreasing pH (Whitehead, 1974; Shetaya et al., 2012; Miller et al., 2015). Most
stable, soil-bound iodine in organic-rich soils is in the form of iodine covalently bound to
organic matter (OM), particularly aromatic and N-bearing groups (I-org) (Schlegel et al.,
2006; Franke and Kupsch, 2010; Xu et al., 2012; Xu et al., 2013). Formation of I-org in soils
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(i.e., soil iodination) is thought to proceed through a series of
undefined, complex transfer mechanisms whereby reactive iodine
intermediates, including molecular iodine (I2), hypoiodous acid
(HOI), and triiodide, react with electron donating groups of OM
(Rädlinger and Heumann, 2000; Reiller et al., 2006; Schlegel et al.,
2006; Franke and Kupsch, 2010; Xu et al., 2012). The abiotic
oxidation of I− to I2 or HIO occurs very slowly due to I− stability
under pH and Eh conditions generally found in soil environments
(Luther et al., 1995). However, multiple studies have shown that
microbes and/or microbial enzymes can improve the kinetics of this
reaction (Yeager et al., 2017a). Soil iodination has also been linked to
microbial processes. Autoclaving, fumigation, air-drying,
irradiation, heat treatments, and antibiotic applications have all
shown to decrease soil iodination with I− (Muramatsu et al., 1990;
Muramatsu et al., 1996; Johanson, 2000; Amachi et al., 2003;
Muramatsu et al., 2004), while addition of fresh soil was shown
to restore iodination potential in autoclaved soils (Muramatsu et al.,
2004). Soil iodination from iodide is also inhibited under anaerobic
conditions, suggesting that oxidases, or other O2-dependent
microbial processes, may be involved (Bors and Martens, 1992;
Fukui et al., 1996; Bird and Schwartz, 1997).

Laccases are multi-copper oxidases produced by a wide range of
organisms that perform a dizzying array of processes via one-
electron oxidation of substrates (Janusz et al., 2020). While the
most well-known source of laccase is wood-destroying white rot
fungi, laccases (and laccase-like multi-copper oxidases) are also
widespread among bacteria (Ausec et al., 2011; Bugg et al., 2011).
In soil fungi the most notable function of laccase is to breakdown
lignocellulose, while in bacteria their specific roles are often
speculative and include morphogenesis and pigmentation,
antibiotic production, spore protection, intercellular
communication, lignocellulose degradation, etc., (Bugg et al.,
2011; Janusz et al., 2020). While the redox potentials of laccases
are often too low to directly oxidize the non-phenolic linkages of
lignin (except for select high-redox-potential laccases of fungi), they
can catalyze the formation of radicals in low molecular weight
compounds, typically phenolics (e.g., vanillin, acetosyringone,
p-coumaric acid, 4-hydroxybezylic alcohol, syringaldehyde, etc.),
which then function as redox mediators that can oxidize linkages
and depolymerize lignin (Bourbonnais et al., 1998; Camarero et al.,
2005). Both fungal and bacterial laccases have been shown to oxidize
halogens, including iodide (Christiansen Jesper and Carlsen, 1991;
Xu, 1996; Suzuki et al., 2012). Though some bacterial laccases are
capable of directly oxidizing I−, more commonly the process requires
mediators (or at least is greatly enhanced in the presence of
mediators), such as 2,2′-azino-bis(3-ethylbenzothiazoline-6-
sulfonic acid) (ABTS) (Kulys et al., 2005; Ihssen et al., 2014;
Shiroyama et al., 2015; Yeager et al., 2017a).

Previous studies have implicated (per)oxidases (mostly laccases)
as catalysts of soil OM iodination under aerobic conditions via the
oxidation of I− (Shimamoto et al., 2011; Seki et al., 2013; Nihei et al.,
2018). The fraction of iodine existing as organic iodine (org-I),
measured by K-edge XANES and HPLC-ICP-MS, in depth profiles
(0–12 cm) of iodine-rich soils in the Yoro area of Chiba, Japan were
found to be correlated with laccase activity (Shimamoto et al., 2011).
In the most comprehensive study to date examining the role of
laccases in soil iodination, Seki et al. (2013) reported a strong linear
correlation (p < 0.001) between partition coefficient (Kd) values for

iodide and the specific activity of laccase in soils from two sites, rice
paddy and forest soils, that were treated without or with a series of
inhibitors (Seki et al., 2013). When they extended their analysis to a
set of six, untreated Japanese soils (light-colored Andosol, gray
lowland soil, sand-dune Regosol, dark red soil, humic Andosol,
brown forest soil), a weak correlation (R2 = 0.527; p = 0.102) was
observed between laccase activity and I− uptake. Addition of a
bacterial iodide oxidase (laccase-type enzyme) to the forest and
paddy soils strongly enhanced I− uptake and partially restored I−

uptake in autoclaved soils. In a study from the same research group,
it was found that fungal laccases could oxidize I−, but only in the
presence of mediators (Nihei et al., 2018).

Overall, there is strong evidence that microbial laccases can
stimulate soil iodination, but questions remain regarding the
prevalence of this process and to what extent it contributes to
soil iodination in natural soils. Additionally, the relative
contribution of different microbial groups (e.g., fungal vs.
bacterial) to soil iodination under aerobic conditions has not
been determined. The aim of this study was to 1) confirm that
soil oxidase activity contributes to 125I− uptake under aerobic
conditions in a collection of forest soils from Japan and the
United States, 2) determine if “laccase activity could be used
broadly as a proxy for iodide uptake capacity of different soils”
(Seki et al., 2013), and 3) explore the relationship between pH,
nitrogen and carbon soil content, andmicrobial biomass on biogenic
soil iodination.

2 Materials and methods

2.1 Soil physiochemical and biomass
analyses

A total of 20 soils were collected from forested sites in Japan and
the United States at depths of 0–10 cm and 10–20 cm after removing
surface debris and litter (Table 1). Field soils were frozen the day of
collection, shipped on dry ice to Texas A&MUniversity at Galveston
(TAMUG), where they were immediately sieved (2 mm) and stored
at −20°C for future analysis. Soil pH was measured using a bench
Oakton® pH/mv/°C meter (pH 510 series) in a 1:2.5 soil:water slurry.
Soil dry weight was determined after 48 h drying at 105°C. Soil water
holding capacity (WHC) was determined by saturating soil in a
Buchman funnel for 30 min, allowing the soil to drain for 16 h and
then drying the soil—the mass difference between wet and dry soils
was used to calculate the WHC. Soil carbon and nitrogen content
were measured using a Perkin Elmer 2400 Series II CHNS/O
Analyzer after acidification with 1 M HCl (Ryba and Burgess,
2002). Soil biomass measures were determined by phospholipid
fatty acid (PLFA) analysis carried out by MIDI Labs (Newark, DE).

2.2 Oxidase enzyme activities

To quantify oxidase activity in soils, we adapted the procedure
described by Bach et al. (2013). Soil (0.5 g) was added to a 100-mL
solution of either 50 mM sodium acetate buffer (pH 5.5) or 25 mM
maleic acid buffer (pH 7) and homogenized using a Waring blender
at 20,000 rpm for 1 min. Triplicate soil suspensions (200 µL) were
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then transferred to a 96-well plate. Assays were initiated by the
addition of 50 µL substrate (2 mM ABTS for assays conducted at
pH 5.5; 25 mM L-DOPA for pH 7 assays) to each well. Absorbance
was measured every 15 min at 420 nm (ABTS) and 460 nm
(L-DOPA) over 2.5 h at 25°C. Absorbance values of control wells
containing slurry without substrate and substrate without slurry
were subtracted from the slurry-substrate wells. Using the extinction
coefficients of 42 for ABTS (pH 5.5) and 8.9 for L-DOPA (pH 7), soil
oxidase activities (µmol h−1 g−1 soil) were calculated using the
following equation:

NetAbs × 100mL soil in buffer( )( )/ ExtCoeff µmol( )(

× 0.2mL sample in well( ) × time h( )
× drywt soil in buffer g( ))

2.3 125I soil uptake

To determine the iodine sorption capacity of soils, 0.5 g of
freshly thawed or autoclaved soils were added to 100 mL of
artificial freshwater (pH 7) (Xu et al., 2011) and homogenized in
a Waring blender at 20,000 rpm for 1 min. Samples (1 mL) of the
resulting soil slurry were transferred, in triplicate, to 1.5-mL

microcentrifuge tubes and incubated in the dark for 12 h at 25°C
with shaking at 150 rpm. The effect of various antimicrobials and
enzyme inhibitors on 125I uptake was tested by amending fresh soil
slurries with either 3 g·L−1 cycloheximide (antifungal), 3 g·L−1
bronopol (bacterial and fungal biocide), or 10 mM sodium azide
(oxidase and respiration inhibitor) during the 12 h incubation
period. After the 12-h incubation, 2 × 109 cpm/L sodium iodide
(125I) was added to each soil slurry and the tubes were incubated
under the same conditions for 24 h. The soil slurries were then
centrifuged at 15,000 x g for 15 min and a portion of the supernatant
(100 µL) was removed to measure 125I activity (cpm) using a
Beckman Coulter Liquid Scintillation Counter (Model No:
LS6500). Percent 125I uptake by soils was calculated by dividing
the 125I sorbed to the soil (calculated as the difference between the
total 125I amended initially and the residual 125I in the supernatant
after the incubation) to the total 125I activity amended initially.

2.4 Statistical analyses

Correlation coefficients between soil properties were calculated
using the Kendall-Tau rank correlation coefficient. Differences in
soil properties with respect to depth and forest type were examined
using the Mann-Whitney U test. Possible effects of sampling site on

TABLE 1 Soil metadata.

Sample Deptha Locationb Forest pH %C %N C/N

NTC10 0–10 NT Coniferous 5.2 6.2 0.39 16.0

NTC20 10–20 NT Coniferous 5.1 4.7 0.30 15.8

NTD10 0–10 NT Deciduous 4.7 6.3 0.48 13.1

NTD20 10–20 NT Deciduous 4.6 5.2 0.38 13.6

KAC10 0–10 KA Coniferous 4.6 14.8 0.55 26.7

KAC20 10–20 KA Coniferous 4.4 0.7 0.04 18.3

KAD10 0–10 KA Deciduous 4.1 3.3 0.37 8.9

KAD20 10–20 KA Deciduous 4.0 0.5 0.04 12.6

LAC10 0–10 LA Coniferous 4.9 2.0 0.09 21.6

LAC20 10–20 LA Coniferous 5.5 1.2 0.06 20.5

LAD10 0–10 LA Deciduous 6.0 4.5 0.36 12.5

LAD20 10–20 LA Deciduous 5.9 2.4 0.20 11.9

SRC10 0–10 SR Coniferous 3.9 1.0 0.02 43.0

SRC20 10–20 SR Coniferous 3.9 2.0 0.04 45.8

SRD10 0–10 SR Deciduous 4.4 7.5 0.44 17.1

SRD20 10–20 SR Deciduous 4.3 6.3 0.33 19.0

FUC10 0–10 FU Coniferous 5.7 21.2 1.16 18.2

FUC20 10–20 FU Coniferous 5.9 3.0 0.23 13.0

FUD10 0–10 FU Deciduous 5.9 9.7 0.75 12.9

FUD20 10–20 FU Deciduous 6.0 2.0 0.22 9.2

aSoils were collected from 0 to 10 cm or 10–20 cm below the surface after debris and litter had been brushed aside.
bLocation abbreviations: NT, Nishi-Tokyo, Japan; KA, Katano, Osaka, Japan; LA, Los Alamos, NM, United States.; SR, Savannah River Site, SC, United States; FU, Fukushima Prefecture, Japan.
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soil properties were explored using the Kruskal-Wallis form of one-
way ANOVA. Linear regression models were constructed for all
unique pairs of soil properties and multiple linear regression models
constructed for most permutations of potentially explanatory
properties. Finally, 2-component Principal Component Analysis
(PCA) was performed using all soil properties and iodide uptake
after standardizing all feature values to a mean of 0 and unit
variance. Mean iodide and oxidase activity values for each
sample (n = 3) were used for all analyses and categorial variables
were dropped prior to PCA analysis. Values used for statistical
analysis are provided in Supplementary Table S1.

Multiple testing correction was performed to minimize the
likelihood of false positives. Correction of p-values for
correlation, linear regression and multiple regression analyses was
performed using the Bonferroni method (Gelman et al., 2012;
Ranstam, 2016), which can yield adjusted p-values greater than
1.0, while all other analyses were corrected using the Benjamini-
Hochberg method (Benjamini and Hochberg, 1995). Comparisons
of soil properties with respect to sampling site, depth, and forest type
were considered as independent sets of tests for the purposes of
multiple testing correction. No pairing of samples was considered
for any analysis given our desire to detect differences that are distinct
from depth or forest-type variance within a single sampling site.
Only adjusted p-values are reported and an adjusted p-value cutoff
of 0.05 was used for determining statistical significance while
adjusted p-values between 0.05 and 0.10 were considered “near-
significant.”

General data processing was performed using Python version
3.9.10 (Van Rossum and Drake Jr, 1995), Numpy version 1.23.4
(Harris et al., 2020), and Pandas version 1.5.1 (McKinney, 2010; The
pandas development team, 2022). All statistical tests, except multiple
regression (Microsoft® Excel for Mac Version 16.67), were
performed using their implementation in Scipy version 1.9.3
(Virtanen et al., 2020) and PCA was performed using the pca
library version 0.1.0 (Erdogan, 2020) with feature standardization
performed using the StandardScaler from Sklearn version 1.1.3
(Pedregosa et al., 2011). Benjamini-Hochberg correction was
performed using the multipletests function in statsmodels version
0.13.2 (Seabold and Perktold, 2010) while Bonferroni correction was
performed using a custom routine. Visualization was performed
using matplotlib version 3.6.0 (Hunter, 2007) and Seaborn version
0.12.1 (Waskom, 2021).

3 Results

3.1 Soil chemical properties

Twenty soil samples (0–10 cm and 10–20 cm depths) collected
from deciduous and coniferous zones of 5 forested sites in Japan and
the United States (Location abbreviations: NT—Nishi-Tokyo, Japan;
KA—Katano, Osaka, Japan; LA—Los Alamos, NM, United States;
SR—Savannah River Site, SC, United States; FU—Fukushima
Prefecture, Japan) were analyzed for pH, %C, %N and biomass
(PLFA) (Table 1). Soils were acidic (mean, 4.95), and pH varied
significantly between sites (p = 0.037). SR soils had the lowest mean
pH (4.13) while FU soils had the highest mean pH (5.88). Across all
sites, soil pH did not vary as a function of forest type (coniferous,

pH 4.9; deciduous, pH 5.0; p = 0.791) or depth (0–10 cm, pH 4.9;
10–20 cm, pH 4.9; p = 0.970).

Although sampling location was not a significant factor for
either C or N content (p = 0.715 and p = 0.684, respectively) a range
of values were observed for these properties across samples. The
mean C and N content of the soils were 5.2% and 0.32% respectively
with FU soils possessing both the highest C (9.0%) and N content
(0.60%), while LA samples exhibited the lowest mean C (2.5%) and
SR samples the lowest mean N content (0.18%). N content was
nearly significantly different between soil depths (0–10 cm 0.46%;
0–20 cm 0.18%; p = 0.063); as was C content (0–10 cm 7.65%;
0–20 cm 2.8%; p = 0.063). There was not a significant effect of forest
type on C or N content (p = 0.613 and p = 0.442 respectively). The
C/N ratio, which averaged 18.5 across all samples, was significantly
higher in the coniferous soils than deciduous soils (means 23.9 and
13.1, respectively, p = 0.002). The SR coniferous soils collected at
both depths exhibited notably high C/N ratios (43.1 for 0–10 cm;
45.8 for 10–20 cm).

3.2 Soil biomass

The twenty soils were analyzed for biomass content using PLFA
and averaged 123.8 nmol total PLFA per g soil, ranging from
99 nmol·g−1 in SR soils to 151 nmol·g−1 in NT soils (Table 2). As an
example of extremes, SR coniferous soils samples collected from
0–10 cm and 10–20 cm contained an average of 24.4 and 33.6 nmol
total PLFA g−1 soil, respectively, while NT coniferous soils exhibited
257.8 and 50.9 nmol total PLFA g−1 soil in the 0–10 cm and 10–20 cm
samples, respectively. Bacterial PFLAs accounted for 89.1%–96.3% of
total biomass, fungal PFLAs accounted for 3.7%–9.3% of total biomass
and eukaryotic content less than 2.1% of total biomass. Although a wide
range of gram-positive and gram-negative content was observed in our
samples [gram (+): 11.1–81.7 nmol/g; gram (−): 8.4–120.7 nmol/g], all
but three samples (SR coniferous 0–10 cm, SR coniferous 10–20 cm,
and FUdeciduous 10–20 cm) displayed a higher abundance of gram (+)
biomass than gram (−). Actinomyces accounted for 10.5%–21.7% of
total bacterial biomass, with NT and FU deciduous forest soils having
the highest concentrations.

All soils displayed greater total biomass at surface to 10 cm
depth compared to the same soil’s 10–20 cm depth, except for the SR
coniferous soils. All classes of PLFAs were greater in the 0–10 cm soil
samples than those collected from 10–20 cm below the surface;
however, only fungi biomass was significantly different between
depths (0–10 cm 10.373 nmol/g; 0–20 cm 3.771 nmol/g, p = 0.047).
Nearly all other PFLAs measurements [i.e., total biomass, gram (−),
gram (+), and total bacteria] were near-significant with respect to
soil depth (p ≥ 0.063). Notably, Actinobacteria biomass was not
significantly different between soil depths (p = 0.150) and sample
site was not associated with any biomass measurement (p ≥ 0.196).

3.3 Soil oxidase activity

Scoping experiments were performed to determine the optimal
pH for ABTS and L-DOPA oxidation across the forest soil samples.
For ABTS pH values of 4.0 and 5.5 were evaluated, and for L-DOPA
we tested oxidation rates at pH 7.0 and 8.0. Additionally, 0.3%
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hydrogen peroxide was added to soil/ABTS or L-DOPA slurries to
determine peroxidase activity. Based on these experiments (data not
shown) soil oxidase activity wasmeasured using the substrates ABTS
and L-DOPA at pH 5.5 and pH 7, respectively. Addition of hydrogen
peroxide did not stimulate additional ABTS activity for most soil
samples tested and only resulted in a slight increase (<10%) for
L-DOPA oxidation rates in ~50% of the samples. Because peroxidase
activity was detected sporadically amongst the soil samples, and,
when detected, it contributed little to the overall rates of ABTS or
L-DOPA oxidation, we did not further examine peroxidase activity
in this study.

With both substrates (ABTS and L-DOPA at pH 5.5 and pH 7,
respectively), soils from sites KA, LA, and SR exhibited less oxidase
activity than soils from sites NT and FU (Table 3). The difference
was particularly pronounced using L-DOPA, where mean oxidation
rates ranged from 5–10 μmol·h−1·g−1 soil versus 29–32 μmol·h−1·g−1
for the NT and FU soils. These findings reflect that sampling site is
significantly associated with oxidase activity at pH 7 with L-DOPA
(p = 0.039) and near significantly associated with oxidase activity at
pH 5.5 (p = 0.069) (Figure 1). Soil oxidase activity did not correlate
with soil depth or forest type (coniferous vs. deciduous).

3.4 125I soil uptake

Iodine binding capacity of the soils was assessed with or
without several inhibitors of biological activity
(i.e., cycloheximide, antifungal; bronopol, bacterial and fungal
biocide; sodium azide, oxidase and respiration inhibitor;
autoclaving, kills cells/inactivates enzymes) (Table 4). While
each untreated soil displayed some ability to take-up the 125I−

tracer, they did so to varying degrees (1.0%–16.4% 125I uptake;
mean = 7.2%), with a near-significant association with sampling
site (p = 0.069) (Figure 1). On average, NT soils exhibited the
highest %125I− uptake (12.5%–14.4%). 125I uptake was also
pronounced in the FU 0–10 cm surface soils (16.4% and 11.5%
125I uptake for coniferous and deciduous forest soils,
respectively), and was >2 fold greater than uptake in their
paired 0–20 cm samples (6.1% and 5.3%). SR coniferous soils
sorbed >10 fold less 125I− (1%–1.3% 125I− uptake) than the NT and
FU surface soils. Notably, 125I uptake was not correlated with soil
depth (p = 0.150) or forest type (p = 0.791) across all samples.

Biological inhibitors affected the different soils’ abilities to take-
up 125I to varying degrees, with some inhibitors showing no

TABLE 2 Phospholipid fatty acid content of soila.

Sampleb Totalc Bacteria Fungi Bacterial taxa

Gram (−) Gram (+) Actinobacteria

NTC10 156.3 145.5 9.0 65.9 51.5 28.1

NTC20 78.7 74.5 3.5 31.9 25.8 16.8

NTD10 197.4 186.9 8.7 97.7 59.8 29.3

NTD20 172.7 164.1 6.6 81.4 52.6 30.1

KAC10 257.8 229.7 24.1 120.7 81.7 27.2

KAC20 50.9 48.0 2.4 22.1 18.2 7.7

KAD10 157.3 143.0 11.1 65.9 60.6 16.5

KAD20 45.6 42.9 2.2 18.8 17.2 6.9

LAC10 79.2 71.1 6.5 33.5 28.3 9.3

LAC20 42.6 40.4 1.7 18.5 13.9 7.9

LAD10 170.4 153.3 13.8 81.5 53.7 18.0

LAD20 125.3 116.3 6.4 55.3 43.3 17.7

SRC10 24.4 23.5 0.9 8.4 11.1 4.0

SRC20 33.6 32.0 1.5 12.2 14.3 5.4

SRD10 209.8 196.1 12.4 105.4 68.3 22.4

SRD20 127.1 120.0 6.4 64.4 40.9 14.7

FUC10 126.1 118.0 7.0 59.9 38.7 19.3

FUC20 92.6 87.8 3.9 37.2 32.8 17.8

FUD10 241.3 227.8 10.3 115.5 73.9 38.4

FUD20 86.2 82.0 3.2 30.7 32.6 18.7

aValues are reported as nmol of phospholipid fatty acids extracted per g of soil (dry weight).
bSample abbreviations are the same as in Table 1.
cTotal includes eukaryotic PLFA biomass, which is not shown.
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inhibition of 125I uptake while other showed nearly complete
inhibition of 125I− uptake, and some enhancing 125I− uptake
(Table 4). The antifungal agent, cycloheximide, exhibited the
least inhibitory effect on 125I− uptake. Except for four soils
(SRC10, 9%; SRC20, 31%; KAC20, 54%; KAD20, 80%),
cycloheximide treatment resulted in <25% change (i.e., inhibitory
effect as compared to the fresh soil without antifungal agent) in 125I
uptake. Interestingly, cycloheximide displayed a stimulatory effect
on 125I− uptake in half the soils tested.

Applications of the antimicrobial agent, bronopol, and the
oxidase and respiration inhibitor, sodium azide (NaN3), each
resulted in significant inhibition of 125I− uptake compared to
fresh soil controls, while autoclaving soils resulted in nearly
complete inhibition of 125I− uptake (Table 4). Bronopol inhibition
ranged from 7%–89% with an average inhibition of 61%; NaN3

inhibition ranged from 55%–99% with an average inhibition of 81%;
and autoclaving inhibited 125I− uptake from 79%–99% with an
average inhibition of 94%. KA, LA, and SR soils responded
remarkably similarly to the inhibitors, with inhibition ranges of
94%–97%, 71%–74% and 87%–92% for autoclaving, bronopol and
sodium azide treatments, respectively. The NT soils exhibited a
similar level of inhibition from autoclaving (98%), but slightly lower
inhibition from sodium azide (73%) and much lower inhibition
when using bronopol (22%). The inhibitors were generally less

effective in FU soils, with autoclaving, bronopol and sodium
azide resulting in 84%, 67%, 65% inhibition of 125I uptake,
respectively. Overall, these results provide clear evidence for the
dominant role of biological processes in 125I− uptake among
deciduous and coniferous forest soils, up to 20 cm depth, from
two continents.

3.5 Correlation of 125I uptake with soil
properties, biomass, and extracellular
enzyme activity

3.5.1 Kendall-Tau rank correlation
Kendall-Tau rank correlation was used to investigate the

intersection between measured soil properties, biomass,
extracellular oxidase activity and 125I− uptake (Figure 2). Most
soil property pairs exhibited some degree of positive correlation,
except for the C/N ratio which was negatively correlated with most
other properties (not shown, see Supplementary Table S2), most of
these correlations are not significant after multiple testing correction
and when disregarding comparisons between obviously linked
properties (e.g., bacterial biomass vs. total biomass, C% and
biomass, etc.). With regards to 125I− uptake, it was most strongly
correlated with N content (τ = .74, p = 4.86E-04), followed closely by

TABLE 3 Soil oxidase activitya.

Sampleb ABTS (pH 5.5) L-DOPA (pH 7.0)

NTC10 8.1 ± 0.1 19.4 ± 7.4

NTC20 5.8 ± 0.1 48.0 ± 2.5

NTD10 7.9 ± 1.0 31.4 ± 3.4

NTD20 5.3 ± 0.7 27.7 ± 2.8

KAC10 5.8 ± 3.6 8.3 ± 1.2

KAC20 0.8 ± 0.1 2.2 ± 1.7

KAD10 3.2 ± 0.4 8.2 ± 3.2

KAD20 1.2 ± 0.1 2.9 ± 1.9

LAC10 2.5 ± 0.5 8.0 ± 0.3

LAC20 0.6 ± 0.2 6.0 ± 1.4

LAD10 3.2 ± 0.3 9.0 ± 2.7

LAD20 4.2 ± 0.8 10.8 ± 2.1

SRC10 0.1 ± 0.1 3.8 ± 1.7

SRC20 0.8 ± 0.5 7.4 ± 2.3

SRD10 2.9 ± 1.0 13.5 ± 1.2

SRD20 5.0 ± 0.3 15.3 ± 1.6

FUC10 21.0 ± 0.4 33.3 ± 4.2

FUC20 8.5 ± 0.6 24.3 ± 2.4

FUD10 8.5 ± 2.2 34.7 ± 8.3

FUD20 3.7 ± 1.0 21.9 ± 1.3

aValues are reported as µmol of substrate oxidized per hour per g soil (dry weight) ± standard deviation (3 replicate measurements) rounded to one decimal place.
bSample abbreviations are the same as shown in Table 1.
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actinobacterial biomass (τ = .67, p = 6.04E-04) and ABTS and
L-DOPA oxidase activities (τ = .65 and .63; p = 5.09E-03, 2.83E-03,
respectively). A moderate correlation with C content (τ = .62, p =

1.26E-02) and bacterial biomass (τ = .55, p = 3.75E-02) was also
observed for 125I− uptake.

The strong correlation between Actinomyces spp. biomass and
125I− uptake is quite striking. A strong block diagonal correlation
structure is observed among total biomass, gram (+) biomass, gram
(−) biomass and bacterial biomass with τ′s > .91 and highly
significant corrected p-values. Interestingly, although Actinomyces
biomass is correlated with these other bacterial biomass
measurements, these correlations are relatively weak by
comparison with the largest τ of .73 observed between total
bacterial and Actinomyces biomass. Additionally, the other
measurements of bacterial subpopulation biomass are not
significantly correlated with iodide uptake suggesting that
Actinomyces contributes to this process in a manner distinct
from other bacterial subpopulations.

Oxidase activity was also significantly correlated with
Actinomyces biomass (pH 5.5, τ = .59, p = .0254; pH 7, τ = .58,
p = .0152) as well as C content (pH 5.5, τ = .58, p = .0270); however,
deciphering if this is a direct or indirect correlation is difficult given
the significant correlations between Actinomyces biomass, C content
and N content without orthogonal information.

3.5.2 Regression analysis
Linear regression was performed between all soil property pairs

which revealed multiple factors that exhibit some degree of a linear
relationship with 125I− uptake. Oxidase activity at pH 7.0 yielded the
highest explained variance with an R2 of .691 (p = 4.33E-04) followed
by oxidase activity at pH 5.5 (R2 = .617, p = 3.14E-3), N content (R2 =
.604, p = 4.24E-03), and Actinobacteria biomass (R2 = .552, p =
1.35E-02) (Figure 3; panels A, B, C and D, respectively). Although
the rank order of the R2 values does not perfectly correspond to the
rank order of the Kendall-Tau correlations, the overall patterns
remain similar. Notably, the NT samples consistently had higher
than expected 125I− uptake than expected by the regression models.
Because the NT samples were outliers, linear regression was
performed without these samples (Supplementary Figure S1). R2

values decreased somewhat for the correlation between 125I− uptake
and oxidase activity measured with L-DOPA at pH 7.0 (R2 = .616,
p = 0.024) or actinobacterial biomass (R2 = .526, p = .116). In
contrast, the R2 increased for the correlation between 125I− uptake
and oxidase activity measured with ABTS at pH 5.5 (R2 = .824, p =
9.27E-05) and the correlation with soil %N was exceptionally strong
(R2 = .930, p = 1.37E-07). In comparison, the R2 for the correlation
between soil %C and 125I− uptake when using the dataset minus the
NT samples was 0.775.

Multiple regression analysis of permutations of the potential
explanatory variables was also performed (Supplementary Table S3).
The results highlighted the importance of the measure of oxidase
activity, particularly using L-DOPA at pH 7.0, as the primary
explanatory variable with the full data set. When oxidase activity
at pH 7.0 was combined with one of the other top predictor variables
(e.g., C or N content, total biomass, actinobacterial biomass, oxidase
activity measured at pH 5.5 with ABTS), multiple regression analysis
yielded an adjusted R2 of 0.75 or higher (an adjusted R2 0.797, with
oxidase activity at pH 7.0 and %N as the explanatory variables, was
the highest two-factor correlation). Addition of other variables
measured in this study did not substantially increase the
goodness-of-fit with 125I− uptake. The highest adjusted R2 value

FIGURE 1
Extracellular oxidase activity and 125I uptake in soils. (A) ABTS
oxidation (µmol h−1 g−1 soil) at pH 5.5, (B) L-DOPA oxidation (µmol h−1

g−1 soil) at pH 7.0; (C) 125I uptake (%I uptake per mg dry soil, relative
units).
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obtained using 4 variables (oxidase activity at pH 7.0, oxidase
activity at pH 5.5, actinobacterial biomass, pH) was 0.826 and
the highest adjusted R2 was 0.857 with 9 variables
(Supplementary Table S3). When the NT samples are excluded
from the analysis, soil %N provided 93% of the explanatory power,
as discussed above. Including either L-DOPA, ABTS or
actinobacterial biomass measures with the %N data did not result
in a better fit; with all four variables a R2 of 0.953 (adjusted R2 0.936)
was obtained.

3.5.3 PCA analysis
2-Component PCA was performed using the standardized

values of all numerical properties (Figure 4). The two-component
model explained 78.3% of the dataset variance with the majority
explained by PC1 (60.9%). Samples with high iodine uptake
(NT and FU 0–10 cm) aggregate to the upper right corner of
the plot.

Highly correlated soil properties yield near-parallel vectors in
the biplot. The biomass measurements (except Actinobacteria
biomass) cluster towards the bottom right of the plot (vectors
8–12) while iodine uptake, oxidase activity and soil nitrogen and

carbon content cluster together towards the top right. Notably,
Actinobacteria biomass (vector 7, in bold) contributes almost
exclusively to the most informative principal component, PC1.
This finding, combined with our previous analyses, supports the
hypothesis that Actinobacteria biomass contributes in distinct
manner to the variance observed between these soil samples.
These trends remain largely unchanged when the NT samples are
dropped from the analysis (Supplementary Figure S2).

5 Discussion

Both fungi and bacteria have been shown to be capable of iodide-
oxidation (Yeager et al., 2017a; Nihei et al., 2018). In the current
study, the weak inhibitory effects of cycloheximide treatment, low
overall percentage of fungal biomass (mean, 5.3%), and poor
correlation between fungal biomass and 125I− uptake (τ = 0.45,
p = 0.37) indicated a relatively minor role for fungi in 125I−

uptake compared to bacteria in temperate forest soils. The four
soils in which cycloheximide exhibited a notable inhibitory effect
(i.e., >20% reduction in 125I− uptake) were also the soils with the

TABLE 4 125I uptake activity and effect of inhibitors in forest soils.

Samplea Fresh soilb Inhibitor treatmentc

Autoclave (%) Cycloheximide (%) Bronopol (%) Sodium azide (%)

NTC10 13.3 ± 0.7 2.9 112.3 92.8 34.4

NTC20 14.4 ± 0.6 1.8 99.1 76.0 19.4

NTD10 13.4 ± 0.1 1.9 100.1 67.3 30.2

NTD20 12.5 ± 0.3 1.8 106.6 76.4 24.0

KAC10 8.5 ± 0.7 2.5 97.6 42.9 11.9

KAC20 3.4 ± 0.4 6.3 54.0 17.0 17.3

KAD10 6.7 ± 0.4 4.0 93.2 26.6 7.0

KAD20 2.7 ± 0.2 3.3 79.9 25.2 15.3

LAC10 4.5 ± 0.3 8.5 84.3 14.8 0.9

LAC20 3.0 ± 0.2 6.0 95.0 19.6 1.0

LAD10 6.1 ± 0.4 3.3 101.5 33.1 12.1

LAD20 4.7 ± 0.2 5.5 108.5 36.0 18.9

SRC10 1.0 ± 0.1 7.1 9.1 11.1 14.1

SRC20 1.3 ± 0.1 2.4 31.0 18.3 16.7

SRD10 6.2 ± 0.9 1.1 116.8 64.7 5.2

SRD20 3.5 ± 0.7 0.6 113.0 22.7 7.4

FUC10 16.4 ± 1.9 21.0 90.9 33.2 39.7

FUC20 6.1 ± 0.2 12.1 123.5 39.8 45.4

FUD10 11.5 ± 1.2 15.3 104.5 35.1 35.1

FUD20 5.3 ± 0.1 16.0 105.5 24.0 21.1

aSample abbreviations are the same as shown in Table 1.
bValues are reported as % 125I uptake per mg of dry soil ± standard deviation (3 replicate measurements) rounded to one decimal place.
cValues are mean percent 125I uptake activity relative to fresh soils when treated with listed inhibitors.
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lowest N content (0.02–0.04 %N) and low overall biomass. Though
the percent fungal biomass among these samples (3.6%–4.7%) was
slightly lower than average across all sites, it is possible that fungi
play a larger role in soil iodination when N is extremely limiting,
excreting (per)oxidases to harvest N from difficult to degrade
substrates such as lignin (Wymelenberg et al., 2009; Zavarzina
et al., 2018). It is important to emphasize that the litter/humus
layer, where fungal activity dominates in forest ecosystems, was
removed from forest soils prior to collection in the current study. To
our knowledge, the extent to which fungal activity influences iodine
speciation within the litter layer has not been determined, though
org-I is found in this top level of the forest floor (Roulier et al., 2019).
Nor is it known (and our data cannot distinguish) if fungal laccases
secreted in the litter layer can percolate into the upper soil layer and
contribute to iodination.

The results presented here indicate that actinobacteria may play
an oversized role in soil iodination in some forest soils. First, 125I−

uptake was strongly correlated with actinobacterial biomass, but not
with other subpopulations [i.e., gram (+), gram (−), fungi] of
microbial biomass (Figure 2). Second, actinobacterial biomass
was the only PLFA biomass measure with a significant Kendall-
Tau correlation with oxidase activity (ABTS and L-DOPA)
(Figure 2). Third, PCA analysis showed that the actinobacteria
biomass acts distinctly with regards to soil properties, 125I−

uptake and oxidase activity relative to the other measures of
biomass (Figure 4). Fourth, amongst the measures of microbial
biomass determined, actinobacterial biomass was the only that,
when combined with other explanatory variables (e.g., %N, %C,
pH, oxidase activity), consistently improved goodness-of-fit for

multiple regression analysis of 125I− uptake (Supplementary Table
S3). Finally, it was observed that soils with the highest
actinobacterial biomass, NT soils, also had the highest mean 125I−

uptake, and for each of the other soils (FU, KA, LA, SR), the sample
with the highest iodide uptake was also the inter-site sample with the
largest Actinomyces content.

Members of the Actinobacteria are cosmopolitan, inhabiting
most ecological niches and are well known for their ability to
degrade complex polymers (e.g., lignin, cellulose, etc.) in litter
and soils (Štursová et al., 2012; Yeager et al., 2017b). Along with
typical three-domain laccases common in fungi, plants and insects,
bacterial also produce laccase-like multicopper oxidases with two
structural domains (Janusz et al., 2020). A unique class of these two-
domain bacterial laccases, SLACs (Small LACase), were first
discovered and are common in the Actinobacteria (Machczynski
et al., 2004) (Fernandes et al., 2014). SLACs exhibit several unique
properties that could set them apart with regards to I− oxidation in
soils. First, unlike some bacterial laccases, which are mostly present
intracellularly, SLACs are typically secreted and serve as
extracellular enzymes (Dubé et al., 2008). Second, they are active
over an unusually high pH range (mildly acidic to basic; fungal
laccases are typically optimal at pH 3.0–5.5) relative to other laccases
(Janusz et al., 2020). Third, they exhibit high thermo- and salt-
tolerance and are considered more resistant to denaturation than
typical laccases (Fernandes et al., 2014). Fourth, some are relatively
resistant to inhibitors, including sodium azide (Trubitsina et al.,
2015) (Fernandes et al., 2014). To our knowledge actinobacterial
SLACs have not been evaluated for I− oxidation. It is, however,
notable that the two well-characterized bacterial iodide oxidases,

FIGURE 2
Kendall Tau correlation matrix for measured properties, except C/N ratio, which is negatively correlated with nearly all soil properties, across all soil
samples. Correlations are marked significant at the 0.05*, 0.01** and 0.001*** levels (Supplementary Table S2 for raw data). Actinobact, Actinobacteria.
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IoxA from Roseobacter strain Q-1and Roseovarius strain A-2, both
share these traits (except for sodium azide resistance) (Suzuki et al.,
2012; Shiroyama et al., 2015).

The soils could be divided into two sets with regards to
oxidase activity, 125I− uptake activity, inhibition patterns and
actinobacterial biomass. Soils from sites KA, LA and SR
contained relatively low actinobacterial biomass (mean,
12–15 nmol actinobacterial PLFA g−1 soil; 13%–14% of the
bacterial biomass) compared to soils from sites NT and FU
(mean, 24–26 nmol actinobacterial PLFA g−1 soil; 18% of the
bacterial biomass). The KA, LA, and SR also soils exhibited lower
oxidase (mean, 3.4–3.8-fold lower) and 125I− uptake activity
(mean, 2.7-fold lower) than the NT and FU soils. Finally, the
inhibitory effects of autoclaving, bronopol and sodium azide on
125I− uptake activity acted similarly amongst the KA, LA, and SR

soils (Table 4). Autoclaving and sodium azide treatments were
less effective as inhibitors of 125I− uptake in FU soils, while
bronopol and sodium azide were less effective in NT soils.

Based on the inhibitor results, it is reasonable to hypothesize that
FU and NT soils exhibit enhanced 125I− uptake (relative to KA, LA,
and SR soils) for different reasons. Non-biological processes, such I−

sorption onto positively charged surfaces of Mn-, Al- or Fe-
oxyhydroxides or clay minerals (Whitehead, 1974; Shetaya et al.,
2012; Miller et al., 2015; Duborská et al., 2019) or I− oxidation
catalyzed by Mn-, Al- or Fe-oxyhydroxides (Fox et al., 2009; Shetaya
et al., 2012), could play a secondary role in our 125I− uptake
experiments, particularly in FU soils where ~15 of 125I− uptake
activity (%125I− uptake per mg of dry soil) remained post-autoclaving
(Table 4). Unfortunately, we did not have enough material from
several of the sites to determine metal-oxyhydroxide or clay content

FIGURE 3
125I uptake from forest soils correlated with (A) L-DOPA oxidation (pH 7.0), (B) ABTS oxidation (pH 5.5), (C) soil %N, (D) actinobacterial biomass. Oxidase
activity units are reported as μmol h−1 g−1 dry soil. Actinobacterial biomass reported as nmol PLFAs g−1 dry soil. Site locations are designated by color: NT,
red; KA, blue; LA, green; SR, black; FU, teal. Coniferous 0–10 cm, right side up triangle; Coniferous 10–20 cm, upside down triangle; Deciduous 0–10 cm,
right side up star; Deciduous 10–20 cm, upside down star.
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in all the soils. However, if this residual activity does represent
abiotic processes in the FU soils, then it could be subtracted from the
inhibitor values for cycloheximide, bronopol and sodium azide
treatments in this soil, resulting in levels of inhibition similar to
those of the KA, LA, and SR soils. Future work should investigate the
utility of using of Mn-, Al- or Fe-oxyhydroxides, clay content, or
other chemical/physical soil properties as additional explanatory
variables for 125I− uptake potential of soils.

The NT soils had the highest average actinobacterial biomass
and the highest oxidase activity measured using L-DOPA at
pH 7.0, but 125I− uptake was less susceptible to inhibition by
bronopol and sodium azide in these soils. Bronopol and sodium
azide would both inhibit general microbial activity through 1)
oxidation of thiol groups on proteins (Shepherd et al., 1988) and
2) inhibition of respiration (cytochrome oxidase poisoning)
(Lichstein and Soule, 1944), respectively, but only sodium azide
is recognized as a laccase inhibitor (Johannes and Majcherczyk,
2000). It is possible that stable, extracellular oxidases of
actinobacterial origin (i.e., SLACs) which are relatively
insensitive to sodium azide and active at higher pH (high
L-DOPA oxidase activity in NT soils at pH 7.0) are abundant
in NT soils and are active in 125I− oxidation. This scenario is
supported by the results of the regression analysis with and
without the NT samples. Without the NT samples, soil %N
explained 93% of the variance in 125I− uptake by the forest
surface soils, while soil %N only explained ~60% of the
variance for the full dataset. Amongst all the other
measurements examined, only actinobacterial biomass
(adjusted R2 = 0.652), and particularly, oxidase activity
measured with L-DOPA (adjusted R2 = 0.797) significantly

improved the goodness-of-fit between soil %N and 125I− uptake
when added as a second explanatory variable (Supplementary
Table S3).

The strong association between 125I− uptake and %N content
of the soils is notable. This association could reflect the link
between %N content and microbial biomass/activity, however, %
N was correlated to a much higher extent with 125I− uptake than %
C content or measures of microbial biomass, other than
actinobacterial biomass (Figures 2, 3). Additionally, oxidase
activity was correlated similarly with %N and %C, suggesting
that the %N-125I− uptake correlations were not simply a reflection
of increased oxidase activity. One of the more favorable routes of
soil incorporation into OM has been suggested to be through
iodine binding to aromatic rings at the ortho/para position to the
electron-donating group (e.g., amino group) of the aromatic ring
(e.g., in proteins or humic acids) (Xu et al., 2012). Thus, the
correlation between 125I− uptake and N content might represent a
combination of 1) the linkage between soil N content and soil
microbial activity and 2) the availability of functional N groups in
soil OM favoring covalent attachment of reactive iodine species.
It should be noted that we did not observe a statistically
significant correlation between C/N ratios and 125I− uptake
(τ = −0.17, p = 24.87).

Unlike sorption processes, where I− binding under aerobic
conditions decreases with increasing pH (Fukui et al., 1996;
Kaplan et al., 2000; Söderlund et al., 2017), a correlation
between soil pH and 125I− uptake was not observed in the
current study. The sum of biotic/abiotic processes promoting
org-I formation in these temperate forest soils were independent
of pH between 3.9 and 6.0. This does not imply, however, that

FIGURE 4
Actinobacteria biomass contributes to sample variance in a distinct manner. Two-component principal component analysis was performed on the
standardized, non-redundant, numerical features of the samples. The resulting model explained 78.4% of variance in the dataset, with the majority of the
explained variance contained within principal component 1. Samples with high iodine uptake aggregate in the upper right corner while samples from
coniferous forests tend to aggregate towards the left side of the plot along PC1. The contributions of each property to the PCAmodel is represented
in the biplot. Highly correlated features result in near-parallel vectors as seen with the non-Actinomyces biomass vectors (vectors 8–12) and chemical
properties vectors (vectors 1–6) clustering together. Actinomyces biomass, vector 7, contributes almost exclusively to the most informative principal
component and does not cluster with any other property. Similarly, the C/N ratio vector (vector 13) is distinct and may explain the aggregation of
coniferous samples towards the left of the plot.
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individual processes were not pH dependent. For example,
autoclaving had the least inhibitory effect on the FU soil
(FUC10) with the lowest pH—where I− binding to mineral
surfaces would be stronger. Additionally, pH is expected to
impact activity of potential iodide-oxidizing enzymes, with
fungal laccases performing better at lower pH (3–6) and
bacterial laccases, including SLACs, exhibiting maximal
activity in neutral and basic soils. It would be interesting to
further delineate the role of different laccase classes in soil
iodination across different soils and ecosystems.

Soil C% and N% followed the expected pattern with depth,
both were lower (4.6- and 3.9-fold lower, respectively; near
significant correlation for both) in the 10–20 cm samples, and
although, not significantly correlated with soil depth, 125I−

uptake also decreased with depth (1.7-fold less, on average).
It has been suggested that soil, rather than vegetation, litterfall or
humus, serves as the primary long-term reservoir of iodine in
forest ecosystems (Roulier et al., 2019). Since iodine can be
released from OM via degradation and under anaerobic
conditions (Muramatsu et al., 1990; Shimamoto et al., 2011;
Thiry et al., 2022), it is germane that microbial processes exist,
down to at least 10-20 cm in the soil column of temperate forests,
capable of promoting soil iodination under aerobic conditions.
In the top layers of forest floors, iodination preferentially occurs
with low molecular weight OM, some portion of which could be
highly mobile as dissolved or colloidal particles (Xu et al., 2011;
Söderlund et al., 2017; Roulier et al., 2022). As the OM ages and
moves downward in the soil profile, higher molecular weight
species or OM protected/bound to mineral surfaces will
constitute a greater fraction of the total, making it more
probable that free I− would bind to these less-mobile, more
refractory species. Therefore, as iodine moves down the soil
column, even in inorganic form, its mobility may decrease, given
there is sufficient OM available for binding and aerobic
conditions persist. This scenario is consistent with the
observation in many forests that the depth profile of iodine
concentration in soils is not simply a function of C content,
decreasing with depth, but rather iodine concentrations peak
5–40 cm below the surface (Xu et al., 2016; Roulier et al., 2018;
Yang et al., 2019; Epp et al., 2020; Pisarek et al., 2022). In
contrast to studies that have found differences in soil and humus
iodine concentrations as a function of forest type (Roulier et al.,
2019; Pisarek et al., 2022), we did not detect a difference in 125I−

uptake activity in soils collected under deciduous or coniferous
trees.

6 Conclusion

The results from the current study provide compelling evidence
that extracellular oxidases, most likely of bacterial origin, catalyzed
soil iodination in forest soil slurries amended with 125I− in short-
term assays (12 h). Autoclaving and treating soils with
antimicrobials and enzyme inhibitors (e.g., bronopol and sodium
azide) significantly inhibited 125I− uptake by soils, establishing that
microbial processes were responsible for the majority of 125I− uptake
in both deciduous and coniferous, temperate forest soils collected
from two depths (0–10 cm, 10–20 cm) at five sites on two

continents. Two lines of evidence indicate that extracellular
oxidases are the primary agents catalyzing 125I− uptake by the
forest soils. First, soil treatments with sodium azide led to a
significantly greater reduction in 125I− soil uptake than treatments
with the antimicrobial agents, bronopol or cycloheximide (mean
inhibition of 81%, 61% and 9%, respectively). Second, linear
regression analysis showed a stronger association between 125I−

uptake and soil oxidase activity than between 125I− soil uptake
and any measure of microbial biomass evaluated or rates of soil
respiration (R2 for basal or glucose-stimulated rates of soil
respiration vs. 125I− soil uptake was <0.035, data not shown). For
the first time soil iodide uptake activity was associated with a specific
microbial group, the actinobacteria, whereas fungi appeared to play
lesser role in iodide uptake by these soils. The expansive geographic
range, inclusion of different forest types and soil depths in this study
demonstrates that the observational correlation between laccase
activity and iodine uptake in previous studies (Seki et al., 2013;
Nihei et al., 2018) is common and widespread in forest soils. Going
forward it is possible that measures of soil N content and soil oxidase
activity (L-DOPA, pH 7) could be used in tandem to broadly predict
iodide uptake capacity of different surface soil samples. In cases of
high clay or metal oxyhydroxide content, especially in oligotrophic
soils, it may be necessary to include terms accounting for these
factors.
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