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The extraction of coal bed methane (CBM) by injecting CO2 into deeply buried

unmined coal seams in competition with CH4 adsorption to provide a clean fuel

is known as enhanced coal bedmethane recovery (ECBM) and has proven to be

an effective technological strategy to address global warming. The study of the

interaction of coal with CO2 and CH4 under multi-physical field conditions is

particularly necessary. In this work, a series of experiments were conducted on a

home-made test system to investigate the competing sorption patterns of high

and medium ash coal samples subjected to variables such as gas pressure,

temperature, nodulation and lateral limit constraints. The results show that

there is a sorption isotherm relationship between coal samples and exposure

time. The adsorption capacity sorption of CH4/CO2 varied considerably for

different ash coal samples. As the CO2 pressure increased from 2.3 to 5.5 MPa,

the strain on the coal samples increased from0.082 to 0.4%. The deformation in

the vertical laminae direction is always greater than that in the parallel laminae

direction. A correlation coefficient K exists between 1 and 2, and there is an

internal expansion pattern in the adsorption deformation of coal. This paper can

contribute to the improvement of ECBM efficiency.
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Introduction

In recent years, the demand for energy in China’s rapid economic development has

gradually increased. At the same time, for the need for sustainable development, clean and

efficient new energy sources such as coalbed methane and shale gas have been vigorously

promoted. After mining for the past few decades, the shallow coal resources are increasingly

exhausted, andmost of the coal seam is buried deep underground. For some coal seams that

do not have the mining conditions at the present technical equipment level, the method of

extracting the clean energy gas coalbed methane (CBM) by injecting the carbon dioxide

discharged from the industry to form competitive adsorption with the gas in the reservoir; It
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is called Enhanced Coal Bed Methane Recovery (ECBM). It has

proved to be an effective strategy to mitigate global warming.

However, the coal seam geology in China has a unique place, and

there is a solid regional nature, so most areas show the

characteristics of low pressure, low permeability, and low

saturation characteristics. Therefore, in addition to the Qinshui

Basin and the eastern margin of the Ordos Basin, it is not easy to

achieve large-scale industrial development in other areas.

Many Scholars have carried out a lot of theoretical analysis and

experimental research on coal permeability since the 1970s.

According to the current research results, coal seam

permeability is the main influencing parameter of coalbed

methane extraction rate. Various factors will also affect it; these

results are mainly concentrated in coal adsorption, gas pressure,

effective stress, temperature and so on. Under certain conditions,

Goodman, Larsen, Liu, and others found that the softening of coal

seam with gas adsorption may be caused by the change of coal

matrix gap structure in the adsorption process (Larsen, 2004;

Goodman et al., 2005; Liu et al., 2010). Hol, Wang et al. believe

that the permeability of adsorbed gases such as coalbed methane

and carbon dioxide is affected by pore properties and the

adsorption expansion effect (Hol et al., 2011; Wang et al., 2013).

Palmer described in his study that the expansion and deformation

of coal matrix induced by gas adsorption is a unique phenomenon

of coal, which has a significant effect on pore fractures and will also

affect coal seam permeability (Palmer, 2009).Many foreign scholars

also come to the consensus that with the adsorption/desorption of

gas in coal seams, coal seam expansion/shrinkage significantly

impacts reservoir permeability (Harpalani and Chen, 1995;

Seidle and Huitt, 1995; Chikatamarla et al., 2004; Kelemen et al.,

2006; Cui et al., 2007; Bustin et al., 2008; Pone et al., 2010). Under

constant pressure, Mazumder, Pan, Robertson, Wang, et al. found

that gas permeability adsorbed by coal expansion decreased when

pore pressure increased (Robertson and Christiansen, 2005;

Mazumder and Wolf, 2008; Pan et al., 2010; Wang et al., 2010),

Cui. Harpalani, Seidle et al. verified that when pore pressure

decreases, coal shrinks and adsorbs gas permeability increases

(Harpalani and Chen, 1995; Seidle and Huitt, 1995; Harpalani

and Chen, 1997; Cui et al., 2007). Battistutta, Day, Levine et al.

believe that coal’s expansion stress increases with pore pressure, and

the expansion stress is reversible (Levine, 1996; Day et al., 2008;

Battistutta et al., 2010). Palmer et al. proved that the permeability

decrease is due to the increase of pore pressure and the reduction of

effective stress under higher gas pressure (Palmer and Mansoori,

1996). Izadi et al. also confirmed that the decrease of permeability is

the dominant factor of adsorption-induced strain at low pore

pressure. The effectiveness decreases with the increase of pore

pressure permeability rebound (Izadi et al., 2011). In the late

seventies of the last century, Gawuga et al. studied the effect of

stable aerodynamics between coal and gas seepage (Gawuga, 1979).

Harpalani et al. studied the relationship between permeability and

stress of gas-bearing coal samples under compression (Harpalani,

1985; Harpalani and Mcpherson, 1985). Somerton et al. found that

the permeability of coal specimens decreases with the increase of

pressure, so the empirical formula between permeability and stress

(Somerton et al., 1975a) is established. At present, Durucan and

Edwards have different effects on the permeability of varying coal

samples, and the empirical relationship between permeability and

stress of coal samples is obtained (Durucan and Edwards, 1986).

Enever et al. found that by discussing the interaction mechanism

between permeability and effective stress of gas-bearing coal and rock

mass in Australian coal mines, There is an exponential relationship

between the change of coal seampermeability and the transformation

of in-situ stress. It is considered in the literature that the permeability

in raw coal can be regarded as an application function of effective

stress and pore pressure between fluids (Pomeroy and Robinson,

1967; Somerton et al., 1975b; Enever and Hennig, 1997; Pini et al.,

2009; Siriwardane et al., 2009; Liu et al., 2011a; Liu et al., 2011b;Wang

et al., 2011). Bae, Li et al. also concluded that permeability decreases

with the increase in temperature (Bae and Bhatia, 2006; Li et al.,

2010). Oldenburg believes that if the gas expands so that the

temperature drops by more than 20°, the temperature will hurt

permeability (Oldenburg, 2007). Long et al. injected N2, CH4 and

CO2 into coal and conducted coal permeability experiments at

different temperatures. It was found that the temperature change

had a significant effect on the permeability, but the direct relationship

between permeability and temperature could not be obtained (Long

et al., 2009). Considering the effect of effective stress on fracture

closure and pore pressure on matrix compression and promoting

fracture expansion and adsorption deformation, EP Robertson and

RL Christiansen established the stress-permeability model of pore

fracture binary elastomer (Robertson, 2005; Robertson and

Christiansen, 2006; Robertson and Christiansen, 2007a; Robertson

and Christiansen, 2007b).

Dai analyzed the molecular dynamics method of methane

and carbon dioxide’s absorption and diffusion properties at

different burial depths and found the competitive adsorption

relationship between methane and carbon dioxide (Dai et al.,

2021). Li believes that the adsorption mechanism of CH4 and the

competitive adsorption process between CH4 and CO2 still need

to be explored in the coal seam at the microscope level, especially

the water that hinders the adsorption isotherm of CH4, and the

salinity reduces the adsorption capacity of CH4 (Li et al., 2021). I

proposed that when the injection pressure is not higher than the

initial reservoir pressure, the deformation of the coal matrix is

mainly desorbed by CH4. When the injection pressure is higher

than the initial reservoir pressure, the deformation is desorbed

primarily by CH4, and the permeability increases in the early

stage (Zhao et al., 2021). Wang, though Studying competitive

adsorption characteristics of CO/CO2/CH4 multi-component

low concentration gases in coal. Under the same pressure, the

adsorption capacity of the desorption process is greater than that

of the adsorption process. In the adsorption state composed of

CO, CO2, and CH4, the gases restrict and influence each other,

showing competitive adsorption behaviour (Wang et al., 2020).

Zhou explored the effects of temperature and pressure on
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competitive adsorption and diffusion behaviour and concluded

that the adsorption capacity of CO2/CH4 increased with stress

but decreased with the rise in temperature (Zhou et al., 2019). Li

uses simulation results to increase the total pore volume,

porosity, and effective pore ratio of low-rank coal to high-

rank coal, increasing its adsorption capacity. At the same

time, the oxygen-containing functional groups on the pore

surface of coal selectivity of CO2/CH4 decreased with the

increase of coal grade (Li et al., 2019). By injecting N2 and

CO2 into the coupled thermal-hydraulic-mechanical (THM)

numerical model to enhance coalbed methane recovery

(CBM), Fan verified the competitive adsorption of ternary gas

in the THM field. The comprehensive action of air pressure and

ground stress led to the evolution of reservoir permeability (Fan

et al., 2020). Kang believes that the adsorption capacity and

overall adsorption heat of coal decrease, and the reduction largely

depends on the grade of coal (Kang et al., 2020). Liu found that

the adsorption capacity of coal to methane is related to the

content of vitrinite and inert body and the metamorphic grade of

coal (Liu et al., 2019). Chong regards kerogen as the

representative of organic matter. He finds that the cluster size

distribution analysis means a significant degree of discontinuity

in the micropores that adsorb carbon dioxide and methane.

In contrast, the micropores show continuity with adsorbed

water (Chong et al., 2021). Dutka believes that the degree of

coalification primarily affects decreasing adsorption capacity

(about 89%), while the impact of the geothermal gradient is the

second (Dutka, 2021). We found that the high surface roughness of

pore structure is related tomethane adsorption capacity. In contrast,

mesopore and macropore volume and specific surface area

positively correlate with ash yield and static content (Wei et al.,

2019). Cao believes that the sedimentary environment increases the

ash and mineral content of coal, fills the interlayer system, reduces

the porosity, and reduces methane storage capacity (Cao et al.,

2019).Wang andMenthe believe that ash yield affects pore structure

and coal permeability (Mendhe et al., 2017; Wang et al., 2018).

Mohanty observed a perfect correlation between the comprehensive

effects of ash,moisture, and carbon on the adsorption capacity of the

studied coal (Mohanty et al., 2018). Peng believes that high ash

content dramatically reduces coal’s adsorption and seepage capacity

(Peng et al., 2017). Chattaraj proposed that methane adsorption

capacity was positively correlated with carbon content and vitrinite

reflectance and negatively correlated with water, ash, and volatile

matter (Chattaraj et al., 2019). Zhang and Ren also put forward a

similar point of view: ash’s output affects adsorption performance

(Ren et al., 2019; Zhang et al., 2020). Zeng studied the relationship

between cleat, volume compressibility, and effective horizontal

stress (Zeng and Wang, 2017). Niu has proved through a series

of experiments that the permeability is anisotropic, manifesting in

the permeability in parallel bedding plane direction is more

significant than that in the vertical bedding plane direction

(Beucher and Meyer, 1993; Niu et al., 2018; Niu et al., 2020).

From the above review of literature results on reservoir

properties for coal, significant discrepancies have been identified.

Laboratory measurement of these reservoir properties requires test

coal samples, but some chose tectonic coal, and others used core

samples. Experimental results of the tectonic coal body in the

laboratory are larger than intact coal, contrary to the field results.

Moreover, they always focused on the specific study of a particular

factor. At the same time, confining pressure and temperature are hot

topics and attract more people. Most people use the method of

numerical simulation to discuss the possible relationship of

competitive adsorption. However, few people have researched

cleavage and constrained adsorption. To better understand the

competitive adsorption relationship between CO2 and CH4 under

different geological conditions, a comparative experiment was

carried out in a self-made coal and gas adsorption-expansion

deformation microscopic observation device. The competitive

adsorption relationship of gas pressure, temperature, joint,

constraint, and other variables to different ash coal was analyzed

using the difference in adsorption-induced expansion.

Experimental materials, system and
method

Experimental materials

The coal samples used in the experiments are core drill coal

from the seam and will crush into raw. Which collected from the

FIGURE 1
Experimental coal samples are collected and stored in the field.
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rom the Yutianbao Coal Mine (Nantong Mining Company of

Chongqing Energy Group) and Binlang Coal Mine (Dazhu Coal

Power Group Co., Ltd. of Sichuan Province),.China, as shown in

Figure 1.

The coal components, including moisture (Mad), ash (Aad),

volatile (Vad) and fixed carbon (Fc), were measured by infrared

rapid coal quality analyzer. The results are shown in Table 1.

According to the ash classification standard, the Yutianbao coal

sample belongs to the medium ash coal sample, and the Binlang

coal sample belongs to the high ash coal sample.

Experimental system

Unlike the traditional strain measuring device, we develop a

piece of experimental equipment that can use accurate optical

direct observation instead of the tedious strain gauge to obtain

the time-varying adsorption expansion of coal, as shown in

Figure 2, to realize the loading of stress at the end. The stress

or displacement constraint adsorption experiment makes the test

environment closer to the field situation. It has the advantages of

a simple experimental procedure and a cheap test device. The

specific description of the equipment is in the previous works of

Zhang and Huang (Zhang and Huang, 2016).

Experimental schemes

The coal samples (medium ash and high ash) taken from the

previous site were broken and then processed into cuboid

specimens of 3.5 mm*3.5 mm*7 mm to carry out experiments.

The experiment was divided into two groups: no side limit and

side limit. Each group of experiments were filled with CH4 and

CO2 gas to carry out the adsorption experiment, and the input

TABLE 1 Coal component test results.

Coal smaples Moisture (Mad%) Ash (Ad%) Volatile (Vd%) Fixed carbon (FCd%)

Yu’s 0.90 16.67 16.65 66.43

Bing’s 1.74 36.03 21.76 40.47

FIGURE 2
A new device for measuring adsorption-induced strain.
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gas pressure was 2.3, 3.4, 4.1 and 5.5 MPa in turn, and the

temperature in the test chamber was kept at (20°C, 30°C, 40°C) by

heating the water tank with heating rod. In the course of the test,

rely on the test system, continue to take photos to record the

volume changes of coal samples.

Information extraction technology of
adsorption expansion based on digital
image technology

From the knowledge of physics, we know that when a

substance is subjected to a set of forces or is changing its

states, such as a change in temperature, a change in water, or

a chemical reaction, it changes size or shape. Will deform (see

Figure 3), and the following equation can express its areal strain.

Where a is the original length of the coal sample in the x

direction, Δa is the length change, b is the original length of

the coal sample in the y direction,Δb is the length change, A is the

initial area, and ΔA is the area change.

εareal � ΔA
A

� (a + Δa)(b + Δb) − ab

ab
� aΔb + bΔa + ΔaΔb

ab

� εxx + εyy + εxxεyy (1)

The test sample is placed in the test device shown in Figure 1

with the help of a high-speed camera, we can arbitrarily obtain an

image of a frame in the whole experiment, as shown in Figure 2.

The obtained image was imported into Matlab program, and

after binarization, the overall contour extraction of the whole coal

sample is achieved by using the output result of the watershed

algorithm (Xiong et al., 2020; Qi et al., 2021) (see Figure 4). We

binarization each image just like Figure 5.

For a sequence of images, the difference between the two

images can be obtained intuitively by comparing and calculating

FIGURE 3
Deformation of a material element normal deformation.

FIGURE 4
Real-Time State Image of Coal sample at a certain time.

FIGURE 5
The result of watershed method for coal sample image.

FIGURE 6
Image difference between i second and j second shows.
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each pixel one by one. The difference between the two images is

helpful for us to highlight the appearance difference and predict

the trajectory of shape change (see Figure 6).We can describe this

process with the following equation. Any image can be defined as

a discrete two-dimensional array f (x,y). Each element in the

matrix is called a pixel, where x and y are spatial coordinates.

When the difference between the image value of the i second and

the j second is outside the given threshold (Tg), we think that the

point has shifted. And the point is defined as a white pixel point

(a point equal to 1) by binary transformation (d (x,y)). Where 0 is

a black pixel.

dij(x, y) � { 1,
∣∣∣∣∣f(x, y, ti) − f(x, y, tj)∣∣∣∣∣>Tg

0,Other
(2)

We calculate the area of each white pixel area in the output of

the previous image difference comparison and then sum the area

(see Figure 7), and the real-time strain data during the

experiment can be obtained by Eq. 3. P is the Areal Strain, %.

P � ε(M)areal � ∑areasi
Areas0

(3)

Analysis of influencing factors of gas
adsorption-expansion deformation
of coal with different ash content

Analysis of experimental results of the
adsorption-induced strain of coal samples
with different ash content

From Figure 8 and Figure 9, we can find that the adsorption

strain has an adsorption isotherm relationship with the reaction

time, and Robertson has seen a similar result in his work. He

believes that the experimental results can be fitted by the

Langmuir equation:

εA � εAmaxT

TL + T
(4)

Among them, εA is the observed surface strain, also equal to
ΔA
A in Eq. 1, εAmax is the maximum strain-time constant, c

represents the maximum strain produced by gas adsorption

when the adsorption time is infinitely long at a given

temperature and pressure. The time constant (TL) corresponds

to the time required to reach half of the maximum strain value; T

is the time at which the sample adsorbs under certain adsorption

conditions (pressure, gas, temperature), which can be predicted

that the observed strain (εA) should be equal to the maximum

strain (εAmax) when the adsorption time is infinitely long.

The Lagergren quasi-first-order rate equation is based on the

solid adsorption capacity. It can also be applied to themost common

equation of adsorption kinetics of fluids. In the adsorption process, it

is assumed that the rate (dεAdt ) is proportional to the difference

between the adsorption strain at time (t) and the adsorption

expansion strain (εAmax − εA). Defining k as a proportionality

constant, we obtain the following equation

dεA
dt

� k*(εAmax − εA) (5)

Where εA and εAmax are the adsorption strain at a time and

adsorption equilibrium, k is the first-order adsorption kinetic

constant, assuming that when t = 0, εA � 0; and when t = t,

εA � εAmax. After sorting out Eq. 4, we get the following equation:

εA � εAmax(1 − e−kt) (6)

The following figure shows the comparison between the

fitting results of the Langmuir model and Lagergren model

and the experimental results by using the output data of CO2

and CH4 adsorbed by coal samples. It is found that both models

can well describe the process of gas adsorption by coal samples.

However, the Lagergren model has a better correlation with the

results of fitting the adsorption of CO2 on coal samples

(Figure 10, Figure 11).

Figure 12 shows the experimental results of adsorption-

induced strain at different gas pressures of two groups of

experimental materials. It can be seen from the figure that

both the adsorption in CH4 and the adsorption in CO2, The

adsorption strain junction of medium ash coal sample is always

higher than that of high ash coal sample. There is no significant

difference in strain results between the two at low pressure.∣∣∣∣εMiddle Ash Coal,2.3MPa,CO2 − εHigh Ash Coal,2.3MPa,CO2

∣∣∣∣
� |0.823% − 0.741%| � 0.082%,∣∣∣∣εMiddle Ash Coal,2.3MPa,CH4 − εHigh Ash Coal,2.3MPa,CH4

∣∣∣∣
� |0.171% − 0.152%| � 0.019%

FIGURE 7
Feature extraction from differential images.
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However, when the gas pressure reaches 5.5MPa, the

adsorption-induced strain of CO2 in the medium ash coal

sample is 1.411%, which was significantly higher than those

of high ash coal samples under the same conditions

(1.02%). At the same time, according to the trend of

Langmuir curve fitting results in the figure, the

difference will increase significantly with the increase in

gas pressure.

FIGURE 8
Results of time-dependent strain variation of ash coal filled with CH4 adsorption surface.

FIGURE 9
Results of time-dependent strain of ash coal filled with CO2 adsorption surface.
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Referring to the experimental results of particle size analysis

of broken coal in Yutianbao Mine and Binlang Mine carried out

by Luo (2016), Luo et al. (2016) it can be seen that there is little

difference in the total pore volume between medium ash coal and

high ash coal. The average values are 5.319mm3/g and

6.103mm3/g, respectively. However, the volume percentage of

transition pores in medium ash coal samples is higher than that

in micropores and mesoporous samples, accounting for about

70% of the total pore volume. Moreover, the surface area

increases gradually with the decrease of particle size class. The

surface area of coal particles with a particle size smaller than

0.075 mm is the most significant (Dai et al., 2021; Li et al., 2021).

The results show that the adsorption capacity is also related to

excessive pore volume, micropore volume, and specific surface

area. The correlation coefficient is higher than excessive pore

volume and specific surface area. The active specific surface area

of adsorbed gas molecules increases, resulting in a significant

increase in coal’s methanolic capacity, so coal’s adsorption

capacity increases rapidly. At the same time, high ash content

blocks some micropores, decreasing the active specific surface

area of CH4 and CO2 gas adsorbed by coal, reducing Langmuir

volume and decreasing the adsorption capacity.

With the help of the coal expansion information extraction

program, the recognition, extraction, and statistics of dependent

data in x and y directions can be realized. Taking the CH4 and

CO2 adsorption-induced strain results of medium ash coal

samples at different pressures (see Figures 12, 13), the strain

results are counted according to x and y directions, respectively.

According to the recording mark before coal sample processing,

the vertical and parallel bedding directions correspond to each

other.

It can be seen from the diagram that the results of

adsorption CH4 induced strain of coal samples are very

different in the vertical bedding direction and the parallel

bedding direction. The adsorption-induced strain in the

vertical bedding direction is more significant than that

parallel to the bending direction. With the gas pressure

increase, the adsorption-induced strain in the vertical

bedding direction is more significant than that in the

parallel. The ratio of the two remains in the range of 2:1.

However, the vertical and horizontal ratio of CO2-induced

FIGURE 10
Comparison of fitting curves of medium ash coal filled with
CH4 adsorption strain data with time.

FIGURE 11
Comparison of fitting curves of ash coal filled with CO2

adsorption strain data with time.

FIGURE 12
Comparative diagramof adsorption strain results of two kinds
of coal samples in the direction of straight bedding and parallel
direction of bedding with the change of input pressure of CH4.
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strain on coal samples ranged from 1.35 at 2.3MPa to 1.08 at

5.5MPa, which was close to the increase of gas pressure.

Therefore, the adsorption-induced strain in different

directions is different for different gases.

Robyn et al. observed similar results in their work. The

adsorption process is anisotropic, and the adsorption-induced

expansion in the direction perpendicular to the layer surface is

more massive than that parallel to the layer surface. Although the

samples are entirely different, on average, the expansion in the

vertical coal sample direction is 20–40% higher than that in the

parallel coal sample direction (Fry et al., 2009; Zhao et al., 2021).

Stuart et al.’s experimental data are only aimed at the adsorption-

induced strain of coal in carbon dioxide. The anisotropic

expansion model established by the model shows that when the

pressure is greater than 6 MPa, The strain result parallel to the

bending direction is about 60% (Day et al., 2008) of the strain

perpendicular to the bending direction. Hol et al.’s data show that

the elastic modulus is more significant in the direction parallel to

the lamination plane (Hol et al., 2011). Saghafi et al. found that the

diffusion rate parallel to the bedding is 70–90 per cent faster than

that perpendicular to the litter (Saghafi et al., 2007; Wang et al.,

2020).

The reason for the results of the appeal experiment is that in

the process of the formation of cracks in the coal matrix, their

direction is controlled by the tectonic stress, the plane joints are

parallel to the maximum compressive stress, and the end joints are

divided into groups of vertical and plane joints, which are

discontinuous and rough. The anisotropic orientation

distribution of the macerals (that is, their preferred orientation

parallel to the bedding), coupled with the composition

stratification of the material, leads to the anisotropic strength

and various swelling characteristics so that the microcracks are

parallel to the bedding. The expansion mechanism of coal is

mainly the adsorption expansion of coal and the compression

of gas pressure, and the compression effect of gas pressure on coal

is independent of the type of gas. Therefore, regardless of the kind

of gas, the three-dimensional expansion in space should be the

same for a given amount of absorption. However, the same

extension corresponds to a different expansion space, resulting

in the observed behaviour.

Therefore, the surface strain can be characterized by the

following equation:

εA � ΔA
A

� (lper + Δlper) × (lpar + Δlpar) − lper × lpar

lper × lpar

� εper + εpar (7)

Where εper,Area � Kgas with pressureεpar,Area, Kgas with pressure is

defined as the ratio of fracture plane joints to end

joints, Kgas with pressure ∈ [1, 2]

Analysis of experimental results of
adsorption-induced strain in different
temperature environments

To compare the effects of different temperature

environments on the adsorption-induced strain experiments

of coal samples, according to the previous experimental

results, the laws of the two kinds of coal samples have been

FIGURE 13
Comparative diagram of adsorption strain results of two kinds
of coal samples in the direction of straight bedding and parallel
direction of bedding with the change of input pressure of CO2.

FIGURE 14
CH4 adsorption strain results when coal sample varies with
experimental temperature.
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found to save time and experimental consumables. The

adsorption-induced strain experiments of medium ash coal

samples at different temperatures at 20°C, 30°C, and 40°C

were carried out in CH4 and CO2 adsorption environments

under 2.3 MPa gas pressure. The experimental results are

shown in Figure 14 and Figure 15.

It can be seen from the diagram that the adsorption-induced

strain of the coal sample is negatively correlated with the

temperature. When the temperature increases from 20 to

40°C, The maximum strain of adsorption equilibrium of coal

samples in CH4 and CO2 decreases slightly (0.012%, 0.084%,

respectively), so the ratio of temperature to strain can be

expressed as a linear function of temperature:

T

εT
� f(T) � aT + b (8)

Where T is the temperature, εT is the strain value at T degrees

Celsius; a, b is the constant related to the temperature function,

their fitting results are shown in Table 2

Although the strain value of coal samples decreases with the

increase of temperature in the CH4 and CO2 gas environment,

there are different downward trends, which can be characterized

by constant a. The difference between the two constants is closely

related to the boiling point of the gas, and it is generally believed

that the gas with a high boiling point has more robust adsorption

properties. In the figure, the adsorption-induced strain results of

coal in CH4 and CO2 adsorption gases at different temperatures

show a slight decrease with the increase in temperature. It can be

regarded as the effect of partial adsorption gas desorption on the

surface tension of the coal matrix in dynamic equilibrium and the

competitive coupling result of thermal expansion and desorption

shrinkage.

Adsorption expansion experiment of coal
under constrained conditions

The experiments in the previous section are all carried out

under unconstrained conditions. According to Liu and Chen,

many experimental results are compared with the field test

results. The free expansion condition and the constraint

condition in all directions represent the upper and lower

bounds of the permeability evolution model. The field results

are more consistent with the constant volume condition results,

that is, the displacement constraint condition in all directions

(Liu et al., 2011b; Chen, 2012; Zhou et al., 2019).

Due to the limitation of test conditions, we can not complete

the complete displacement constraint test. Therefore, we make

the following assumption; if the loading mode is assumed to be

two extreme cases, then it can be regarded as an unconstrained

adsorption induction experiment compared with an adsorption

induction experiment with displacement constraints, as shown in

Figure 16.

As shown in Figure 16, it is assumed that the coal matrix

frame in the coal sample can be seen in space as a separate block

thoroughly segmented by penetrating fissures, with a horizontal

section as shown in Figure 16A. For the unconstrained model,

because the pore pressure is equal to the given ambient gas

pressure in the adsorption equilibrium, the adsorption-induced

expansion of the coal matrix will only lead to the development

of the block. However, it will not change the space size of the

cracks in it. Therefore, the adsorption-induced strain of the coal

matrix at this time will not affect the permeability of the fissure.

At the same time, the image result is output through the

development of the coal gas adsorption-expansion

deformation microscopic observation device appealed. The

expansion of coal and rock that we have observed is shown

in Figure 16B. It should be a steady expansion in three

directions and processed by adsorption expansion

information extraction technique. The experimental results

are shown in Figure 16C.

However, when XYZ’s omnidirectional external

displacement constrains the coal sample, we think the coal

matrix is a pore elastomer. Then the same expansion will be

wholly transformed into increasing the internal fracture space

and squeezing the interior fracture space. We can call it an

FIGURE 15
CO2 adsorption strain results when coal sample varies with
experimental temperature.

TABLE 2 Strain-temperature fitting constants of coal samples for
different adsorbed gases.

Gas type Temperature relation constant

A B

CH4 6.561 -17.592

CO2 1.49 -5.493
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“internal expansion” phenomenon. For the fully constrained

model, the expansion strain will promote the change of coal

permeability. For the fully constrained model, the optical

observation device cannot penetrate the metal and coal body to

observe the real-time change of the internal fissure space due to the

adsorption “internal expansion” process. Therefore, we only realize

the displacement constraint in the x-direction through the metal

block on the x-axis, as shown in Figure 17A. The stiffness of the

metal limit block is much higher than that of the coal body. In the

adsorption expansion under constrained conditions, the expansion

amount which should belong to the x-direction will be wholly

transformed into “internal expansion.” When the adsorption

equilibrium is reached, This internal expansion will completely

seal the interior fracture space while affecting the expansion in the

y-direction and z-direction. At the same time, through the image

output of the adsorption observation device under the multi-field

coupling of the appealed coal and rock, the coal and rock we

observed expand in the y-direction, as shown in Figure 17B, and at

the same time, after processing by the adsorption expansion

information extraction technique, The experimental results are

shown in Figure 17C.

If a small part of the coal body relative to the whole volume is

taken from the gas-bearing coal seam, they are divided into a

solitary solid by stratification and termination in the space, and

its adsorption process accords with the operation of free

expansion. However, when the gas-bearing coal seam is

analyzed from a macro point of view, it has complete

transverse constraints and constant covering stress. Its

reaction mechanism should be regarded as a collection of

continuous volume models composed of many free expansion

models.

To compare the effects of two extreme loading conditions on

the adsorption-induced strain experiment of coal samples.

According to the previous experimental results, the other

aspects of the two kinds of coal samples have been found. To

save time and experimental consumables, we only conducted

CO2 adsorption-induced strain experiments under different gas

pressures at 20°C for medium ash coal samples. We compared

them with the unconstrained test results under the same

conditions. As shown in Figure 18.

It can be seen from Figure 18 that gas pressure plays a

primary role in the adsorption and expansion of gas by coal,

FIGURE 16
Schematic diagram of unconstrained adsorption induction experiment. (A)Matrix mediummodel with pores; (B) Continuummatrix model; (C)
Matrix expansion.

FIGURE 17
X-axis displacement-constrained adsorption induced strain experiment schematic diagram. (A) Matrix medium model with pores; (B)
Continuum matrix model; (C) Matrix expansion.
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whether constrained or not. Combined with the analysis results of

the influence of anisotropy in the previous section on the

experimental results of the adsorption-induced strain of coal

samples during the formation of cracks in the coal matrix, their

direction is controlled by tectonic, and the plane joints are parallel

to the maximum compressive stress. However, the end joints are

vertical, and plane joints are in groups, most of which are

discontinuous and rough. The anisotropic orientation

distribution of the macerals (that is, their preferred orientation

parallel to the bedding), coupled with the composition

stratification of the material, leads to the anisotropic strength

and various adsorption expansion characteristics so that the

microcracks are parallel to the bedding. The expansion

mechanism of coal is mainly the adsorption expansion of coal

and the compression of gas pressure, and the compression effect of

gas pressure on coal is independent of the type of gas. Similar

studies have shown that even under unconstrained stress control

conditions, the injection of adsorbed gas will reduce the

permeability of coal under lower gas pressure. In comparison,

the permeability of coal may rebound under higher gas pressure

(Harpalani, 1985; Harpalani and Mcpherson, 1985; Seidle and

Huitt, 1995; Harpalani and Chen, 1997; Siriwardane et al., 2009;

Izadi et al., 2011). Therefore, regardless of the kind of gas, the

three-dimensional expansion in space should be the same for a

given amount of absorption. However, the same expansion

corresponds to different expansion spaces. As a result, the

upward expansion of the observation parties is not equal. If a

displacement constraint is added to the axial direction based on

free expansion, part of the outward expansion deformation that

originally occurred in this direction will instead squeeze the

fracture pore space into the coal matrix until it is closed, The

excess energy is not completely dissipated, and the work is done

along the direction of the remaining free surface. Under the

condition of low pressure, the constrained expansion is less

than the free expansion, the gas pressure is increased, and the

deformation results are close to each other.

Conclusion

The migration of coalbed methane in coal matrix is a process

of solid-heat-flow coupling, that is, the complex process in which

coal seam permeability depends on fracture pore pipe diameter,

fluid pressure, temperature and loading force. The different

induced strain characteristics of different gases adsorbed by

coal matrix, the gas-filled with different pressures to produce

the corresponding volume expansion, heating will generate the

similar volume expansion and the corresponding thermal stress

increment; loading mode will also be different. Different strain

results, The loading mode is assumed to be two extreme cases,

simplified as the private expansion behaviour under the

constraints of free adsorption expansion and displacement.

The main results are as follows:

1) A new test device and a suitable test method are adopted.

Optical and non-contact measurement is an innovative

testing method. An algorithm for automatic identification

of adsorption expansion deformation of coal samples is

developed using the Matlab program. There is an

adsorption isotherm relationship between the adsorption

strain and the reaction time, and the experimental data

show that the method is feasible.

2) The adsorption capacity of coal samples with different ash

content is different, and the adsorption difference of CH4/

CO2 is also distinct. Under the condition of the 2.3 MPa test at

room temperature and air pressure, the CO2 adsorption

deformation of medium ash coal samples is 0.082% more

than that of high ash coal samples, and the difference is only

0.0019%. This gap increases with gas pressure, and the

deformation difference between the two coal samples

adsorbing CO2 is as high as 0.4% under 5.5 MPa.

3) The anisotropy of the coal sample influences the result of

adsorption deformation. The deformation in the vertical

bedding direction is always more significant than that

parallel to the bedding direction, and there is a relation

coefficient K between one and 2. The result of adsorption

deformation should be the sum of the deformation results in

two directions.

4) Whether a displacement constraint on the coal sample

adsorption expansion test influences the test results. This

effect decreases with the increase of gas pressure, which

proves an internal expansion mode of coal adsorption

deformation.

FIGURE 18
CO2 experimental results of free adsorption and constrained
adsorption of coal samples under different gas pressures and
comparison of fitting curves.
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